ON THE UNIQUE FACTORIZATION THEOREM IN THE RING OF
NUMBER THEORETIC FUNCTIONS

BY
Cuin-P1 Lu

1. Introduction

The set Q of all functions ¥(n) on Z = {1, 2, 3, -+ -} into a commutative
ring R with identity forms a commutative ring with identity under ordinary
addition and the multiplication #; (¥ *x x)(n) = D_ajn ¥(d)-x(n/d). It was
proved by Cashwell and Everett [2] that when R is the field of complex num-
bers © is a unique factorization domain. In this paper we extend and prove
the unique factorization theorem in Q for a wider class of commutative rings
R. The method is indirect and it uses the isomorphism between € and the
ring of formal power series R, in a countably infinite number of indeterminates
over B. The theorem is proved for B, by introducing a topology.

2. The ring of number theoretic functions

The class @ of all number theoretic functions ¢, i.e., all functions ¢(n) on
the set Z of natural numbers n into a commutative ring with identity forms a
commutative ring with identity under the addition -+,

(¢¥+ x)(n) = ¥(n) + x(n),

and the multiplication * which is called convolution,

W *xx)(n) = 2ajn ¥(d)-x(n/d).

The zero 0 and the additive inverse —y of ¥ are of course the functions defined
by O0(n) = 0 and (—¢)(n) = —y¢(n) for every n. The function E with
E(1) = the identity of R, E(n) = 0 forall n s 1, is the identity:
Exy=yxE=yforallyinQ. Wesay that Qis the ring of number theoretic
functions over R if each function of @ takes values from R. A function
N(¢¥) on @ to Z is defined by taking N(y) to be the smallest number n for
which ¢(n) == 0if ¢ 0 and N(¢) = o if and only if ¢ = 0. Clearly
N(y) = 1forall y. If R has no zero divisors, then N(¢ x x) = N(¢) -N(x)
for all ¥, x of @. Indeed, we find that, if ¢ 5 0, x = 0 with N(¢) = 7 and
N(x) = j, then

W *x)(5F) = Zmnmii¥(m)-x(n) = $(2)-x(j) = 0
since ¢(m) = 0, x(n) = Oforallm < fand n < j.
ProrosrrioN 1. The ring Q@ of number theoretic functions over a domain of

integrity (v.e., a commutative domain with identity) has no zero divisors.
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Proof. If ¢, xeQand ¢y * x = 0, then N(¢ *x x) = N(0) = . Hence
either N(¢) or N(x) is =, ie., ¢ or x is 0.
In our ring @, an element ¢ is a unit if and only if ¥(1) is a unit of R. (Cf.
(2; §31.)
3. The weight topology
Let R be a commutative ring with identity, and put

o 0
R = UL Rz, 22, -, 2.
. ISR . . .
We say that a non-zero monomial czi'zi? --- z}¥, ce R, is of weight r if

1A+ 22+ -+« + kN = r. It is easy to see that the product of two
monomials, whose weights are ¢, and # respectively and whose coefficients are
not zero divisors, is of weight t; + #,. For each f ¢ R, we write

f=hHh+hH+ - +fu,

where each f; is a sum of all monomials of weight 7. Then we define an order
function v on R as follows:

o(f) =min {n|f, #0} if f=0

= if and only if f = O.
Clearly

o(f + ¢) = min {s(f), v(¢)} and o(fg) = o(f) + v(9).

Denote by B, the ideal of R consisting of all elements f whose order »(f) = r,
wherer = 0,1,2,3,---. EvidentlyR = BpD By D B, D B; D ---, and
N7~ B, = {0} by the definitions of v and B,. Now we topologize R by taking
the set of ideals {B,}r— as a basis of neighborhoods of 0. Clearly R is a
Hausdorff space for the induced topology. We call this topology the weight
topology of B. Let R* be a completion of R for the weight topology. The
extended topology in R* is also called the weight topology of R*.

4. The ring of formal power series in a countably infinite
number of indeterminates

Let R be a commutative ring with an identity 1. By a formal power
series in a countably infinite number of indeterminates {z:, 2, x5, « -}
over R we mean an infinite sequence

f= (f01f1’f27 "')fq7 "')

of polynomials f, e Ui=; R[x1, %2, - - , @, each f, being either 0 or a sum of
monomials of weight q. We define addition and multiplication of two power
series

f= (f07f17 "'}fQ; "') and g = (gO,gl; R IR "')
as follows:

frg=Uo+g,i+g, -, fatga, )
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f'g= (hﬂyhl’ <oy he, )’

where hy = X irjeqfigi. With these definitions of addition and multiplica-
tion the set of all formal power series in a countably infinite number of in-
determinates over R forms a commutative ring with the identity 1. We
denote it by R[[z1, 2, - -]lor R,. Everypolynomialf=fi+fi+ -+ 4+ fu
in R, where each f; is either 0 or a form of weight 4, can be identified with a
formal power series (fo,fi, *** ,f2,0,0, --+)in B,. By this identification
R becomes a subring of R,. Every element f of R, can also be expressed
in the form f = (fo, f1, -+-, fe, - ), where each f, is either O or a finite or
infinite sum of monomials of degree ¢ in R. An order function similar to v
can be defined in B,. This will also be denoted by v.

TrEOREM 1. For every commutative ring R with identity, R, is the comple-
tion of B = Ui Rlzy, 22, + -+ , :] for the weight topology.

Proof. Let B, = {feR, ;v(f) = r}. We show that R is dense in R, for
B.-topology, i.e., the topology induced by taking {B,} 7 as a basis of neighbor-
hoods of 0. Letf = (fo,f1, -**,fs, -**) € R, , where each f, is either 0 or a
form of weight ¢. Put F™ = (fo, fi, =+, fa, 0, 0, --+); then clearly
F™ ¢ R and (F™) is a Cauchy sequence with f as a limit. Next we assert
that R, is complete for B,-topology. Let (f*) be a Cauchy sequence of
elements of B,. Then for every integer j = 0, there exists an integer T'(j)
such that f™ — f™ eB;if n, m = T(j); hence fi¥ = fi™ forallk < j. Put
f= O, /AP 2% -..). Since each fi® ¢ R and is of weight ¢, fe R, .
We can easily see that for every j, f = fi” forall k < jif n = T(j); therefore
f™ — fasn — o for B,-topology. Finally we show that R is a subspace of
R.. This follows from the fact that B, n R = B, for every r, by the defini-
tions of B, , B, and v. Hence R, is a completion of R, and B,-topology is the
weight topology of R, .

Now let {p1, p2, ps, - - -} be the set of all prime integers (positive) arranged
in the natural order. Then every integer » of Z may be written uniquely in
the form n = pl'ph? --- pi* for some k, where each \; is zero or a non-zero
positive integer. Hence every number theoretic function ¥ may be associated
with a definite formal power series in R, by means of the correspondence:

(%) V= fu = 2 d(n)alial - ait,
where the summation extends over all n = plip}? - - - pi* of Z; obviously the
sum fy can be identified with some formal power series in B, . We can easily

verify that the correspondence is an isomorphism. As a consequence of
this we have the following propositions.

ProrostTioN 2.  The ring R, of formal power series over a domain of integrity
R s also a domain of integrity.

PropositioN 3. Anelementf = (fo,f1, *++,f¢, - ) of Ry is a unit if and
only if fo is a unit of R.
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Now we define Z to be the set consisting of all integers of the form

A Ag Ak
Pip2 -t P,

Ns = O foreachs = 1,2,3, ---, k. Then clearly
I CZ, CZyC - CZpCve-

and U1 Z, = Z. Let @ be the subset of Q consisting of those number
theoretic functions ¢ such that ¢(n) = 0 for all n ¢ Z;. Then, the set O
is the collection of all functions on Zj; into B. It can be easily verified that
@ = R[[x1, -+, x]] under the correspondence ().

DerintTiON 1. Set f = f(x1, 22, -+, i, * - +) € Ry ; then for any integer
7 = 0 the formal power series

f(x1,-’172, e ,.’1},‘,0,0, 0: "') in Ri = R[[$1,x2, v 7xj]]y
which is denoted by (f); , is called the projection of f on R; (we set Ry = R).
Clearly the mapping f — (f); is a ring homomorphism of R, on R;, ie.,

F+9)i= i+ (9); and (fg); = (f); - (g)i-

DerintrioN 2. A chain [f'7, 5%, -+, £, o [ f™] of f¥ ¢ R, is said to be
telescopic if ¥ = (f*V);foreachs¢ = 0,1, --+, m — 1.

5. The unique factorization in R,

We know that a domain of integrity F is a unique factorization domain if
it satisfies the following conditions:

[UF1] Every non-zero non-unit element of F is a finite product of irreducible
factors.

[UF2] The foregoing factorization is unique to within order and unit factors.

Un1Que Facrorization THEOREM. Let R be a unique factorization domain
of integrity such that R; = R[[x,, x2, -, x;]] s a unique factorization domain
for every finate integer j = 1; then so is R, .

In order to prove the theorem, we need the following Proposition 4 and
lemmas.

ProrosiTioN 4.  If a domain R of integrity satisfies the ascending chain con-
dition for principal ideals, then so does R, .

Proof. We show that the ring @ of number theoretic functions over R,
which is isomorphic to R, , satisfies the ascending chain condition for principal
ideals for such R. Let (f*) € (f®) € (f®) C --- be an ascending chain
of principal ideals of Q. Without loss of generality we may assume that
f© 5 0; then clearly f = 0 forall¢ = 1. Since (f*) < (f'*), £ £,
hence there exists a non-zero function g; in @ such that f = f“* xg,. Then
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NG®) = NG wg) = N(FH)-N(gs) # 0.

So N(f) = N(GF“™) and consequently we have a descending chain of
non-zero integers N(f) = N(f®) =2 N(f®) = .--. Evidently there must
exist non-zero integers r and & such that

N(f”) = N(f™?) = k
for every p = 0. Set /@ = f™ x g, ; then
0 = f7(k) = f"P (k) gr(1) + 2mrck,pa f (m) (1)
= "7 (k)-g:(1) + 0,
since N(f™) = kand f**(m) = Ofor all m < k. It follows that
(f7 (k) S (f™*P(k)).

F"(k)) S TP (k)

for every n = r. Thus we have the following ascending chain of non-zero
principal ideals of R:

(k) S (k) S (P (k) S -

Then there must exist an integer M such that (f*(k)) = (f**?(k)) for
every p = 0. Hence f™ (k) = &-f™*? (k) for some unit ¢ of R. On the
other hand, since f™*?|f there exists a g ¢ Q such that f° = f™+? 4 g,
Accordingly

Similarly

FOR) = g(1)-f**P (k) = e-f" (),

hence ¢ = ¢g(1); this means that g is a unit of Q. Therefore,

(f(M) ) = (f(M+10) )

for every p = 0.
As an immediate consequence of Proposition 4, we have the following:

Lemma 1. For any domain of integrity R which satisfies the ascending chain
condition for principal ideals, every non-zero non-unit element of R, is a product
of a finite number of irreducible factors.

LemMa 2. Every infinite telescopic chain [f©, f©, -+, f?, -] is a Cauchy
sequence for the weight topology, hence has a limit in R,, .

Proof. Since the chain is telescopic, for every integer ¢ = 0 and ¢ > 0,
each monomial of 9 — f @ is either 0 or contains at least one z; with & > ¢
as a factor. Hence f"? — f ¢ B, , where {B,} =0 is a basis of neighborhoods
of 0 which induces the weight topology of R,. Thus the chain is a Cauchy
sequence.

Note that every f e R, is a limit of a finite or infinite telescopic chain

[(f)O’ (f)17 ) (f)17 "']'
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The following lemma, is well known.

LemMA 3. Let F be a domain of integrity which satisfies [UF1)], then the
following assertions are equivalent:

(1) Fisa UFD.

(2) Any two elements of F have a g.c.d.

Levmma 4. Let R be a UFD such that R; ©s a UFD for every finite integer
j = 1, f, g any elements of R, and D a g.c.d. of (f); and (g); in R;. Then

(DY¥*P); ~ DY for all j = L(J, g), where L(f, g) s a certain non-negative
integer.

Proof. When either f or g is zero the assertion is trivial, hence we assume
that f and ¢ are non-zero. Let n be the smallest integer such that (f). = 0,
() ¥ 0 and 7 any integer = n. Since R; is a UFD by hypothesis, we can
represent D as a finite product of prime elements of R; ; denote by A(D?)
the number of all prime factors (not necessarily distinet) of D, Since
(D', is a factor of D, A(D®) = N(D'*"). Note that the projection of
each prime factor of D“*” on R, may not be prime in R;. Thus we have the
following descending chain of non-negative integers:

)\(D(ﬂ)) g )\(D(ﬂ‘f‘l)) g )\(D(n+2)) g ..

It follows that there exist integers ! and & such that k = A(D™"?) for all
p = 0. This means that for every j = n -+ [, the projection of each prime
factor of DY™ on R; is also prime and moreover (D), ~ D, We
denote n + I by L(f, g).

Proof of Theorem. We have seen in Lemma 1 that every non-zero non-unit
of R, is a finite product of irreducible factors. Hence applying Lemma 3
we prove the theorem by showing that any two elements f and g of R, have a
g.c.d. Since the assertion is trivial for the case where f = O or g = 0, we
assume that f and g are non-zero. Let D be a g.c.d. of (f); and (g); for
each j = 0, then we can construct an infinite telescopic chain

[D(L) D(L+1) D(L+2) .. ]
with the initial term in Ry , L = L(f, g), as follows. Assume that D? j =L,
has been defined and let D*” be any g.c.d. of ()41 and (g);41, then
(D(J'+1) )j ~ D(J')
by Lemma 4; hence there must exist a unit ¢'” in R; such that
D(J') = S(D(D(H—D )j — (S(J)D(HI))j .

we take D™ = ¢?DY*. By Lemma 2 the telescopic chain has a limit D,
say, in R, ; note that (D); = D? or (D'®); according as j = L or j < L for
eachj = 0. Let 7 and §*” be two elements of R, such that (f); = F?(D);

and (g); = §7(D); for each j = L({, g); then clearly (797); = 7 and
(39); = §”. Hence we have two telescopic chains



46 CHIN-PI LU

FL) L+l F(L+2) ~(L) =(L+1) ~(L+2)
[f »f 7f ,] and [g » g ' g 7]

with the initial terms in B, . Let fand g be their limits in R, respectively,
then (f); = 79 or (F®),, and (§); = g(’)_or (§®); according as j = L or
not respectively; hence (f); = ( f)i(D); = (fD);and (9); = (§);(D); = (gD);
for every j = 0. It follows that

f = lim;.o(f); = limsw( fD); = jD,
g = limj..(g); = limjo(§D); = §D

for the weight topology, namely D is a common divisor of f and g. Now let
E be any other common divisor of f and g in R,, ; then (E); is also a common
divisor of (f); and (g¢); in R; for each j = L(f, g). Since (D); is a g.c.d. of
(f); and (g); for such j, (E);|(D);. Hence there exists an element «'” in
R; such that (D); = o'?(E);,j = L(f, g). It is easy to see that

(L) (L+1) (L+2)
[a y & y & )yt ]

is an infinite telescopic chain. Let « be its limit in R, , then we can conclude
that D = aF. Thus Dis a g.c.d. of fand g¢.

CoroLLARY 1. If R is a field or a principal ideal domain or, more generally,
a regular unique factorization domain, then R, s a UFD. (A regular ring is a
Noetherian ring whose ring of quotient Ry is a regular local ring for every mauxi-
mal ideal M of R, cf. [3]).

CoROLLARY 2. Let R be a UFD such that the subring @, of the ring Q of
number theoretic functions over R is a UFD for every finite integer k = 1; then
s0 18 Q. In particular, if R is a regular UFD, then Q is also a UFD.

After the completion of the manuscript the author found that E. D. Cash-
well and C. J. Everett also generalized and proved the unique factorization
theorem in the ring of number theoretic functions by a different method in
their recent paper, Formal power series, Pacific Journal of Mathematics, vol.
13 (1963), pp. 45-64.
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