T-GROUPS AND THEIR GEOMETRY

BY
ArRNO CRONHEIM

Introduction

This paper began with the question: How can one describe the abstract
Pappus configuration within its automorphism group ® of order 1087 (For a
discussion of this group, see e.g. Levi [2, pp. 108 and 109].) The answer is
simple, and not surprising. To every point of the configuration corresponds
an involution in ® that leaves this point and no other point fixed; to every line
corresponds an involution in @ that leaves this line and no other line fixed.
A point and a line are incident if and only if the corresponding involutions
commute. These 9 + 9 = 18 involutions generate &; the inner automor-
phisms of @ induce the automorphisms of the configuration.

® contains a subgroup B, of order 9 (notation as in [2]) that acts as transla-
tion group on the 9 points, and a subgroup Bs of order 9 that acts, dually, as
translation group on the 9 lines. By and B generate a group Bs of order 27,
and are normal in B;. The group Bz = By n Bs is a direct factor of By and
of Bg. It is also possible to describe the Pappus configuration in B; by iden-
tifying the elements of B, with the 9 points and the elements of B with the 9
lines.

Analytically, the Pappus configuration can be described by deleting the
-vertical lines of an affine plane over the field GF(3) with 3 elements; @ is then
represented by linear transformations over GF(3).

To generalize this situation, we call a group G a T-group, if G = A-Bis a
product of two abelian normal subgroups 4 and B, and if C = 4 n B is a direct
factor of A and of B. In §1 we associate with each T-group G = A-B a
P-system (i.e. an incidence system with parallelism) (4, B). In §8 we con-
struct for T-groups without elements of order 2, a semidirect product @ = V-G,
with a four-group V and @ normal in ©. In Q one can define a P-system
(Py, Loy in terms of the involutions of Q, and (P, , L) is isomorphic to (4, B).
The inner automorphisms of © induce collineations in (P, , Lo); under certain
mild conditions, the group of all collineations and dualities of (Py, Lo is
canonically isomorphic with the automorphism group of Q.

Let @ be a projective plane that is (Y, Y)- and (v, w)-transitive for some
Y | w (i.e. a plane over a distributive quasi-field). Let A be the group of all
translations with axis w and B the group of all translations with center Y.
Then G = A-Bisa T-group. (The T indicates that A and B are translation
groups). The group © is now the group generated by all point-reflections
with axis w and all line-reflections with center Y. If € is the projective plane
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over the field GF(3), the groups ©?, G, A, B, C are linear representations of the
groups &, B;, Bo, Bs , Bs resp.

Instead of considering planes over distributive quasi-fields, we consider in
§4 P-systems over arbitrary rings, and their associated T-groups. In §5
transitive P-systems are characterized by configurations and transitivity prop-
erties. A transitive P-system possesses a regular T-group of collineations,
and in §6 a coordinate ring R is defined in terms of multiplication and com-
mutation in this group. In this way, one gets a one-to-one correspondence
between regular T-groups, transitive P-systems, and rings R with 1 (where R
is determined up to isotopisms). In §2 we consider homomorphisms of a
T-group G = A-B, and induced homomorphisms of the associated P-system
(4, B).

1 am deeply indebted to Professor Reinhold Baer. I am also grateful to
Dr. Peter Dembowski who criticized a first version of this paper, and to the
referee.

1. T-groups and P-systems

A system (9, B) consisting of a set A, a set B, and an incidence relation,
denoted by a | b for a ¢ A and b ¢ B, is an incidence system. The elements of
A are called points and the elements of B lines. The system (A, B)dw = (B, A,
with b | aif and only if a | b, is the dual of (U, B).

Suppose there exists an equivalence relation on ¥, denoted by a: || a2, and
an equivalence relation on B, denoted by b, || b .

We call (U, B) an incidence system with parallelism or P-system, if the follow-
ing holds:

Given a point a; and a line b; , then there is

(i) exactly one point a; such that az | 6; and a, || a1,
and

(ii) exactly one line b, such that by | a; and b, || by .

(For a similar concept, see Sperner [4].) The dual of a P-system is a P-sys-
tem.

A typical example of a P-system is the affine plane over a field, minus its
vertical lines. Hence if we say that two parallel points have the same
“abscissa’ and that two parallel lines have the same ‘“‘slope”, we can restate
(i) and (ii):

(i) Through every point there is exactly one line with given slope.

(i1) On every line there is exactly one point with given abscissa.

A homomorphism of a P-system (2, 8) onto a P-system (', ¥') is a pair
of mappings of % onto ¥ and of B onto B’ that preserve incidence and paral-
lelism. (Corresponding definitions hold for isomorphism, collineation and
duality.) (¥, 8B) is self-dual if there exists an isomorphism of (2, B) onto the
dual (B, ).

Remark. A homomorphism ¢ that is one-to-one, is an isomorphism.

Proof. We have to show that ¢ preserves incidence and parallelism.
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Suppose at first that ap | bp. There exists exactly one ¢; such that ¢; | b and
a1 | a. Then ai¢ | by, a1 ¢ || ap, together with ap | be, imply that a1¢ = ag;
hence a; = a|b. Suppose next that by ¢ || boo. Take a|b;. There exists
exactly one b; such that b;|a and b3 || ba. Then ap|bi¢, ap|bse, and
b1 || b2 || b3 imply that by ¢ = b ¢; hence b = b || b2 .

Notation. 2(a) is the line-pencil of all lines b | a; B(b) is the point-row of
all points a | b.

A group G = A-B that is the product of two abelian normal subgroups 4
and B, has the following well-known properties:

C = A n B is contained in the center Z(@) of G.

The derived group D(G) of G is contained in C.

Notation. a, b, ¢, g shall always denote elements in 4, B, C, G resp.
(g,h) = g 'k 'ghis the commutator of gand hin G. If H and K are complexes
in @, then (H, K) is the set of all commutators (h, k) withh e H and k ¢ K.

Since D(@) € Z(@), we have

(9192, 90) = (g1, 0)(gz, go)
and

(90, g192) = (g0, g1)(go, g2);
i.e. the mappings ¢ — (g, go) and g — (go, ¢) are homomorphisms of G into C.

ProrosiTioN 1. Let G = A-B be the product of two subgroups A and B
of @, B G. (Hence (A, B) € B.) If aand f are two homomorphisms of A
and B into a group H such that « = 8 on A n B, and (bB, aa) = (b, a)B for all
aeA and b e B, then a and B can be extended to a (unique) homomorphism n
of G into H.

Proof. If a;by = as by, then az’a; = b, b7" in 4 n B; hence
() ara = b2 B(b:1B)™" or aiobiB = aab:p.
Therefore (ab)n = aa bB is well defined on G.
(a1b1a2b2)n = (@142 b1(b1, a2)bs)n
= g1 aas aby B(b1 B, a2 a)b2 B = a1 aby Bas abs B
(a1 b1)n(az be)n.

Suppose that a group G = A - B is product of two abelian normal subgroups
A and B and that C = A n Bis a direct factor of A and of B,say A = Ay X C
and B = By X C. We call such a group G, together with the system of sub-
groups 4o, Bo, C, a T-group.

Since Agn B = ¢, G = Aq B is a semidirect product, and every g ¢ G has a
unique representation g = abc with a e Ao, be By, ceC.

With a T-group G = A-B we associate an incidence system (4, B) with
points A and lines B by defining
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a061‘b002 A (ao,bo)=0102_l (aoer,boeBo,ciGC).

Furthermore we define
alla & a=a modC,

b||¥ & b= b modC.

If G = A-Bis a T-group, the “dual” group G4 = B-A is a T-group with
the associated incidence system (B, A), the dual of (4, B). Hence the duality
principle is valid: we have to prove only one of two dual statements.

ProrosiTioN 2. If G = A-Bis a T-group, then (A, B) is a P-system, and
Laoe) = as'Boaoe, B(boc) = by Ao boec.

Proof. a and by denote elements in Ay and By resp. We have agc’ | boc
if and only if ¢’ = (a0, bo)c. Hence

B(boc) = set of all ao(ao, bo)c = by Ao by c.

Similarly R(acc) = ai'Boase. R(aoc) contains exactly one line b || bo,
namely b = bo(bo, ao)e. PB(boc) contains exactly one point a || ay, namely
a = ao(ao, bo)c.

For T-groups, Proposition 1 can be stated as follows:

ProrositioN 1’. Let G = A-B be a T-group with A = Ay X C and
B = By X C. Suppose that o, B, v are homomorphisms of Ao, By, C resp.
into a group H such that

(1) aa and bB commute with ¢y, and

(i) (ae, bB) = (a,b)y (forallaeAo,beBy,ceC).

Then o, 8, v can be extended to a homomorphism of G into H.

Taeorem 1. If G = A-B is a T-group, then G has a faithful representation
G* as collineation group of (A, B). A™ is sharply transitive on the points, B* is
sharply transitive on the lines, and G is sharply transitive on the incident point-
line-pairs, of (A, B).

Proof. Let A = A¢ X C and B = By X C. TFor aoe 4, define the map
aa = [a p, ay o] by

a(ao p) = aap on A,

b(as ¢) = ag'ba, on B.

(Note that c¢(ao p) # c(aoc).) aop is a permutation of 4. Since B G,
o o is a permutation of B. Puta = a;cwitha, e do. Then

a)(a o) = (ar'Boarc)(aoo) = ay'ai'Boarase = Laraoc) = L(alas p));

hence a, o preserves incidence. ao p clearly maps parallel points onto parallel
points; and b(a, ) = b(b, ao) || b. Hence ao « is a collineation of (4, B). It
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follows now from the definition of «, that « is an isomorphism of 4, into the
collineation group K of (4, B).
Similarly define by 8 = [bo p, bo o] for by e By by

a(be p) = by'ab, on A4,
b(bys) = bby  on B.

B is an isomorphism of By into K.
Define ¢y = [cp, co] for ¢ € C' by

a(cp) = ac on 4,
b(ce) = bc on B.

It is easy to check that v is an isomorphism of C into K.
ao p and by p commute with cp, and ao o and by ¢ commute with co; i.e.
ao o and by 8 commute with cy.
We have
a(ao p, bo p) = by 'bo aaz'bs a0 bo = a-(as, bo)p;
and similarly
b(ao g, bo 0') = b'(do ) bo)o‘.

Hence (ao a, bo 8) = (a0, bo)v, and a, B, v can be extended to a homomorphism
* of G into K by Prop. 1.

Let g = ao bo ¢ and suppose that point e(gp) = eand line e(go) = e. Then
e(go) = boc = eimplies that

bo=c=-¢e and e(gp) = elasp) = ao = ¢;

hence g = e. We have proved that if e(gp) = e and eg(c) = ¢, then g = e.
In particular if g* is the identity on (4, B), then g = e; hence * is an isomor-
phism of ¢ into K.

As a consequence of the definition of %, 4™ is sharply transitive on 4 and
B* is sharply transitive on B. With g = ao by ¢, we have e(gp) = ao(ao, bo)c
and e(go) = bye. Hence G is transitive on the incident point-line-pairs of
(A, B). Since only ¢* leaves point and line e fixed, G* is actually sharply
transitive.

ProrosiTioN 3. Suppose that a T-group G = A-Bwith A = 4y X C and
B = By X C acts as collineation group on a P-system (N, B) such that
(i) A and B are sharply transitive on U and B resp.;
(1) there exist a | bo such that Ao leaves by and By leaves a, fized;
(iii) ac || a and be || b for all a, B, c.
Then the map 6 given by
0wa— a, bob — b

1s an isomorphism of (U, B) onto (4, B).
g0 = 6g™ for all g € G.
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Proof. 6 is one-to-one because of the sharp transitivity. aqci| bocz im-
pliesthates ¢z = ag'bs a0 bo,0rboaecs = aoboca. Henceag by ao ¢y | bo ao bo ca,
ie.apaoci|boboc.. Hence 6" preservesincidence. agac || aoa and by be || 6o b
imply that 6" preserves parallelism. Let g = aobyc. Then

by'aao bocd = aoag.

ag'bagbocd' = b byg.

a0 abg 0" = ag*o*
bo bOg*6" = bg*e"
Hence 6g*6" = g.

@8 —2 . (4,B)

g lg*

+

@, 8) —— (4, B)

Let G = A-Bbea T-group,and put Z = Z(G), A1 = AgnZ and B, = Byn Z.

ProposiTION 4.
Z = A1 X B; X C;

Lara) C ae) © ar=amod 4; and ¢ = ¢z
B(brc1) € B(baez) & bi=Dbysmod By and ¢ = ¢
(fO’I' aier, bieBo, CiGC).

Proof. If g = abc is in Z, then b’g = g¢gb’ implies that b’a = ab’; hence
a ¢ Z, and similarly b ¢ Z, which proves that Z = 4; X B; X C. Note that
a e Z if and only (a, By) = ¢, and b ¢ Z if and only if (4, b) = e.

We have
B(ai ci) = a?lBo a;c;.

ar'Boarci S a3 By as c; implies that a'Byac < B,, where a = a; a3 and
¢ = cic'. a ‘eac = ceBimplies that ¢ = e. But then for every b e By,
(a,b) = v 'abeBob = By ; hence (a, By) = ¢, and a ¢ Z.

The converse follows from a;’Bya; = az'Boa;. Note that 2(a) S (a’)

implies {(a) = ¥(a’).

COROLLARY 4. The mappings a — (a) and b — B(b) are one-to-one if and
only if Z(G) = C.
ProrosiTioN 5. The following two conditions are equivalent:

(1) (a,b) = eimpliesaeCorbeC (forallaeA and b e B);
(ii) (A, B) s a partial plane.

Proof. ‘‘Partial plane” means as usual that two points have at most one
line in common, and two lines have at most one point in common. Ifa = ac;
and b = by co with ag e Agand bg e By, then (a,b) = (ao, by). Hence suppose
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at first that (ao, bo) = ewith ap = ein Agand by # ein By;. Thene, ao | ¢, bo
and (4, B) is not a partial plane. Conversely if (4, B) is not a partial plane,
then there are two distinet points incident with two distinet lines. Because
of the transitivity of G*, we may assume that point and line e are two of the
elements. We have ¢, a|e, b. a|e implies that a (5£¢) in A,, and e|b
implies that b (e¢) in By ; a | b implies that (a, b) = e.

Note that condition (i) is stronger than C = Z(@).

Put K = A; X B;with 4; and B, as above in Prop. 4. Let ¥ be the set of
all line-pencils €(a) and B the set of all point-rows $(b). Define incidence
and parallelism on (%[, 8B) by

2(a)| B(b) if alb,
La) || (@) if a=a' mod 4,C,
Bb) || B@') if b= mod B, C.

ProposiTion 6. G/K = AK/K-BK/K isa T-group. The maps a — 2(a)
and b — P(b) induce an isomorphism of (AK/K, BK/K) onto (¥, B).

Proof. Aiand Bj are subgroups of Z, hence normal in G; hence K is normal
in G, and AK/K and BK/K are normal in G/K. Since

AK = Ay X Bi1 X C and BK = A; X By X C,
we have

AKaBK = K X C, AK/K=~ (4/A,) X C, and BK/K =~ (By/B;) X C.

Note that (a;, B) © K implies that ape A, and (4, by) € K implies that
boe Bi. Hence Z(G/K) = CK/K ~ C. (See also Prop 10.)

Call two elements of an incidence system (¥, B) connected if they are con-
nected by an incidence chain, as e.g. a; and by in a, | b2 | 03| . Connected
is clearly an equivalence relation, and every incidence system is the union of
pairwise disconnected components (equivalence classes).

Let @ = A-B be a T-group with A = Ay X C and B = B, X C, and
D = D(G) the derived group of G. Put A; = Ay X D and B; = By X D.

ProposiTion 7. Gy = Ay By is a T-group. The components of (A, B) are
the [C:D)] translates (A, B1)(c*) of (41, By).

Proof. agci | boce implies that (ao, bo) = cics'; hence ¢; = ¢, mod D.
Hence if a, ¢; and by ¢ are connected, then ¢; = ¢; mod D. To prove the con-
verse, observe that the relation “connected’ is preserved under collineations
of (A, B). Hence if ¢, ¢, and ¢, are connected, then ci(cs)™ = cic3"
and cx(cy) ™" = e are connected; i.e. the ¢’s that are connected with e, form a
subgroup of C. This subgroup contains D, since ¢ = (ay, by) implies that
e|bo|aoc|c, and—as proved above—is contained in D. Hence e and ¢
are connected if and only if ¢ in D, or ¢; and ¢ are connected if and only if
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¢t = comod D. Clearly aoc: and by ¢z connected if and only if ¢; and ¢, con-
nected.

CoroLLARY 7. C = D if and only if (A, B) is connected (i.e. has only one
component).

ProrosiTiON 8. The following three statements are equivalent.

(i) Every c € C is a commutator ¢ = (a, b).

(ii)  Every line b intersects (in a point) at least one line of every pencil £(a).
(iii)  Ewvery point a is joined (by a line) to at least one point of every row B(b).

Proof. Suppose that (ii) holds, and (line) ¢ is given. There is a point
aoc | candaline by | ¢, such that aoc | bo, i.e. (@, bo) = ¢. Hence (ii) implies
(1), and similarly (iii) implies (i). Conversely consider line b and pencil
2(a). We have a(ap)™ = e and b(ac)™ = byc, say. Then e(bop)™" = e
and by c(boo)” = ¢. Hence we may assume thatb = canda = e. ¢ = (ao, bo)
for some ao € A and by € Bo means that a, ¢ | by with ao ¢ | ¢ and b € 2(e).

Note that condition (i) is stronger than C = D.

In every T-group G = A-B,wehave D C C € Z. G = A X B (with
C = e) shows that wecan have D = C # Z. G = A = B = ( shows that
we can have D = C = Z.

2. Homomorphisms

Let G = A-Band @ = A’-B’ be two T-groups with A = 4, X C,
B=ByX Cand A’ = Ag X C', B’ = Bq X C'. We call a homomorphism ¢
of G onto @ that maps 4, onto A¢, B, onto Bg and C onto C’, a T-homomor-
phism of G onto G,

ProrositioN 9. If ¢ is a T-homomorphism of the T-group G = A-B onto
@ = A’ B, then ¢ induces a homomorphism ¢* of (A, B) onto (A’, B').
% sk * *
ge =e¢ (go) for all g e G.

Conversely suppose that every ceC is a commutator ¢ = (a, b) and that
C' = Z(@'). Then every homomorphism of (A, B) onto (A’, B') is a product
o*g'*, with uniquely determined homomorphism ¢ of G onto G, and ¢’ € G".

Proof. Let ¢ be a given T-homomorphism. Since Cp = C’, ¢ preserves
parallelism. Suppose that ac; | bes (@€ Ao, beBy). Then (a, b) = c¢icz';
hence

(ap, bp) = cro(cae)

ie. (ac1)e | (bea)e. Hence ¢ preserves incidence.

(a(ge))e = (ap)(gep)

(b(go))e = (be)(ges)

and

Il

prove that g*0™ = 0™ (go)*.
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*

(4, By -2 (4', B)
19* j(gsa)*

®

4,By —*— (A, B)

Conversely let «; be a homomorphism of (4, B) onto (4/, B’). Then there
exists a unique ¢’ ¢ G such that point ex; = ¢’g’p and line ex; = ¢'g’s. Then
k = xi(g"*)™" is a homomorphism of (4, B) onto (4’, B’) that maps point and
line ¢ onto &’.

e || ¢ implies that ¢’ || ck; hence Ck & €’ (for points and lines). Suppose
that x maps point ¢ onto ¢’ and line ¢ onto ¢”. Then ¢ | ¢ implies that ¢’ | ¢”,
ie. ¢’ = ¢”, and we are justified in writing c for the image of point and line ¢.
a | e implies that ax | ¢’;i.e. Aok & Ao and similarly Box € By .

Let aeAo. ac|c and ac || o imply that (ac)x|ck and (ac)« || ax; hence
(ac)x = ax-ck. Similarly for b e By, (bc)x = br-ck. Therefore A’ = Ax =
Ao x-Ck C Ao €’ implies that Aok = Ao and Cx = (’, and similarly By« = B .

Given ¢; and ¢, in C, there are a ¢ Ao and b € By such that (a, b) = ¢; ¢z, i.e.
acy | besas well as aci ¢z | b, These two incidences imply that

ak-cik|br-cok and  ax(ercz )| b,
ie. that
(ak, bx) = c1k(ce «)" and (ak, bk) = (e1 st )k.
Hence ¢ k(ca k)™ = (¢1¢3)«; i.e. k induces a homomorphism on C.

We have a(a, b) | b (ae Ao, beBy). Hence ax(a, b)x | bk, i.e. (ak, bx) =
(a, b)x. Then

(ax, (bib2)x) = (@, biba)x = ((a, b1)(a, b))k

= (a, bl)K(a, bz)l{ = (aK, b x)(ax, bs K) = (aK, b1 kb2 K),
or
(ak, (b ba)k(by k) (bar)™") = €.

If a runs through A, , then ax runs through A , and ¢’ = Z(@’) implies that
(b ba)k(by k) (e k)™ = ¢;

i.e. «x induces a homomorphism on By, and similarly on 4,. Together with
(ak, bx) = (a, b)k, k can be extended by Prop. 1’ to a T-homomorphism ¢ of
Gonto G';ie. k = ¢*and k; = go*g'*.

Denote by ®, the group of all T-automorphisms of the T-group G = A - B.
Then we have the following as a consequence of Prop. 9.

TraEOREM 2. Ifina T-group G = A B, every c € C is a commutator ¢ = (a,b)
and if C = Z(GQ), then the group K of all collineations of (A, B) s equal to the
semidirect product K = ®G*.
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Remark. We can interpret ®,- @ as subgroup of the holomorph of G. Ele-
ments g and ¢ are switched according to the rule

g-e = o(g°).
(g-¢ is a product in the holomorph; ¢* is the image of g under ¢.) Then the
formula g*¢* = ¢*(ge)* implies that the map ¢g — ¢*g* is an isomorphism
of the subgroup ®y-G of the holomorph onto the collineation group &g -G™ of
(4, B).

If C # Z orif D # C, there are “in general” collineations « of (4, B) (leaving
point and line ¢ fixed) that are not induced by automorphisms of G.

If C # Z, suppose e.g. that A; = Ayn Z # e. Let a be a permutation of
A, that leaves e and the cosets modulo A, invariant. If A, is not too small,
there are such permutations « that are not automorphisms of 4,. Define
k by

(ac)k = aac, (be)x = be (a €Ay, be By).

Then « is a collineation of (4, B) that is not induced by an automorphism of G-
Ife = D = C,takecnotin Dand d  ein D. Put

k= d* on (4, D¢, By Dc)
= identity otherwise.

Then « is a collineation of (4, B). If [C:D] = 3, there are ¢; and ¢z, both
#c mod D, such that ¢ = ¢1co. Then cix = ¢1, c2k = ¢z, but (1) =
ck =cd # cico. If [C:D] = 2 and in addition d® 5 e, then ex = ed, bu
c’x = ¢ # (ed)’. In both cases, « is not induced by an automorphism of @

ProposiTioN 10. Let G = A-B be a T-group with A = Ay X C and
B = By X C. Then the subgroup K of G is kernel of a T-homomorphism of G
if and only of K = Ay By Cywith Ay, By, C; subgroups of Ao, By, C resp. and
(Al, Bo) _C_ Cl and (Ao, Bl) _g Cl .

K = A,Cy-B,Cy 7s a T-group.

Proof. 1If ¢ is a T-homomorphism of G with kernel K, put
A4y = Aon K, By = BynkK, Ci=CnkKk.
Then
(41,B)) € CnK = (Cy, and (4o,B;) CC;.
Hence K = A, Ci-B; (1 is a T-group.

Conversely suppose that A;, B;, C; are subgroups of 4o, By, C resp. and
that (A:, By) € Crand (4o, B1) & C1. B, normalizes 4; C; and A, nor-
malizes B; C;. Hence K = 4, B; C:1 < G.

AKnBK = AoBlo nAlBoC = A1Blc = KC, AK = A()KOK.
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AoKﬂ CK = A0B1C1nAlB1C = A1B1C1 = K.
AoK/K.’l.’Ao/AonK = Ao/Al; CK/K& C/CﬂK = 0/01.

Hence
G/K =~ (A¢/A1 X C/C1)-(Bo/B: X C/Ch).

Compute commutators according to the rule
(@ A1, boB1) = (a0, bo)(ao, B1)(A1, bo)(41, B1) = (a0, by) mod C;.

Let H be the group of all automorphisms# of a T-group G = A - B such that
forallaeA,beB,ceC,anl a, by | b, and e¢n = ¢, and suppose that

A=4,XC=A4,XC, B =By X (=B XC.

ProrosiTioN 11. There exists exactly one automorphism n ¢ H that maps A,
onto Ay and By onto By. 1™ is an isomorphism of (A, B), onto (A, B); .

Proof. Define a mapping 7 as follows. 7 is the identity on C. If ao| a1
(with a; € A;), define agn = a; ; and if by || by (With b; € B;), define bon = by .
Then

(@0, bon) = (a1, bi) = (@, bo) = (a0, bo)n.

Hence by Prop. 1/, n can be extended to an automorphism of G. An auto-
morphism % that maps 4, onto 4o and B, onto By, is clearly the identity.
Hence 7 is uniquely determined. By Prop. 9, n* is the desired isomorphism.

Remark. If G = A-Bis a T-group, the structure of the associated P-sys-
tem (A, B) does not depend on the choice of the direct factors 4, and B, .

Let G = A-Bbea T-groupwith A = A, X Cand B = By X C. Denote by
& the group of all automorphisms ¢ of ¢ that map 4 onto 4 and B onto B,
(hence also C onto ('), and by &, the subgroup of all T-automorphisms of G.
Let o e® and n e H. Then

ag ' || ag
hence ag 'ne || a; similarly by e || b and ¢ 'ne = c¢. Hence ¢ 'ne ¢ H, i.e.
H < ®. Given ¢, there exists exactly one n such that A,¢ = Ay nand
Bog = Bon; hence on ' e®,. Since & n H = 1;® = &,-H is the semidirect
product of &, and H.
3. Finite T-groups

ProrositioN 12. The direct product of two T-groups ts a T-group.
Proof. Let G; = A; X B, be two T-groups with

Ai = Aio X C@ and Bz = Bio X Ci (’& = 1, 2)
Then
G =G X G = (A; X A2)-(B1 X By)
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with
C =4, X 4:nB; X By = C; X Cs,
Ay X Ay =Ap X A X C1 X C: and By X By = Byy X By X C1 X Cs.
Remark.
center Z(Gl X Gz) = Z(Gl) X Z(Gg).
commutator (a: X az,b1 X b2) = (a1,b1) X (az2,b2) witha;eA;,b;eB;;
hence )
derived group D(G; X G:) = D(Gi) X D(G,).

Also every ¢; X ¢2 is a commutator if and only if every ¢, and every ¢ is a
commutator (c; e C;).

This suggests that we define the direct produet of two P-systems as follows:
U1, B) X Wz, Be) = (W X Az, B X By,

with incidence and parallelism defined by
a X @ by Xb © a| by and ay| by
X afarXa o afar and af as
By X by | b1 X b2 < by b and b b;.

This makes the direct product into a P-system; and especially for the direct
product G; X G: of two T-groups, we have

(A1 X Ag, By X By) >~ (A1, By) X (42, By).

If a" = e, then (a, b)” = (a”, b) = e. Hence we have the following:

1. Ifa” =b" = eand (m,n) = 1, then (a,b) = ¢,i.e. ab = ba;

2. ifa” = b” = eand v = min (&, B), then (a, b)?" = e.

Let @ = A-Bbea T-groupwith A = Ay X Cand B = By X C, and D the
derived group of G. If A, has exponent p* and B, has exponent p®, then D
has exponent at most p”, where ¥y = min (o, 8). (The exponent of a group @
is the smallest positive integer k such that ¢* = e for all g ¢ G, provided %
exists).

ProrosiTioN 13. Ifin a T-group G = A-B, A and B are p-groups, then G
is a p-group. If p™ is the maximum of the exponents of A and B, then G has

exponent p™, except posstbly in the case that exponent of A = exponent of B = 27,
where G can also have exponent 2™,

Proof. We have
(ab)p”‘ = ap"‘bp""(b a)1+2+..‘+(p"‘—-1) = (b a)(ll2)p"‘(p’”—l)
) ) .

If p is odd, then (a, b)™ = e. If p = 2 and if A and B have distinct ex-
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om—1

ponents, then (a, b) =¢, Ifexp (4) = exp (B) = 2", then
(@)™ = (b, @) = e,

An example for the exceptional case is the dihedral group G = {a, b} of order
8 generated by the permutations ¢ = (14)(23) and b = (24). Then
ab = (1234) and ¢ = (a,b) = (ab)’ = (13)(24). G = A-B with 4 = {a, c}
and B = {b, ¢}.

A T-group G = A-B isnilpotent. Hence a finite T-group is direct product
of its Sylow subgroups.

ProrosiTioN 14. The Sylow subgroups of a finite T-group G = A-B are
T-groups, and G s their direct product.

Proof. Let A; and B; be the p,-Sylow subgroups of 4 and of B. Then
C; = A;n B;is the p;-Sylow subgroup of C = A nB. A:<| Gsince 4; is
characteristic in A ; similarly B; <{ @. Hence G; = A; B; < @. Since G; is
a pi-group, G; n G; = e for ¢ # j; furthermore (G:, G;) = ¢, i.e. G; and G;
commute elementwise. Hence G = dir [] G:, and the G/’s are the Sylow
subgroupsof G. A = Ao X Cimpliesthat 4; = (4,n 4,) X C;, and similarly
Bi = (anBo) X C;.

ProrosiTioN 15. Let G = A-Bbe a finite T-group. If (A, B) is a connected
partial plane, then G is a p-group and A and B are elementary abelian. If
moreover p # 2, then G has exponent p.

Proof. Let A = Ay X Cand B = By X C. Suppose ay¢ Ao has order p
and bg € B, has order ¢, p # ¢ primes. Then (a,, by) = e, contradicting that
(4, B) is a partial plane, (see Prop. 5). Therefore A,and By are both p-groups
for the same prime p. Then the derived group D is also a p-group, but ¢ = D
since (A, B) is connected. Thus A and B are p-groups, hence G = A4-B
isa p-group. Suppose that A, has an element of order p*, say ao. Pick by e By
of order p. Then (af, bo) = (ao, bf) = e with both af and by not in C,
contradicting that (4, B) is a partial plane. Therefore A, and similarly B,
are both elementary abelian, and so are A and B. If p # 2, this implies that
@ has exponent p.

4. T-groups associated with rings

Let R be a ring (associative or not). (z, y, u, v, s, t will denote elements of
R.) Let QU(R), B(R)) be the following incidence system: A(R) is the set
of ordered pairs {x, y); B(R) is the set of ordered pairs (u, v); incidence is
defined by

(x,y)l(u,v) e zu=y+o

If we call two points with same abscissa z parallel, and two lines with same
slope u parallel, then (A(R), B(R)) is a P-system.
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One sees easily that ta, th, tc, defined as follows, are collineations of
UR), B(R)):
(x, yta = (& + ¢, ), (u, vdta = (u, v + tu),
(x, y)tb = (x, y + xt), (u, ¥)tb = (u + ¢, v),
(z, yic = (x,y + b), (u, v)tic = (u, v — ).

Let Ao(R) be the group of all ta, Bo(R) the group of all tb, and C(R) the group
of alltc. Then a, b, ¢ are isomorphisms of the additive group R™ onto A¢(R),
By(R), C(R) resp.

Put A(R) = Ao(R) X C(R) and B(R) = By(R) X C(R). One sees easily
that A(R) n B(R) = C(R). Furthermore

(z, y)(sa) T (tb) sath = (x, y + st)
and

(u, v)(sa) " (tb) 'satb = (u, v — st);
hence (sa, thb) = (s-t)c.

Therefore A(R) and B(R) are normal in G(R), and G(R) = A(R)-B(R)
is a T-group. G(R) is abelian if and only if R-B = 0 (i.e. R is a zero-ring).

The conditions of Prop. 3 are satisfied with a6y = (0, 0) and b, = (0, 0).
Hence the canonical map @ given by

point {(z, y) — zayc
line (u, v) — ub(—v)c
is an isomorphism of (A(R), B(R)) onto (A(R), B(R)) such that
g0 = 6g* for all g e G(R).

The triple (e, 8, v) is a homotopism of a ring R; onto a ring R, if o, 8,
~ are three homomorphisms of Ri onto Ry that satisfy

sa-if = (s-t)y foralls, teR;.

A homotopism (a, 8, v) of R; onto R, induces a homorphism (e, 8, v)* of
(A(Ry), B(R1)) onto (A(R:), B(R,)) given by

point (z, y) — (xe, y7),
line (u, v) — (uB, vvy).

ProrosiTioN 16. There is a one-to-one correspondence between homotopisms
(@, B, v) of Ri onto Re and T-homomorphisms ¢ of G(R1) onto G(R;). This
correspondence s determined by

ai¢ = oap, bie = Bb., Cig = YCz.
Proof. In the diagram
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+ a +
Ry — R,

. o

Ao R) —£— AyR,)

a; and a, are isomorphisms. Hence in the equation a; ¢ = ca;, one of the
homomorphisms « and ¢ determines the other one. The same holds for
biy = Bb; and c1¢o = v¢;.

If (@, B8, v) is a given homotopism, then
(sa1, thi)p = (s-t)cip = (s-t)yce = (Sa-18)cy = (saaz, 16by) = (sa1¢, th1p)

implies that ¢ can be extended by Prop. 1’ to a homomorphism of G(R;) onto
G(Rs).
Conversely if ¢ is a given homomorphism, then

(sa-iB)c: = (saaz, iBbs) = (sai ¢, bip) = (sa1, thi)e = (s-t)cie = (s:1)yc2
implies that (e, 8, v) is a homotopism.

CoRrOLLARY 16. The group A of all autotopisms of a ring R and the group
&, of all T-automorphisms of G(R) are tsomorphic.

Put T; = (A(R:), B(R:)) and T; = (A(R:), B(R:)).

Prorosirion 17. The following diagram vs commutative.

T (a, B, 7)*

: I
LU T, < g,
191 g l(gw)* lgw
T o T, o T, <—‘0—2— T

. "

R} W Lo

(e, B, v) <> ¢ according to Prop. 16.
Proof. We only have to check that

0% = (@, B, v)*6:.
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We have

(@, Y)01 0™ = (a1 yC1)p = xa1 ¢YCs ¢ = Tads YyCs = (T, YY)02 = (2, y)(x, B,7) 62

and
(u, =)0 0™ = (ubyvey)p = uby gve; @
= uﬂb2 vyCy = <uﬁ: —7)7>02 = (u’ —U)(a, ﬁ: 7)*02 .

We may look at the five squares of the diagram as five faces of a cube, and
get in this way the remaining relation

()1 (a: B, 7)* = (Ol, B, 7)* (gl ‘P)‘

In other words the canonical map 6 induces a complete isomorphism be-
tween the structure of the T-level and of the T-level.

A product (o, 8, v)*g: (g2 € G(R3)) is of the form
@, Y1) = @a + ra, 1v + Tra-ss + &y (72, sz, b arbitrary in R,).

Hence let us call every homomorphism (a, 8, v) *g. & semilinear transformation.

Wehave (sa,tb) = (s-t)c (foralls,te R). Hencerce C(R) is a commuta-
tor if and only if 7 is a product in R, r = st. saisin Z(G(R)) if and only if
s-R = 0;tb is in Z (G(R)) if and only if R-t = 0. Hence Z(G(R)) =
C(R) if and only if there are no annihilators in B (r # 0 is an annihilator
means that r-R = O or R-r = 0.) Therefore the next proposition follows
from Prop. 9.

ProposiTioN 18. If every element in R, is a product and if Ry does not possess
any annihilators, then every homomorphism of (A (R1), B(R1)) onto (A(R2), B(R:))
is a semilinear transformation (o, B, v)*gs with uniquely determined factors.

We have as a corollary

TaeorEM 3. If R is a ring with 1 and A its autotopism group, then the
collineation group of (A(R), B(R)) is equal to the group A*-G(R) of semilinear
transformations.

Remark. Let (o, 8, v) be a homotopism of a ring R with 1 onto a ring
R’ with 1’.  Then (e, 8, v) is a homomorphism (i.e. @ = 8 = v) if and only
if (@, 8, v)™* maps point and line (1, 0) onto (1’, 0) (since then sy = sa-18 = sa
and ty = la-t3 = ¢8.) Hence if R is a ring with 1, then the automorphism
group of R is isomorphic to the group of all collineations of (A(R), B(R))
that leave point and line (0, 0) and point and line (1, 0) fixed.

ProrosiTioN 19. Let R be a ring with 1, R’ a ring that is finite or has a 1,
and (o, B, v) a homotopism of R onto R’. Then «a, 8, v have the same kernel
M, M is an ideal in R, and (a, B, v) is the product of the canonical homo-
morphism of R onto R/ M and the induced isotopism of R/M onto R'.
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Proof. Let K, L, M be the kernels of «, 8, v respectively. Clearly
K € K-R. (K-R)y = Ka-RB = 0 implies that K-R & M; hence
K C K-R C M, and similarly L. € R-L M. R*/K, RY/L, and R*/M
are all isomorphic to R'*; hence if R’ is finite, then clearly K = L = M.
Now suppose that R’ has a 1 and that ¢8 = 1. We have (re)y = ra; hence
re ¢ M if and only if r e K, i.e. Ren M = Ke. Consider the homomorphism
r — re of R* onto R'e, and let J be its kernel. Je = 0 implies thatJ C K.

RT Re
M Me
Ke——eoKe
Jo——e0

Me = M n Re = Keimplies that M = K;similarly M = L. Since M-RC M
and R-M € M, M is an ideal in R. Let ¢ be the canonical homomorphism
of R onto B/M and define (o, 8/, v') by

(r+ M) =ra, (r+M)B =18  (r+ M} =r.
Then (a) B, 'Y) = ¢(al7 ﬁ,) 7,)-

CoroLLARY 19. If R and R’ are rings with 1 and x a homomorphism of
QU(R), B(R)) onto A(R’), B(R')), then there exists an ideal M of R such that
Kk = Kike 18 the product of the canonical homomorphism k; of (A(R), B(R)) onto
QU(R/M), B(R/M)) and the induced isomorphism ke of (N(R/M), B(R/M))
onto (A(R"), B(R')).

Proof. Use Prop. 18 and Prop. 19.

5. Regular T-groups and transitive P-systems

The mapping a — (@, b) is a homomorphism of A into C; the mapping
b — (a, b) is a homomorphism of B into C. We call a ¢ A regular if and only
if b — (a, b) is onto C with kernel C, and b ¢ B regular if and only if a — (a, b)
is onto C with kernel C.

If A = A¢ X Cand B = By X C, then a is regular if and only if by — (a, bo)
is an isomorphism of B, onto C, and b is regular if and only if ap — (ao, b) is
an isomorphism of 4, onto C.

If a is regular, then every ac, i.e. every o' || a, is regular (similarly for b).
We say that a T-group G = A - B is regular, if there exist a regular a ¢ 4 and a
regularb e B. If G = A-Bisregular, then D(G) = C = Z(F), Ag~By~C,
and Thm. 2 applies.

Given are two lines bic; and bec: (bie By). The two lines have a point in
common if and only if there exist a ¢ Ao and ¢ e C such that

S (a, b)) = cci’ and (@, by) = ccz
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But a solution a, ¢ of (1) corresponds to a solution a of (a, bibz") = ci'ce.
Hence we have the following:

The number of points common to bic; and bce (b e By) is equal to the
number of solutions a ¢ 4, of (a, bibs') = ciles ;

The number of lines common to a;c: and azce (a; € Ao) is equal to the number
of solutions b € By of (@103, b) = cicr -

In particular, b is regular if and only if the lines be; and ¢, intersect in
exactly one point for every ¢; and ¢ ; a is regular if and only if the points ac;
and ¢, are joined by exactly one line for every ¢; and ¢, .

Let (¥, B) be a P-system. If we call every equivalence class [a] of points
o' || @ an ¢mproper line or vertical line, and every equivalence class [0] of lines
b’ || b an smproper point or point at infinity, then a line b and a vertical line
[a] intersect in exactly one point; a point a and a point at infinity [6] are
joined by exactly one line. We adjoin formally a point a, that is incident with
all vertical lines, and a line b, that is incident with all points at infinity.

We say that a pair of lines b, and b, is a regular pair if and only if the system
N(bo, b1) consisting of the points in ¥, the lines in [bo], the vertical lines, and
the lines in [by], is a [bo]-[a.]-[bi]-net; (terminology as in Pickert [3, p. 42]);
we say that a pair of two points ay and a; is a regular pair if and only if the
system N(ay, 0;1) consisting of the lines in B, the points in [ag], the points at
infinity, and the points in [ay], is a (dual) [ao]-[bs]-[a1]-net.

The group generated by the U-, V-, and W- automorphisms (see [3, p. 51])
of a U-V-W-net N is abelian and simply transitive on the points of N if and
only if ) is a Thomsen-net (see [3, p. 59]). In that case, this group is the
direct product of the group of U-automorphisms and the group of V-auto-
morphisms of N, and is called the translation group of .

Now let G = A B be a T-group.

ProrosiTioN 20. b e B s regular if and only if the pair e, b is regular in
(A, B), and then the group A™ is canonically isomorphic to the translation group
of M(e, b); aeA is regular if and only if the pair e, a is regular in (4, B),
and then the group B* is canonically isomorphic to the translation group of

N(e, a).
Let (¥, B) be a P-system with the following properties (i), (ii) and (iii).

(1) R(m) < Laz) implies that a; = a7 ;
B(6:) < B(b.) implies that b; = b, .
(ii) There is a regular pair by, by such that N(bo, 1) is a Thomsen-net;
there is a regular pair ao, a; such that RN(ao, a1) is @ Thomsen-net.

(It is no restriction to assume that ao | bo, a0 | b1 and ay | bo .)

A collineation of (X, B) that maps every line onto a parallel line and induces
a translation on N(by, b;) is called a point-translation; a collineation that
maps every point onto a parallel point and induces a translation on (o, 61)
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is called a line-translation. Because of (i), the point- and line-translations
are uniquely determined by their restrictions to (5o, 5:), and to N(ao, a1)
resp.; hence they form two abelian groups.

(iii) The group A of point-translation of (3, B) is transitive on A, and
the group B of line-translations of (¥, B) is transitive on B.

A P-system that satisfies (i), (ii) and (iii) is called transitive.

If G = A-Bis aregular T-group, the P-system (4, B) is transitive because
of Prop. 20.

TueoreM 4. If (N, B) is a transitive P-system, the group G = A - B generated
by the point-translations A and by the line-translations B of (Y, B), is a regular
T-group. (N, B) is isomorphic to (4, B).

Proof. There is no danger if we identify in this proof the point-translations
of (A, B) with the translations of N(by, b:) and the line-translations of (A, B)
with the translations of N(ao, a1). If « is a collineation of (A, B), it follows
from the definition of A and of B that x ¢ 4 n B if and only if ax || « on ¥ and
br || b on B. Therefore C = A n B is equal to the group of a.-translations of
N(bo, b1) and equal to the group of b.-translations of N (a, a1). Let Ao be
the group of [bo]-translations of 9 (be, b1) and B, the group of [ag]-translations
of S,R(C(o, 01). Then A = 4y X C,B = Bo X C, and bvo = bo, aoBo = (.

We want to show that (a,b) e C (a e Ao, beB,). Consider the four points
a, aa ", aa” b7, and aa b e. aa”' || aa b implies that a || aa”'b"a; hence
agb"ab || aa”'b7"a || a; ie. a(a, b)|| a. Dually we get 6(a, b)|| b. Therefore
(a,b) eC. SinceC C Z(G), this proves that A <{ G and B<{ G. Therefore
G = A-Bis a T-group. Hence the conditions of Prop. 3 are satisfied, and
(A, B) and (A, B) are isomorphic. If ga; = a; and beb; = by, then a; and b;
are regular in G.

6. Introduction of coordinates

Suppose that G = A -B is a regular T-group with a; € Ao and b; € B, regular.
Then the mapping a — (a, by) is an isomorphism of A, onto C, and the mapping
b — (a1, b) is an isomorphism of B, onto C.

Let v be an isomorphism of an additive group R onto C.

(s + t)y = sy-ty (s, teR).
Let o be the isomorphism of R onto A, given by
ty = (la, b1);
let 8 be the isomorphism of B onto B, given by
ty = (a1, t8).

(« is equal to v followed by the inverse of @ — (a, b1).)
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Define multiplication on R by
(s:t)y = (sa, 18).
Put tyy = (a1, b1), so that e = a;and 48 = by. Then t; = 1in R, since
(tt)y = (la, b)) = ty,  (ht)y = (&, 8) = ty.
Multiplication is distributive; e.g.
(st + 1))y = (se, 18-1'8) = (s, t8) (s, ¥'B)

= (s-t)y(s:t')y = (st + s-t')y.
Hence R is a ring with 1.
Now suppose that a; e Ao and b; e By (¢ = 1, 2) are regular in G. Denote
the corresponding isomorphisms by a;, 8:, and v, and the two rings by R, .
Then (07, 81827, v1va~) is an isotopism of R; onto R;, since

(sauoiz 18183 )va = (s, 11) = (s-t)m.

Hence the ring R = R(@G), constructed as above, is uniquely determined up
to isotopisms.

ProrosrrioN 21. If G = A-B is a regular T-group and R = R(G), then
G is T-isomorphic to G(R).

Proof. Suppose that A = Ay X Cand B = By X C. Then

ta — ta, i3 — b, ty — tc

are isomorphisms of Ay, B,, C onto A¢(R), Bo(R), C(R) resp.

Since
(Sa, tﬂ) = (s't)7 g (s-t)c = (sa, tb)y

these isomorphisms can be extended by Prop. 1’ to an isomorphism of G onto
G(R).

Remark. ta is regular if and only if {-w = v has a unique solution « for
every v (i.e. t is left-nonsingular); tb is regular if and only if 2+t = y has'a
unique solution  for every y (i.e. ¢ is right-nonsingular).

TueoreMm 5. If (A, B) is a transitive P-system, then there exists a ring R

with 1, uniquely determined up to isotopisms, such that (U, B) is isomorphic to
(U(R), B(R).

Proof. Use Thm. 4 and Prop. 21.

Remark. The definition of point- and line-translation in a P-system (2, B)
was dependent on the choice of two particular nets. Thm. 5 shows that the
point- and line-translations of a transitive P-system (¥, B) induce translations
on every net N(by, ;1) and N(ay, a;) (for regular pairs by, by and ao, ar).
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Hence in a transitive P-system, the concept of point- and line-translation is
independent of the choice of particular nets.

7. Dudlity

The dual of an incidence system (U, B) is defined by (A, B)dr = (B, A),
and the dual of a T-group G = A-B by Gi* = B-A. Note that as abstract
groups G = G,

Let G = A-B be a T-group with A = 4, X Cand B = By X C, and let
¥ be an automorphism of G that switches A and B, hence leaves C invariant.
There exists exactly one e H (see Prop. 11) such that A@f = By and
By = Am. Then the automorphism ¢» " maps 4o, By, C onto By, 4,, C
resp., hence induces an isomorphism of (4, B) onto (B, A) = (4, B)¥, Con-
versely suppose that @ satisfies the conditions of Thm. 2 and that there exists
a duality of (4, B), i.e. an isomorphism «; of (4, B) onto (B, A). Then «; has
a unique product representation x; = kg* where « is induced by an auto-
morphism of G that maps Ay, By, C onto By, Ao, C resp. Hence in this
case, the group A of all collineations and dualities of (4, B) is equal to the
semidirect product A = W5 G*, where ¥, is the group of all automorphisms of
G that map either 4,, By, C onto 4o, By, C resp., or Ay, By, C onto By, 4,,C
resp.

Rer denotes the ‘“‘opposite” ring of R with multiplication o defined by
2oy = yx (product in R). zu =y + v e uox = v + y shows that the
anti-isomorphism ¢ — ¢ of B onto R°P induces an isomorphism of (B(R), A(R))
= (A(R), B(R))™ onto (A(R°r), B(Rer)). The corresponding isomorphism
8 of G(R)% onto G(ReP) is given by rbé = ra, saé = sb, icé = (—i)c.

Suppose that a ring R possesses an anti-autotopism, i.e. an isotopism (e, 8, v)
of R onto R°*, Then (e, 8, v) induces an isomorphism (e, 8, v)* of
QU(R), B(R)) onto (A(R°r), B(R°r)), hence onto the dual (B(R), A(R)) of
U(R), B(R)). Conversely suppose that R is a ring with 1 and that
(A(R), B(R)) is self-dual. Then there exists a semilinear transformation of
QU(R), B(R)) onto (A(R°r), B(R°r), and R possesses an anti-autotopism.
We have proved

ProrositioN 22. If R is a ring with 1, then (A(R), B(R)) s self-dual if and
only if R possesses an anti-autotopism.

Prorosition 23.  If a regular T-group G = A - B possesses an automorphism
¥ of order 2 that switches A and B, then there exists a ring R with involutorial
anti-automorphism v such that G ~ G(R). v = lifand only if c¢ = ¢ " on C.
(In that case R is commutative.)

Proof. Let A = A¢ X Cand a;regularin Ag. Put By = Awand b; = an.
Then B = By X C and b, regular in By. Construct B = R(G) as above.
Then G ~ G(R). Identify ¢ with the corresponding automorphism of G(R).
Then ¢6 (with 6 : G(R)% — G(R°®), as above) is an isomorphism of G(R)
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onto G(Rer), induced by an isotopism («, 8, v) of R onto R°?, Since ¥é maps
(1, 0) onto (1, 0), (e, B, v) is an isomorphism of R onto E°r.
Now tcyé = tyc, hence

oy = tyed = (—ty)c = (tye) ™.

Therefore tcy = (tc)™ for all t ¢ R if and only if v = 1;ie.c¢ = ¢ " on C if
and only if v = 1.

8. The V-extension of a T-group

In §8 we assume that every T-group is nonabelian and has no elements of
order 2.

Let G = A-Bbe a T-group with A = Ay X Cand B = B, X C. Define
the map m as follows:

amo=a "on A and bm = bon B,.
Then
(aﬂ'o, bﬂ'o) = (a—l’ b) = (a: b)—l = (a') b)1l'o

implies by Prop. 1’ that m, can be extended to a T-automorphism mp of G.
Similarly there exists a T-automorphism A\ of G determined by

aho = aon Ay and br = b on B.

Then A, is the subgroup of 4 that is centralized by X\, and B, is the sub-
group of B that is centralized by m .

Since D = {(Aq, Bo)} # e, we have Ay > e and By # e. Hence m and )\,
are two distinet, and commuting, elements of order 2;i.e. V = {m, N} is a
four-group. We call the semidirect product @ = V-G, contained in the
holomorph of G, the V-extension of the T-group G = A-B, (V for Vierer-
gruppe).

We have moa;- w02 = a7 a2 in @. Hence the subset P = mA of Q@ consists
of involutions (elements of order 2), and P-P = A. Similarly L = N\B
consists of involutions, and L-L = B. Hence @ = {P, L} is generated by
the involutions in P and L. Note that the subgroups {P} and {L} of Q are
proper.

We define the incidence system (P, L) by

T I AN & TN = Am.
Furthermore

rl|r o wr'eC,
AN e WWeC,

define equivalence relations on P and on L.
Let P, be the class of all conjugates of m in @, and L, the class of all conju-
gates of Ng. Since m and A\ commute, we only have to form conjugates with
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geG. Every g e G has a representation g = boa with bye Boand a ¢ A. Then
g"lm,g = g 'ma = ma’. Hence Py = mA? CP; similarly L, = NB? C L.

Because of the definition of my and A\, we have A and B normal in Q, hence
also C < ©. Furthermore

0 'Po = o 'mdw = md = P,
and similarly

w Lo = L, for all w € Q.

Remark. If Q@ and @ are finite groups (or torsion groups), then always
A’ = A and B* = B;hence Py = Pand Ly = L.

ProrosrrioN 24. (P, Lo is a P-system. The map x:
a— a 'mn = wod’
b— b b = AD’
1s an 1somorphism of (A, B) onto (P, Ly).

Proof. The map x is clearly one-to-one and onto. Let = = ma’c; and
N = A\b’cs (with ae Ao, beBy). Then

wx = A if and only if  mohoa®b’ci’cs = Aemob’d’cs ¢t
if and only if (d% ) = (a, b)* = cicz*
if and only if (@, b) = cica”
if and only if acy | bes .

For ag e Aq, (aic)’ € C implies that af e Agn C,i.e. a5 = e and @y = e. Hence
forae A, o’ € C if and only if @ ¢ C. Therefore

a1 || @2 if and only if (ai'as)’ e C
if and only if mai-mas € C
if and only if i || moas.
This proves that (P, , Lo) is a P-system, and that x is an isomorphism.
(Remark. (P, L) is not always a P-system.)
Py and Ly are classes of conjugate involutions, and C is normal in . Hence
the inner automorphisms of 2 induce collineations in (P, Ly).
Notation. Denote the inner automorphism of a group @, induced by ¢ € G,
by #(g). If a homomorphism ¢ of a T-extension @ = V-Gonto @' = V'-¢’

induces a homomorphism of (P, , Lo) onto (P, Lo} (or onto the dual (Lo, Ps)),
denote the induced homomorphism by ¢*.

PROPOSITION 25. The map w— i(w)* is an isomorphism of Q onto the induced
group 1(2)* of collineations of (Po, L).
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w*x = xi(w)* for all w ¢ Q.
Z(Q) =e.

Proof. To prove that w*x = xi(w)¥, note the following. If g = achec,
then
ag™ = bs aabec = by ag;
and, forveV,
aw* = v"av (in Q).

Now let w = vg (veV, geG). Then

axi(w) = w '@ maw;
awx = av*g*x = (W aw)g*x = b (v aw)gx = (bov aw)x = o @ ‘maw.
Similarly bxi(w) = bw™*x.

Next we prove that «* = 1 implies that w = e. Let @ = vg. Then for
point and line e in (4, B), e = ew™ = ev™y™ = eg™ implies that g = ¢ (by Thm.
1). Now v 'av = aforall a e A and v"bv for all b e B; hence v g = g on G,
i.e.v = e. Hence all groups @, (Q), 2(2)* and * are isomorphic; in particular
win Z(Q) implies w = e.

Remark. If ¢* is a homomorphism of (Py, Lo) onto (P, Lg), then there
exists a unique ¢’ ¢ G’ such that

mp = mi(g’) and hp = Noi(g').

Hlence © = @i (g:), where ¢, is & homomorphism of Q onto @’ that maps m, onto
o and N\ onto Ao.

We determine the involutions in ©. We have @ = G u 7¢G U MG U T\ G-
Let g = abwithaed,beBy,. Then

moab-mwab = o 'bab = b(a, b)b = b*(a, b) = e

if and only if b = e. Hence my A = P is the set of all involutions in m G.
Similarly N B = L is the set of all involutions in Ay G. If 7 and A commute,
then 7\ e mo\o G has order 2. Let g = ab with a € 4o, b € B, and suppose that
mohog = wott-hob has order 2. But a product of two distinet involutions
(moa and Nob) has order 2 if and only if they commute. Hence the involutions
in we\¢ G are the products 7\ of commuting = and \.

Let w be an involution in 2. Denote by J(w) the group generated by all
products wiws of conjugates w; and ws of w in Q.

ProrosiTioN 26. Let w be an involution in @ = V-G. Then w is in P or
i L if and only if J(w) is abelian. If w and we are tnvolutions in P or in L,
then both are in P, or both are in L, if and only if (J(w1),J (w2)) = e.

Proof. Letwbein P. ThenJ(r) & P-P = A. Furthermore 7o 'ra =
o’ e J(r). Hence A> CJ(r) € A. Similarly B> CJ(\) C B.



T-GROUPS AND THEIR GEOMETRY 25

Now let w = mohog be an involution in mo\¢ G. Then for a ¢ Ay,

a”'wa = mhaga = wd'(a, g);
hence
w0 wa = a’(a, g) e J(w).

Similarly for b e By, b’(b, g) eJ (w). But
(a’(a, 9), Vb, 9)) = (&', ") = (a,B)" = ¢

if and only if (@, b) = e. Since D(G) # ¢, J(w) is not abelian.
Clearly (J(m), J(m)) = e and (J(\1), J(N2)) = e. A® C J(x) and
B® C J()\) imply that (J(7),J(\)) 2 (4% B®) = (4, B)* #e.

ProrosiTioN 27. Let ¢ be a homomorphism of @ = V-G onto @' = V'G.
Then ¢ maps either P onto P’ and L onto L', or P onto L’ and L onto P’.

If in addition A" = A" and B” = B’ in @', then ¢ induces a collineation or a
duality ¢* of (Po, Loy onto (P’, L').

Proof. 1If for some me P, 7o = ¢/, then Pp = (wd)p = Ap = ¢, since
there are no involutions in A¢. Hence either Pp = ¢/, or all o ¢ Py are
involutions. In the second case, J(mp) = J ()¢ abelian implies that re ¢ P’
orrpel;

(J(’lfw’), J(ww)) = (J(ﬂ'x), J(‘ll'z))ﬁo =¢

implies that either Pp & P’ or Pp & L’. Similarly either Ly = ¢’, or Lo C P/,
or Lo € I'. We must have either Po & P’ and Ly C L/, or Pp C L’ and
Lo C P/, for in every other case

¥ = = (Pl C (P} = @,
or
@ =9 = (Llp S (L'} = @,

leads to a contradiction.

An involution w not in P or in L is of type w = «\ (with commuting 7 ¢ P
and NeL). Then wy = mp: A is an involution which is neither in P’ nor in
L’. Now every involution in @’ is image of some involution in Q. Hence we
must have equality everywhere: Pp = P’ and Ly = L', or P = L’ and
Ly = P'.

To prove the last statement, note that a homomorphism onto maps con-
jugate classes onto conjugate classes, and that P’ = Pyand I = L.

ProposiTioN 28. If ¢ is @ homomorphism of @ = V-G such that Dy # e,
then Go = A By is a T-group, and Qo its V-extension.

Proof. Suppose that mp = eforsomem e P. Then Pp = (7d)p = Ap = ¢,
since A does not contain any involutions. But then

Dy = {(A, B)le = {(4¢, Bp)} = ¢
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would contradict Dy = e. Hence all m¢o € Pe and all \¢ € Ly are involutions.
Clearly A¢ and By normal in Gy, and Gy = Ae- Be.

All elements of A¢ anti-commute with m ¢;
all elements of By anti-commute with o ¢;

all elements of 4y ¢ commute with Mo ¢;
all elements of By commute with o ¢.
Hence

AvpnCo = ByponCo =¢ and Agn By = Co.
Therefore

Ap = Aop X Cp and Be = Bye X Co,

and Gy is a T-group. Since D(Gy) = D(@)p # e, Qpis the V-extension of Go.
Prop. 28 can be stated as follows: If K < @ and K P D, then GK/K is a
T-group and Q/K its V-extension. (Compare with Prop. 10.)
Let A be a group of automorphisms of a group @. Then the holomorph of &
contains the semidirect product A-G. Let ¢ be a homomorphism of G with
kernel K. If for all automorphisms « € A, we have K* C K, then

o’ = ap

defines an automorphism a” of G*. The map a — «* is a homomorphism of A
onto A*. We have

(g%, @) = ()7 (") (g")(a*) = (¢") g™
= (¢")7'¢" = (¢ ga)’ = (g, @)%
hence by Prop. 1, the map ag — «¢® is a homomorphism of A-G onto A*-G®.

ProrosiTioN 29. Let @ and @ be V-extensions of the T-groups G and G'.
Then there exists a natural one-to-one correspondence between the T-homomor-
phzsms of G onto @ and those homomorphisms of @ onto Q' that map wo onto
o and Ao onto \o .

Such a homomorphzsm ¢ of Q onto Q' induces a homomorphism of (Py, L)
onto (Py , Lo), and

"X = xe*.

Proof. Let ¢ be a T-homomorphism of G onto @’. By Prop. 10, the kernel
K of ¢ is of the form K = A, B; C; with 4; € 4,, By € By, C; € C; hence
K® C K forallveV. By the above remarks, ¢ can be extended to a homo-
morphlsm pof & = V-G onto Q=7 G’ Since clearly m ¢ = qa'lro and
>\0 o = ga)\o , ¢ maps m onto mo and Agonto o . o maps clearly P = m A onto
mo A’ = P’, and L onto L'.

Conversely suppose now that ¢ is a homomorphism of @ onto @' that maps
o onto mo and Ao onto No. Then ¢ maps P onto P’ and L onto L’ by Prop
27; hence also A onto A’ and B onto B’, and C onto C’ Since N\, and o



T-GROUPS AND THEIR GEOMETRY 27

centralize exactly A, and Ao , ¢ must map A, into Ao . Butsinee A Ao X C
is mapped onto A’ Ao X €', ¢ necessarily maps A, onto A¢. Similarly
¢ maps B, onto By , and induces a T- homomorphlsm of G onto G'.

Since mp ¢ = o s qo maps P, onto P, s and also Lo onto Lo. Hence ¢ induces
a homomorphism ¢* of (P, , L) onto (Po , Lo) Finally we have

apx’ = mo(ap)’ = (ma')e = axe
and

bex’ = No(be)’ = (Mbe = bxe.

ProrosrrioNn 30, Let G = A-B and G' = A’-B’ be two (nonabelian)
T-groups such that
(1) every ceC is a commutator ¢ = (a, b);
(i) C"=Z(@);
(iii) A4” = A’ and B” = B'.
Then every collineation and every duality of (Po , Lo) onto (P’ L’) 7s induced by
a homomorphism of the V-extension Q@ = V-G onto @ = V'-G'.

Proof. Denote by ¢o a homomorphlsm of Q onto Q' that maps either
mo and \o onto 7o and )\(',, or m and Ao onto Ao and o resp. By Prop. 9, every
collineation and every duality of (4, B) onto (4’, B’} is of the type vog’* (¢’ ¢ G').
Hence by Prop. 24 and Prop. 29 every collineation and every duality of
(Po, Lo) onto (P’, L") is of the type ¢* with ¢ = ¥, (g’).

We have as a corollary

THEOREM 6. Let G = A-B be a T-group such that
(1) every c e C is a commutator ¢ = (a, b);
(i) C =2Z(Q) 5# ¢
(iii) A2 = A and B* = B.
Then the automorphism group of the V-extension @ = V-G of G induces, and is
isomorphic to, the group of all collineations and dualities of (P, L).

Let R be a ring such that r 4+ r = O only forr = 0 (and R-R 5 0). Define
the collineations my and X\ of (A(R), B(R)) by

<$, y>7ro = <_x7 —y)y <u: 1)>7l'o = <u’ —-D),
(xa y>)‘0 = <CL', '_y>7 (u) 2)))‘0 = <-u’ _1))'
Then V(R) = {m, N} is a four-group. Since

moram = (—7)a, Norak, = 7a,
o rhm = 7b, No7bNo = (—7)b,
mo Cmwo = (—T)C, )\07’0)\0 == (—T)C,

QR) = V(R)-G(R) is the V-extension of G(R). The transformations in
Q(R) are of the type

(&, y) = (E£x + 1, £y + x5 + 1),
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If R is a ring with 1 and some % such that & + A = 1, then A(R)* = A(R)
and B(R)” = B(R); hence Thm. 6 applies. (This holds in every distributive
quasi-field (division-ring) of characteristic = 2.)

9. Characterization of the V-extension in terms of its
generating involutions

Let Q be a group with the following properties:

(i) @ = {P, L} is generated by two sets P and L of involutions;
(ii) P-P-PZC Pand L-L-L C L;
(ili) APN € P and wLw C L for every A e L and 7 ¢ P;
(iv) distinet involutions in P do not commute, distinct involutions in L
do not commute.

Then (ii) implies that A = P-P and B = L-L are abelian groups. (iii)
implies that A and B are normal in @, hence normal in G = A-B- (iv) im-
plies that A and B do not have elements of order 2.

Notation. = always denotes elements in P; M always denotes elements in L.
m| A\, or X | m, means that = and A commute. C = A nB. = || 7’ means that
' ¢ C, and \ || ' means that A\ e C.

Since my mp = m7mw m, we have A = 7P, hence mA = P;similarly B = AL
and AB = L- (ii) implies that

—1
rma't"r = w7’ = (¢'7”)7;
. —1 . . —1
ie.mar = @ on A;similarly \bA = b~ on B.

(v) There are mp and N such that m | \o ; to every = there is some =’ such
that 7’ | N\o and =’ || 7; to every X there is some N\ such that N | mo and N\ || \;

(vi) there are i, ma, A, A such that m A\, m|N, 72| N and
woAe # Ao 2.

THEOREM 7. A group Q is the V-extension of a nonabelian T-group G without
elements of order 2 if and only if Q satisfies the properties (1) to (vi).

Proof. If Qis a V-extension, then (i) to (iv) are clear. Everya = mre A
is a product @ = aoc with age Ay, ceC. If g = mn', then ¢ = ='r
and (v) follows. There are @ = mp m e Ag and b = Xy \; € By such that
(a,b) # e;hence (vi) follows.

Conversely suppose now that Q satisfies (i) to (vi). We have to show that
G = A-Bisa T-group. Define A, as the subgroup of A that is centralized by
No. (v) implies that ¢ = mom = wo«' -7’7 with 7' | Ao, hence m =" € 4o,
and 7'm e C. Since moreover all a e 4 commute with N\ and all ¢ ¢ C anti-
commute with Ao, we have A = A, X C; similarly B = By X C, where B,
is the subgroup of B that is centralized by m .

7l'17|'2>\1)\2 = 1l'1>\17l'2)\2 # 7!'1)\1)\21!'2 = )\1)\21!‘17!'2

implies that G is not abelian.
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Suppose that ¢ = aob with asedy, beB, and that ¢° = e Then
(a0 b)® = a§ b’(b, ag) = e implies that ag = e;hence ao = ¢, and b = e. @ has
no elements of order 2. Put V = {m, No}. ThenQ = V-G is the V-extension
of G.

If Q satisfies (i), (ii) and (iii), then

AN S P-PnL-L =C,

ie. (P, L) € C. If in addition there exist = | X, then C* C (P, L). For
let ¢ = mom = Ao \; then A7 = mo \; hence

62 = 1I'07r')\o}\ = 1I'0')\1I'0’)\ = (1I'0, )\)

ProrositioN 31. If Q satisfies (i), (i) and (iii), then (vil) and (viii)
equivalent:

(vii) (P, L) S C%

(viii) {o every w and X there exists ¢ € C such that wc | \;

(1), (i1), (iil), (vi) and (vil) together imply (V).

Proof. w\mA = ¢ if and only if ¢ = Amc if and only if mc-N = \-me.
Since (viii) implies (v), the last statement follows.

If Q satisfies (i) to (iv), and if P and L are finite (or if A and B are torsion
groups), then 4> = 4, B* = B,and ¢’ = (P, L) = C. Hence we have

ProrosiTioN 32. A finite group Q is the V-extension of a nonabelian T-group
G without elements of order 2 if and only if Q satisfies the properties (i) to (iv)
and (vi).

10. Some remarks on projective planes

If € is a projective plane and Y | » an incident point-line-pair, denote by
€ (Y | w) the incidence system one obtains from & by deleting all lines
through Y and all points on w. @(Y |w) is a P-system; every pair of
nonparallel points, and of nonparallel lines, is regular. If moreover € is
(Y, Y)- and (w, w)-transitive, (hence a translation plane; see e.g. Pickert
[3, Chapter 8]), then &(Y | w) is a transitive P-system, and the
methods of §6 can be used to introduce coordinates in €. As is well known
(see e.g. Pickert [3, p. 101]), € is a plane over a distributive quasifield (divi-
sion-ring). If A denotes the group of all translations with axis w and B the
group of all translations with center Y, then G = A-Bis a T-group, and all a
not in C and all b not in C are regular.

Conversely if G = A-B is a T-group in which all @ not in C and all b not in
C are regular, then there exists a projective plane € as above such that
(4, B) ~ E(Y | w).

The collineation group of E(Y | w) is equal to the group of all semilinear
transformations of (Y | w) (as defined in §4; see Thm. 2).

If @ has characteristic # 2, the V-extension Q of G is the group generated by
all point-reflections with axis » and all line-reflections with center Y. The
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group of all collineations and dualities of €(Y | ) is canonically isomorphic
with the automorphism group of €.
Since (P, L) ~ G(Y | w), Q satisfies the following:

(vi’) There are m, w1, Ao, A1 such that
M is the only line incident with m, and m ;
1 is the only point incident with \g and A; ;
(ix) if =7’ ¢ C, there exists A | m, 7';
if AN ¢ C, there exists = | \, N,

The following converse holds:

If @ is a finite group that satisfies (i) to (iv), (vi’) and (ix), there exists
a finite projective plane € over a distributive quasi-field such that
(P, Ly =~ G(Y | w).

Proof. By Prop. 32, @ is the V-extension of a T-group @, which is regular
because of (vi’), hence can be coordinatized by a ring R with 1. (ix) implies
that xa = b, and au = b, have solutions x and u if @ % 0. This together with
R finite, implies that R is a loop.

As a consequence of Cor. 19, we have the following:

If € is a projective plane and G(Y | w) is the homomorphic image of a
regular P-system (A(R), B(R)), then there exists a maximal ideal M in R
such that (Y | w) is isomorphic to (A(R/M), B(R/M)).

(See also Klingenberg [1, p. 108, S 28].)

If F is the Galois field with 3 elements, then (A (F), B(F)) is a representa-
tion of the abstract Pappus configuration, as was stated in the introduction.
Since 0, 1, and —1 are all the elements of F, the group Q(F) (isomorphic to
the group ® of the introduction) is now the complete collineation group, and
has index 2 in the group of all collineations and dualities of (A(F), B(F)).
Therefore Q(F) = O has index 2 in its automorphism group.

Added in proof. Several results of this paper are contained in A. A. Albert,
Finite division algebras and finite planes, Proceedings of Symposia in Ap-
plied Mathematics, Amer. Math. Soc., vol. X(1960), pp. 53-70. T-groups
oceur there as elementary collineation groups. Theorem 3 in § 4 and Theorem
51in § 6 correspond to Theorem 7 and Theorem 6 resp., in Albert’s paper.
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