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Introduction

This paper began with the question: How can one describe the abstract
Pappus configuration within its automorphism group @ of order 108? (For
discussion of this group, see e.g. Levi [2, pp. 108 and 109].) The answer is
simple, and not surprising. To every point of the configuration corresponds
an involution in gO that leaves this point and no other point fixed; to every line
corresponds an involution in gO that leaves this line and no other line fixed.
A point and a line are incident if and only if the corresponding involutions
commute. These 9 9 18 involutions generate @; the inner automor-
phisms of @ induce the automorphisms of the configuration.
@ contains a subgroup !9 of order 9 (notation as in [2] that acts as transla-

tion group on the 9 points, and a subgroup !s of order 9 that acts, dually, as
translation group on the 9 lines. 9 and s generate a group !5 of order 27,
and are normal in !5. The group !3 !9 n 8 is a direct factor of ! and
of s. It is also possible to describe the Pappus configuration in ! by iden-
tifying the elements of with the 9 points and the elements of s with the 9
lines.

Analytically, the Pappus configuration can be described by deleting the
vertical lines of an affine plane over the field GF(3) with 3 elements; @ is then
represented by linear transformations over GF(3).
To generalize this situation, we call a group G a T-group, if G A.B is

product of two abelian normal subgroups A and B, and if C A n B is a direct
factor of A and of B. In 1 we associate with each T-group G A .B
P-system (i.e. an incidence system with parallelism) (A, B). In 8 we con-
struct for T-groups without elements of order 2, a semidirect product 2 V. G,
with a four-group V and G normal in 2. In 2 one can define a P-system
(P0, L0) in terms of the involutions of 2, and (P0, L0) is isomorphic to (A,
The inner automorphisms of 2 induce collineations in (P0, L0); under certain
mild conditions, the group of all collineations and dualities of (P0, L0) is
canonically isomorphic with the automorphism group of

Let be a proiective plane that is (Y, Y)- and (o, )-transitive for some
Y co (i.e. a plane over a distributive quasi-field). Let A be the group of all
translations with axis o and B the group of all translations with center Y.
Then G A.B is a T-group. (The T indicates that A and B are translation
groups). The group 2 is now the group generated by all point-reflections
with axis o and all line-reflections with center Y. If is the proiective plane
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over the field GF(3), the groups t, G, A, B, C are linear representations of the
groups @, 3, 3, s, 3 resp.

Instead of considering planes over distributive quasi-fields, we consider in
4 P-systems over arbitrary rings, and their associated T-groups. In 5
transitive P-systems are characterized by configurations and transitivity prop-
erties. A transitive P-system possesses a regular T-group of colliaeations,
and in 6 a coordinate ring R is defined in terms of multiplication and com-
mutation in this group. In this wy, one gets u one-to-one correspondence
between regular T-groups, transitive P-systems, and rings R with 1 (where R
is determined up to isotopisms). In 2 we consider homomorphisms of a
T-group G A. B, and induced homomorphisms of the associated P-system
(A, .B).

1 am deeply indebted to Professor Reinhold Baer. I am also grateful to
Dr. Peter Dembowski who criticized a first version of this paper, and to the
referee.

1. T-groups and P-systems
A system (, ) consisting of a set /, a set , and an incidence relation,

denoted by a] b for a e and e , is an incidence system. The elements of
9A are called points and the elements of lines. The system (,
with a if and only if a b, is the dual of (?l,
Suppose there exists an equivalence relation on , denoted by al a2, and

an equivalence relation on , denoted by 51 52.
We call (, !) an incidence system with parallelism or P-system, if the follow-

ing holds"
Given a point 1 and a line 51, then there is
(i) exactly one point 2 such that a211 and a ,

and
(ii) exactly one line b such that 5[ al and 51.

(For a similar concept, see Sperner [4].) The dual of a P-system is a P-sys-
tem.
A typical example of a P-system is the affne plane over a field, minus its

vertical lines. Hence if we say that two parallel points have the same
"abscissa" and that two parallel lines have the same "slope", we can restate
(i) and (ii):

(i) Through every point there is exactly one line with given slope.
(ii) On every line there is exactly one point with given abscissa.
A homomorphism of a P-system (, 3} onto a P-system (?I’, 3’} is a pair

of mappings of I onto I’ and of 3 onto 3’ that preserve incidence and paral-
lelism. (Corresponding definitions hold for isomorphism, collineation and
duality.) (I, 3} is self-dual if there exists an isomorphism of (, } onto the
dual (!8, ).

Remark. A homomorphism that is one-to-one, is an isomorphism.

Proof. We have to show that -1 preserves incidence and parallelism.
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Suppose at first that a . There exists exactly one such thut l 5 und
al a. Then 1 lb, 1 , together with b, imply that ;
hence a a]b. Suppose next that bl . Take a Ibm. There exists
exactly one such that 5[ and ]5. Then, [,and
b ba imply that bx ba ; hence bl b3 b2.

Notation. 9(a) is the line-pencil of all lines b[a; (b) is the point-row of
all points
A group G A.B that is the product of two abelian normal subgroups A

and B, has the following well-known properties"
C A B is contained in the center Z(G) of G.
The derived group D(G) of G is contained in C.
Notion. a, b, c, g shall always denote elements in A, B, C, G resp.

(g, h) g-h-mgh is the commutator of g and h in G. IfH and K are complexes
in G, then (H, K) is the set of all commutators (h, ) with h e H and e K.

Since D(G) Z(G), we have

(g g, g0) (g, g0) (g, g0)
and

(e0, e e) (g0, ) (g0, e);

i.e. the mappings g (g, g0) and g (g0, g) are homomorphisms of G into C.

PgOOSTON 1. Let G A .B be the product of two subgroups A and B
of G, B G. (Hce (A, B) B.) If a and are two homomorphisms of A
and B into a group H such that a on A B, and (b, aa) (b, a) for all
a A and b
of G into H.

Proof. If a b a a bb in A B; hence

(a a)-a
Therefore (ab) aa b is well defined on G.

(a b a b)v (a a b(b a)b)v

a

a b),(a b),.

Suppose that a group G A.B is product of two abelian normal subgroups
A and B and that C A B is a direct factor of A and of B, say A A0 X C
and B B0 X C. We call such a group G, together with the system of sub-
groups Ao Bo C, T-group.

Since A0 B e, G A0 B is a semidirect product, and every g e G has a
unique representation g abc with a e A0, b e B0, c e C.
With a T-group G A .B we associate an incidence system (A, B) with

points A and lines B by defining
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aocl boc2 =v

Furthermore we define

ml(a0, bo) cl c2 (a0 e Ao, boe Bo, ci e C).

alia’ : a a’modC,

b lib’ = b--- b’modC.

If G A.B is a T-group, the "dual" group Gdu B.A is a T-group with
the associated incidence system (B, A), the dual of (A, B). Hence the duality
principle is valid’we have to prove only one of two dual statements.

PROPOSITION 2. If G A .B is a T-group, then (A, B) is a P-system, and

(ao c) a-lBo ao c, ?(bo c) b-iAo bo c.

Proof. ao and bo denote elements in Ao and Bo resp. We have ao c’lbo c
if and only if c’ (ao, bo)c. Hence

3(bo c) set of all ao(ao, bo)c bTAo bo c.

Similarly 9( ao c) a-Bo ao c. ( ao c) contains exactly one line b bo,
namely b bo(bo, ao)c. (boc) contains exactly one point a ao, namely
a ao(ao, bo)c.

For T-groups, Proposition 1 can be stated as follows"

I)ROIOSITION 1’. Let G A.B be a T-group with A Ao X C and
B Bo X C. Suppose that a, , are homomorphisms of Ao, Bo, C resp.
into a group H such that

(i) aa and b commute with c’, and
(ii) (aa, b) (a, b)’ (for all a e Ao b e Bo c e C).

Then a, , , can be extended to a homomorphism of G into H.

THEOREM 1. If G A.B is a T-group, then G has a faithful representation
G* as collineation group of (A, B). A* is sharply transitive on the points, B* is
sharply transitive on the lines, and G* is sharply transitive on the incident point-
line-pairs, of (A, B).

Proof. LetA Ao X CandB Bo C. ForaoeAodefinethemap
ao a [ao p, a0 a] by

a ao p) aao on A,

b(aoa) a-lbao onB.

(Note that c(ao p) c(a0 a).) ao p is a permutation of A. Since B <:l G,
ao a is a permutation of B. Put a a c with a e A0. Then

(a) (ao a) (alBo a c) (ao ) ala-[Bo a ao c (al ao c) (a(ao p) );

hence ao a preserves incidence, ao p clearly maps parallel points onto parallel
points; and b(ao () b(b, ao) b. Hence a0 a is a collineation of (A, B). It
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follows now from the definition of a, that a is an isomorphism of A0 into the
collineation group K of <A, B).

Similarly define b0/ [b0 p, b0 ] for b0 e B0 by

a( bo p) bTabo on A,

b(bo ) bbo on B.

is an isomorphism of B0 into K.
Define c, [cp, co’] for c C by

a(cp) ac onA,

b(c) bc onB.

It is easy to check that /is an isomorphism of C into K.
a0 p and bop commute with cp, and a0 a and b0 commute with ca; i.e.

a0 a and b0/ commute with c/.

We have
a( ao p, bo p) b-bo aalbao bo a. ao bo p

and similarly
b(ao , bo ) b.(ao bo)a.

Hence (a0 a, bo ) (a0, b0)% and a, , , can be extended to a homomorphism
of G into K by Prop. 1’.
Let g ao bo c and suppose that point e(gp) e and line e(ga) e. Then

e(ga) b0 c e implies that

bo c e, and e(gp) e(aop) ao e;

hence g e. We have proved that if e(gp) e and eg(a) e, then g e.
In particular if g* is the identity on (A, B), then g e; hence is an isomor-
phism of G into K.
As a consequence of the definition of., A* is sharply transitive on A and

B* is sharply transitive on B. With g a0 bo c, we huve e(gp) ao(ao, bo)c
and e(ga) bo c. Hence G* is transitive on the incident point-line-pairs of
(A, B). Since only e* leaves point and line e fixed, G* is actually sharply
transitive.

PnOOSTON 3. Suppose that a T-group G A.B with A Ao X C and
B Bo X C acts as collineation group on a P-system 0I, f) such that

A and B are sharply transitive on and ! resp.;
(ii) there exist ao bo such that Ao leaves bo and Bo leaves o fixed;
(iii) c a and c b for all a, b, c.

Then the map 0 given by
ao a ----> a, bob ---. b

is an isomorphism of (, !) onto (A, B).

gO Og* for all g e G.
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Proof. is one-to-one because of the sharp transitivity, ao cllbo c2 ira-
-1pliesthat cl c2 alblao bo, or bo ao cl ao bo c2. Hence ao bo ao cl o ao bo c2,

i.e. ao ao cl bobo c2. Hence -1 preservesincidence, ao ac ao a and bo bc bob
imply that 0-1 preserves parallelism. Let g ao bo c. Then

ao aOg*O-1 ag*O-1 b7laao bo cO- ao ag.

bo bOg*O- bg*0-1 a-lbao bo cO-1 bo bg.

Hence Og*O-1 g.

(?I, ) (A, B)

g g

(l, !) (A, B)

Let G A .B be a T-group, and put Z Z(G), A Ao n Z and B Bo n Z.

PROPOSITION 4.
Z A XBI C;

(alcl) (alc2) => alamodA1 and cl c;

(blcl)

_
3(b2c2) => bl------bmodB1 and cl c

(for ai e Ao bi e Bo c e C).

Proof. If g abc is in Z, then b’g gb’ implies that b’a ab’; hence
a e Z, and similarly b e Z, which proves that Z A1 >< B1 >< C. Note that
a e Z if and only (a, Bo) e, and b e Z if and only if (Ao, b) e.

We have
a Bo ai ci.(a c) -1

-1a-lBo al 1 _. a Bo a. c implies that a-lBo ac

_
Bo, where a a a and

--1 --1
c cc2 a eac ceBoimpliesthatc e. But then for everybeBo,
(a, b) a-lb-lab Bob Bo ;hence (a, Bo) e, and a Z.

--1The converse follows from a-lB0 al a B0 a. Note that (a) (a)
implies (a) (a’).

COROLLARY 4.
only if Z(G) C.

The mappings a ----> (a) and b ---+ (b) are one-to-one if and

PROPOSITION 5. The following two conditions are equivalent"
(i) (a,b) eimpliesaeCorbeC (forallaeA andbeB);
(ii) (A, B} is a partial plane.

Proof. "Partial plane" means as usual that two points have at most one
line in common, and two lines have at most one point in common. If a ao c
and b bo c with ao e A and bo e Bo, then (a, b) (ao, bo). Hence suppose
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at first that (a0, b0) e with a0 e in A0 and b0 e in B0. Then e, ao e, bo
and (A, B) is not a partial plane. Conversely if (A, B) is not a partial plane,
then there are two distinct points incident with two distinct lines. Because
of the transitivity of G*, we may assume that point and line e are two of the
elements. We have e, ale, b. ale implies that a (e) in A0, and elb
implies that b e) in B0 a b implies that (a, b) e.
Note that condition (i) is stronger than C Z(G).

Put K A1 X B1 with A1 and B1 as above in Prop. 4. Let ?I be the set of
all line-pencils (a) and the set of all point-rows (b). Define incidence
and parallelism on (, } by

(a) (b) if a[b,

(a) (a’) if a a’ mod A1 C,

(b) (b’) if b-----b’modB1C.

PROPOSITION 6. G/K AK/K.BK/K is a T-group. The maps a --+ (a)
and b ---> (b) induce an isomorphism of (AK/K, BK/K} onto (, !}.

Proof. A and B1 are subgroups of Z, hence normal in G; hence K is normal
in G, and AK/K and BK/K are normal in G/K. Since

AK Ao X B1 X C and BK A1 X Bo X C,
we have

AK n BK K X C, AK/K --- Ao/A X C, and BK/K _- Bo/B1) X C.

Note that (a0, B) K implies that a0 e A 1, and (A, bo) K implies that
b0 e B1. Hence Z(G/K) CK/K - C. (See also Prop 10.)

Call two elements of an incidence system (?I, connected if they are con-
nected by an incidence chain, as e.g. 1 and 4 in all t)l a31 54. Connected
is clearly an equivalence relation, and every incidence system is the union of
pairwise disconnected components (equivalence classes).

Let G A.B be a T-group with A A0 C and B B0 X C, and
D D(G) the derived group of G. PutA1 A0 XDandB1 B0 X D.

PROPOSITION 7. G1 A1. B1 is a T-group. The components of (A, B} are
the [C’D] translates (A1, B1}(c*) of (A1, B1}.

Proof. ao c[bo c implies that (a0, b0) cl c1; hence cl ------ c mod D.
Hence if a0 cl and b0 c are connected, then cl ------ c rood D. To prove the con-
verse, observe that the relation "connected" is preserved under collineations
of (A, B}. Hence if e, cl and c2 are connected, then cl(c)-1 cl c-1
and c.(c)-1 e are connected; i.e. the c’s that are connected with e, form a
subgroup of C. This subgroup contains D, since c (a0, b0) implies that
e lbolaoclc, and--as proved above--is contained in D. Hence e and c
are connected if and only if c in D, or cl and c are connected if and only if
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cl ------ c2 mod D. Clearly a0 cl and b0 c2 connected if and only if c and c2 con-
nected.

COROLLARY 7. C D if and only if (A, B) is connected (i.e. has only one
component).

PROPOSITION 8. The following three statements are equivalent.
Every c C is a commutator c a, b ).

(ii) Every line b intersects (in a point) at least one line of every pencil (a).
(iii) Every point a is joined (by a line) to at least one point of every row 3 b

Proof. Suppose that (ii) holds, and (line) c is given. There is a point
ao c c and a line b0 e, such that ao c bo, i.e. (a0, bo) c. Hence (ii) implies
(i), and similarly (iii) implies (i). Conversely consider line b and pencil
(a) We have a(ap)- e and b(aa)-1 boc, say. Then e(bo p e
and bo c(bo a)-i c. Hencewe may assume that b c and a e. c (ao, bo)
for some ao e Ao and bo e Bo means that ao c bo with ao c c and b0 e (e).
Note that condition (i) is stronger than C D.
In every T-groupG A.B, wehaveD c__ C c__ Z. G A B (with

C e) shows that we can have D CZ. G A B Cshowsthat
we can hayeD C Z.

2. Homomorphisms
Let G A.B and G’ A’.B’ be two T-groups with A Ao C,

B Bo X C and A’ A X C’, B’ Bo X C’. We call a homomorphism
of G onto G’ that maps A0 onto Ao, Bo onto Bo and C onto Cp, a T-homomor-
phism of G onto G’.

PROPOSITION 9. If is a T-homomorphism of the T-group G A.B onto
G’ A’.B, then induces a homomorphism e of (A, B) onto (A’, B).

g e *(ge) for allgeG.

Conversely suppose that every c C is a commutator c (a, b) and that
C’ Z( G’). Then every homomorphism of (A, B) onto (A’, B’) is a product
q*g’*, with uniquely determined homomorphism of G onto G, and g

Proof. Let be a given T-homomorphism. Since C C’, preserves
--1parallelism. Suppose that ac bc (a Ao, b Bo). Then (a, b) c c

hence
(ae, be) cl (c2e)-1,

i.e. (ac)e (bc2)e. Hence e preserves incidence.

(a(gp))e (ae)(gep)

prove that g* * * *(e)

(b(ga))e
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(A,B) 9 ..., (A’,B’)

(A, B) . (A’, B’)
Conversely let Kx be a homomorphism of (A, B) onto (A’, B’). Then there

exists a unique g’ e G such that point eK1 etgtp and line eK1 etgta. Then
t l(gt*)-1 is a homomorphism of (A, B) onto (A t, B’) that maps point and
line e onto et.

e c implies that e c; hence CK

_
C’ (for points and lines). Suppose

that maps point c onto c’ and line c onto c". Then c lc implies that c’lc’t,
i.e. c’ ct’, and we are justified in writing c for the image of point and line c.
a e implies that a Iet; i.e. Ao Ato and similarly B0

_
B.

Let a e Ao. ac c and ac a imply that (ac) c and (ac) aK; hence
(ac) a.c. Similarly for b e Bo, !bc) b.c. Therefore A AK 7
A0 "C

_
A0 C implies that A0 A0 and C Ct, and similarly B0 K B0.

--1Given cl and c in C, there are a e A0 and b e B0 such that (a, b) c c 1.e.
--1

acl bc. as well as acl c b. These two incidences imply that

a.c b.c K and a(c c1) b,
i.e. that

(aK, b) cl (c )-1 and (a, bK) (cl c-1).
Hence cl (c )-1 (cl c1); i.e. induces a homomorphism on C.
We have a(a, b) b (a e Ao b e Bo). Hence aK(a, b)[ b, i.e. (a, b)

a, b )K. Then

(aK, (bl b)) (a, b b) (a, bl)(a, b) )

(a, bl)K(a, b) (a, 51 )(aK, b. ) (a, 51 .b2 ),
or

--1 et.(a, (bl b)K(bl (b

If a runs through A0, then a runs through Ag, and C Z(Gt) impliesthat

)--1 e

i.e. induces a homomorphism on B0, and similarly on A0. Together with
(a, b) (a, b), K can be extended by Prop. 1 to a T-homomorphism of

* * t*GontoGt;i.e. 9 ands1 9 g

Denote by 0 the group of all T-automorphisms of the T-group G A.B.
Then we have the following as a consequence of Prop. 9.

THEOREM 2. If in a T-group G A B, every c e C is a commutator c a,b
and if C Z(G), then the group K of all collineations of (A, B) is equal to the
semidirect product K G*.
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Remark. We can interpret 0" G as subgroup of the holomorph of G.
ments g and q are switched according to the rule

Ele-

g. q(g).

(g. is a product in the holomorph; g is the image of g under .) Then the
formula g* * * * * *q (g) implies that the map qg q g is an isomorphism
of the subgroup 0" G of the holomorph onto the collineation group ’. G* of
(A, B).

If C Z or if D C, there are "in general" collineations K of (A, B) (leaving
point and line e fixed) that are not induced by automorphisms of G.

If C Z, suppose e.g. that A1 A0 n Z e. Let a be a permutation of
A0 that leaves e and the cosets modulo A1 invariant. If A0 is not too small,
there are such permutations a that are not automorphisms of A0. Define
K by

(ac) aac, (bc) bc (a e Ao be Bo).

Then is a collineation of (A, B} that is not induced by an automorphism of G.
IfeDC, takecnotinDanddeinD. Put

d* on (Ao Dc, Bo Dc}

identity otherwise.

Then K is a collineation of (A, B). If [C:D] -> 3, there are cl and c, both
cmodD, suchthatc clc.. Thencl cl,c= c2,but (cac2)
c cd cc.. If[C’D] 2 and in addition d e, thencK cd, bu.

C )2c (cd In both cases, is not induced by an automorphism of G

PROPOSITION 10. Let G A.B be a T-group with A Ao X C and
B Bo X C. Then the subgroup K of G is kernel of a T-homomorphism of G
if and only if K AB C with A B CI subgroups of Ao B0, C resp. and
(A, Bo) C and (Ao, B) C.
K A C1. BI C is a T-group.

Then

If 9 is a T-homomorphism of G with kernel K, put

A Ao r, K, B Bo n K, C1 C K.

(A,B0) CaK C, and (A0,B1) _C.

Hence K A1 C.B C is a T-group.

Conversely suppose that A, B, C are subgroups of A0, Bo, C resp. and
that (A, Bo) C1 and (Ao, B)

_
C1. Bo normalizes A C and Ao nor-

malizes B C1. Hence K A B1 C <:l G.

AK a BK AoB C c, A BoC A B C KC; AK AoK.CK.
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Ao K n CK Ao Bt Ct a At Bt C AtBtC K.

Ao K/K - Ao/Ao n K Ao/At CK/K --- C/C n K C/Ct.
Hence

GIg (Ao/At X C/Ct). (Bo/Bt X C/Ct).

Compute commutators according to the rule

(aoA, boBs) (ao, bo)(ao, B)(A, bo)(At, Bt) (ao, bo) mod Ct.
Let H be the group of all automorphisms of a T-group G A.B such that

for all a e A, b e B, c e C, a a, b b, and c c, and suppose that

A A0X C AtX C, B B0X C B X C.

PROeOStTtON 11. There exists exactly one automorphism e H that maps Ao
onto A and Bo onto Bt zs an isomorphism of (A, B)o onto (A, B)t

Proof. Define a mapping as follows, v is the identity on C. If a0 at
(with a e A), define a0 v at and if b0 bt (with b e B), define bo bt.
Then

(ao, boy) (a, b) (ao, b0) (ao, bo)v.

Hence by Prop. 1’, can be extended to an automorphism of G. An auto-
morphism v that maps A0 onto Ao and Bo onto B0, is clearly the identity.
Hence v is uniquely determined. By Prop. 9, v is the desired isomorphism.

Remark. If G A. B is u T-group, the structure of the associated P-sys-
tem (A, B) does not depend on the choice of the direct factors Ao and Bo.

Let G A.B be a T-group with A Ao X C and B Bo X C. Denote by
the group of all automorphisms of G that map A onto A and B onto B,

(hence also C onto C), and by o the subgroup of all T-automorphisms of G.
LeteandveH. Then

--1hences a; similarly b- b and c c. Hence- e H, i.e.
H . Given , there exists exactly one such that Ao Ao and

--1Bo B0s;hence eo. SinceoaH 1; o’Histhesemidirect
product of o and H.

3. ]n]te T-groops

PROPOSTm 12. The direct product of two T-groups is a T-group.

Proof. Let G A X B be two T-groups with

A AoX C and B B0 X C (i 1,2).
Then

G G X G. (A X A).(B X B.)
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with
C AIAsnBIB C1 C,

A1XA.=A10A0XC1XC and BXB=B10XB0XCXC.
Remark.

center Z(G G) Z(G) X Z(G).
commutator (al X as, bl X b) (al, b) X (as, b) with a e A, b e B

hence
derived group D(G X G) D(G) D(G).

Also every cl X c is a commutator if and only if every cl and every c is a
commutator (c e C).

This suggests that we define the direct product of two P-systems as follows:

x x x
with incidence and parallelism defined by

a, x a, x a, al and

This makes the direct product into a P-system; and especially for the direct
product G1 X G2 of two T-groups, we have

(A1 X As, B1 X B) (A1, Bi) (As,

If a e, then (a, b) (am, b) e. Hence we have the following"
1. Iram=b=eand(m,n) 1, then(a,b) =e,i.e. ab=ba;
2. if aa b e and / mia (a, ), then (a, b)
Let G A.B be a T-group with A A0 X C and B B0 X C, and D the

derived group of G. If A0 has exponent p" and B0 has exponent p, then D
has exponent at most p, where min (a, ). (The exponent of a group G
is the smallest positive integer ]c such that g e for all g e G, provided
exists).

PnOPOSZTON 13. If in a T-group G A. B, A and B are p-groups, then G
is a p-group. If pm is the maximum of the exponents of A and B, then G has
exponent pro, except possibly in the case that exponent ofA exponent of B 2m,
where G can also have exponent 2m+l.

Proof. We have

(ab)’ a’b’(b, a) 1++’’’+(-1) (b, a) (I/2)p(p-I).

If p is odd, then (a, b) e. If p 2 and if A and B have distiact ex-
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ponents, then (a, b)2-1 e. Ifexp(A) exp(B) 2re,then

(ab)+’ (b, a)2(2m-1) e.

An example for the exceptional case is the dihedral group G {a, b} of order
8 generated by the permutations a (14) (23) and b (24). Then
ab--- (1234)andc- (a,b)= (ab)= (13)(24). G--A.B withA--- {a,c}
andB {b,c}.
A T-group G A.B is nilpotent. Hence a finite T-group is direct product

of its Sylow subgroups.

PROPOSITION 14. The Sylow subgroups of a finite T-group G A .B are
T-groups, and G is their direct product.

Proof. Let A and B, be the p,-Sylow subgroups of A and of B. Then
C A n B is the p-Sylow subgroup of C A n B. A;<:] G since A is
characteristic in A; similarly B <3 G. Hence G A B <3 G. Since G is
a p-group, G n G- e for i j; furthermore (G, G.) e, i.e. G. and G.
commute elementwise. Hence G dir II G., and the G’s are the Sylow
subgroups of G. A A X C implies that A (A n A0) C,, and similarly
B (Bi B0) X C.

PROPOSITION 15. Let G A .B be a finite T-group. If (A, B) is a connected
partial plane, then G is a p-group and A and B are elementary abelian. If
moreover p 2, then G has exponent p.

Proof. LetA A0 X CandB B0 X C. Supposea0eA0hasorderp
and b0 e Bo has order q, p q primes. Then (a0, b0) e, contradicting that
(A, B} is a partial plane, (see Prop. 5). Therefore Ao and B0 are both p-groups
for the same prime p. Then the derived group D is also a p-group, but C D
since (A, B} is connected. Thus A and B are p-groups, hence G A .B
is a p-group. Suppose that A0 has an element of order p, say a0. Pick b0 e B0
of orderp. Then (a, b0) (a0, b) ewithbotha andb0notin C,
contradicting that (A, B} is a partial plane. Therefore A0 and similarly B0
are both elementary abelian, and so are A and B. If p 2, this implies that
G has exponent p.

4. T-groups associated with rings
Let R be a ring (associative or not). (x, y, u, v, s, will denote elements of

R. Let (?I(R), !(R)) be the following incidence system: ?I(R) is the set
of ordered pairs (x, y); (R) is the set of ordered pairs (u, v); incidence is
defined by

(x, y) (u, v) =, x.u y - v.

If we call two points with same abscissa x parallel, and two lines with same
slope u parallel, then ((R), !(R)} is a P-system.
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One sees easily that ta, tb, tc, defined as follows, are collineations of
((R),

(x, y}ta (x -4- t, y},

(x, y}tb (x, y -4- xt},

(x, y)tc (x, y +

(u, v)ta (u, v + tu),

(u, v)tb (u + t, v),

(u, ,)t (u,

Let Ao(R) be the group of all ta, Bo(R) the group of all tb, and C(R) the group
of all tc. Then a, b, c are isomorphisms of the additive group R+ onto A0(R),
Bo(R), C(R) resp.
Put A (R) A0(R) )< C(R) and B(R) B0(R) X C(R). One sees easily

that A(R) r B(R) C(R). Furthermore

(x, y}(sa)-l(tb)-lsatb (x, y + st}
and

(U, ))(sa)-l(tb)-lsatb (u, v st};
hence (sa, tb) (s. t).
Therefore A (R) and B(R) are normal in G(R), and G(R) A (R).B(R)
is a T-group. G(R) is abelian if and only if R.R 0 (i.e. R is a zero-ring).
The conditions of Prop. 3 are satisfied with a0 (0, 0} and b0 (0, 0}.

Hence the canonical map 0 given by

point (x, y} ---, xayc

line (u, v} -- ub(-v)c

is an isomorphism of ((R), (R)} onto (A(R), B(R)} such that

gO 0g* for all g e G(R).

The triple (a, , ") is a homotopism of a ring R1 onto a ring R2, if a, ,
are three homomorphisms of R+ onto R2+ that satisfy

sa.t$ (s.t)’ for all s,

A homotopism (a, , ,) of R1 onto R2 induces a homorphism (a,/, /)* of
((R1), (R)) onto ((R.), !(R.)) given by

point (x, y) -- (xa, Y3’),

line (u,
PROPOSITION 16. There is a one-to-one correspondence between homotopisms

(a, , ") of R onto R. and T-homomorphisms of G(R) onto G(R). This
correspondence is determined by

Proof. In the diagram



-GROUPS AND THEIR GEOMETRY 15

R+ a +R.

al [a2
A0(R1) + A0(R2)

al and a. are isomorphisms. Hence in the equation al an2, one of the
homomorphisms a and + determines the other one. The same holds for
bl b and c c.

If (a, , ) is a given homotopism, then

(sax, tb) (s.t)c (s.t)vc (sa.t)c (saa, tb) (sa , tb )

implies that can be extended by Prop. 1’ to a homomorphism of G(R) onto
(R).

Conversely if is given homomorphism, then

(sa’t)c2 (saa2, tb2)= (sa, tb)= (sa, tbl)@ (s.t)c@ (s.t)c2
implies that (a, , ) is a homotopism.

COROLLARY 16. The group A of all autotopisms of a ring R and the group
of all T-automorphisms of G(R) are isomorphic.

Put ((R), (R)} and T (A(R), B(R)}.

PROPOSITION 17. The following diagram is commutative.

(a, , 7) - according to Prop. 16.

We only have to check that
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We have

(x, y)01 q* (xal yc)q xal yc q xaa. y.c (xa, y’)O. (x, y) (a, , ")

and

(u, v)O ,p* ub vc)o ub ,vc ,p

ub. vTc (u, v7)O (u, v) (a, , ,)*0.
We may look at the five squares of the diagram as five faces of a cube, and

get in this way the remaining relation

g (, , )* (, , )* (g ).
In other words the canonical map 0 induces a complete isomorphism be-

tween the structure of the -level and of the T.level.

A product (a, , ")*g (g. e G(R) is of the form

(x, y} --+ (x a + r, y y + x a.s + t} (r., s, t arbitrary in R).
Hence let us call every homomorphism (a, /, ,) *g a semilinear transformation.
We have (sa, tb) (s. t) (for all s, e R). Hence re e C(R) is a commuta-

tor if and only if r is a product in R, r st. sa is in Z(G(R) if and only if
s.R 0;tbisinZ (G(R)) if and only if R.t O. Hence Z(G(R))
C(R) if and only if there are no annihilators in R (r # 0 is an annihilator
means that r.R 0 or R.r 0.) Therefore the next proposition follows
from Prop. 9.

PnOPOSITOZ 18. If every element in R is a product and if R. does not possess
any annihilators, then every homomorphism of ([ R RI) } onto (?I R.) !(R) }
is a semilinear transformation (a, , .y)*g with uniquely determined factors.
We have as a corollary

THEOREM 3. If R is a ring with 1 and A its autotopism group, then the
collineation group of ((R ), 25(R)) is equal to the group A*.G(R) of semilinear
transformations.
Remark. Let (a, , y) be a homotopism of a ring R with 1 onto a ring

R’ with 1’. Then (a,/3, /) is a homomorphism (i.e. a ,) if and only
if (a, , ,)* maps point and line (1, 0) onto (1’, 0) (since then s, sa. 1 sa
and t, la. tt3 tO/.) Hence if R is a ring with 1, then the automorphism
group of R is isomorphic to the group of all collineations of ((R), !(R))
that leave point and line (0, 0} and point and line (1, 0} fixed.

PROPOSITION 19. Let R be a ring with 1, R’ a ring that is finite or has a 1,
and (a, , ") a homotopism of R onto R’. Then a, , " have the same kernel
M, M is an ideal in R, and (a, , ") is the product of the canonical homo-
morphism of R onto RIM and the induced isotopism of RIM onto R’.
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Proof. Let K, L, M be the kernels of a, , / respectively. Clearly
K K.R. (K.R)’ Ka.R 0 implies that K.R M; hence
K K.R

___
M, and similarly L

_
R.L

_
M. R+/K, R+/L, and R+/M

are all isomorphic to R’+; hence if R’ is finite, then clearly K L M.
Now suppose that R’ has a 1 and that ef 1. We have (re).y ra; hence
re M if and only if r e K, i.e. Re r M Ke. Consider the homomorphism
r -- re of R+ onto R+e, and let J be its kernel. Je 0 implies that J K.

K Ke

Me M r Re Ke implies that M K; similarly M L. Since M.R

___
M

and R.M

_
M, M is an ideal in R. Let be the canonical homomorphism

of R onto RIM and define (a’, ’, /’) by

(r + M)a’ ra, (r + M)’ r, (r + M)’y’ r,y.

Then (

COROLLARY 19. If R and R’ are rings with 1 and a homomorphism of
(I(R ), !(R )) onto ((R’), !(R’)), then there exists an ideal M of R such that

12 is the product of the canonical homomorphism of ((R), (R)) onto
((R/M), !(R/M)) and the induced isomorphism of ((R/M), !(R/M))
onto ((R’),

Proof. Use Prop. 18 and Prop. 19.

5. Regular T-groups and transitive P-systems
The mapping a --* (a, b) is a homomorphism of A into C; the mapping

b -- (a, b) is a homomorphism of B into C. We call a e A regular if and only
if b --. (a, b) is onto C with kernel C, and b e B regular if and only if a --* (a, b
is onto C with kernel C.

If A A0 X C and B B0 C, then a is regular if and only if b0 --+ (a, b0)
is an isomorphism of B0 onto C, and b is regular if and only if a0 --+ (a0, b) is
an isomorphism of A0 onto C.

If a is regular, then every ac, i.e. every a’ a, is regular (similarly for b).
We say that a T-group G A.B is regular, if there exist a regular a e A and a
regular b e B. If G A .B is regular, then D(G) C Z(G), Ao Bo - C,
and Thm. 2 applies.
Given are two lines bc and bc2 (b e Bo). The two lines have a point in

common if and only if there exist a e A0 and c e C such that
--1 --1) a, 51) cc and a, b) cc
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-1But a solution a, c of (f) corresponds to a solution a of (a, blb1) cl c..
Hence we have the following"
The number of points common to blcl and bc2 (b Bo) is equal to the

--1number of solutions a e A0 of a, blb1) cl c.
The number of lines common to alcl and a2c2 (a Ao) is equal to the number

of solutions b e B0 of -1 -1(ala2 b) ClC2

In particular, b is regular if and only if the lines bcl and c2 intersect in
exactly one point for every cl and c2 a is regular if and only if the points
and c2 are joined by exactly one line for every Cl and c2.

Let (I, !3} be a P-system. If we call every equivalence class [a] of points
a’ a an improper line or vertical line, and every equivalence class [] of lines
b’ b an improper point or point at infinity, then a line b and a vertical line
[a] intersect in exactly one point; a point a and a point at infinity [hi are
joined by exactly one line. We adjoin formally a point a that is incident with
all vertical lines, and a line b that is incident with all points at infinity.
We say that a pair of lines b0 and bl is a regular pair if and only if the system

(b0,51) consisting of the points in , the lines ia [I0], the vertical lines, and
the lines in [bl], is a [50]-[a]-[bl]-net; (terminology as in Pickett [3, p. 42]);
we say that a pair of two points a0 and al is a regular pair if and only if the
system (a0, al) consisting of the lines in !, the points in [a0], the points at
infinity, and the points in [al], is a (dual) [a0]-[b]-[al]-net.
The group generated by the U-, V-, and W- automorphisms (see [3, p. 51]

of a U-V-W-net is abelian and simply transitive on the points of 9 if and
only if is a Thomsen-net (see [3, p. 59]). In that case, this group is the
direct product of the group of U-automorphisms and the group of V-auto-
morphisms of 9, and is called the translation group of
Now let G A.B be a T-group.

PROPOSITION 20. b B is regular if and only if the pair e, b is regular in
(A, B}, and then the group A* is canonically isomorphic to the translation group
of (e, b); aeA is regular if and only if the pair e, a is regular in <A,
and then the group B* is canonically isomorphic to the translation group of
(e,a).

Let (I, } be a P-system with the following properties (i), (ii) and (iii).

(i) (al)

___
(a2) implies that al a.

(bl)

_
(52) implies that bl 52.

(ii) There is a regular pair 50, 51 such that 9(b0, 51) is a Thomsen-net;
there is a regular pair a0, al such that 9(a0, al) is a Thomsen-net.

(It is no restriction to assume that a0] b0, a0] and a b0.)
A collineation of (, } that maps every line onto a parallel line and induces

a translation on 9(b0, 5) is called a point-translation; a collineation that
maps every point onto a parallel point and induces a translation on (a0, al)
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is called a line-translation. Because of (i), the point- and line-translations
are uniquely determined by their restrictions to (b0, bl), and to (a0,
resp.; hence they form two abelian groups.

(iii) The group A of point-translation of (, !3) is transitive on , and
the group B of line-translations of (, !3) is transitive on

A P-system that satisfies (i), (ii) and (iii) is called transitive.
If G A.B is a regular T-group, the P-system (A, B) is transitive because

of Prop. 20.

THEOREM 4. If (, !} is a transitive P-system, the group G A.B generated
by the point-translations A and by the line-translations B of (, 25}, is a regular
T-group. (I, } is isomorphic to (A, B}.

Proof. There is no danger if we identify in this proof the point-translations
of (?l, } with the translations of (0,51) and the line-translations of
with the translations of (a0, al). If K is a collineation of (, !}, it follows
from the definition of A and of B that K e A n B if and only if a a on H and
b b on . Therefore C A n B is equal to the group of a-translations of
(b0, bl) and equal to the group of b-translations of 9 (a0, al). Let A0 be
the group of [b0]-translations of (b0, ) and B0 the group of [0]-translations
of O(a0,). ThenA A0 C,B B0 C, andb0A0 bo,aoBo
We want to show that (a, b) e C (a e A0, b e B0). Consider the four points

a, aa-1, a-b-, and aa-lb-la, aa-1 aa-b- implies that aa-b-a; hence
a-b-ab aa-b-la a; i.e. a(a, b)ll a. Dually we get b(a, b)ll b. Therefore
(a, b) e C. Since C

_
Z(G), this proves that A <3 G and B <3 G. Therefore

G A .B is a T-group. Hence the conditions of Prop. 3 are satisfied, and
(I, !3} and (A, B> are isomorphic. If aoa a and b0b b, then al and bl
are regular in G.

6. Introduction of coordinates

Suppose that G A.B is a regular T-group with a e A0 and bl e B0 regular.
Then the mapping a- (a, b) is an isomorphism of A0 onto C, and the mapping
b -- (al, b) is an isomorphism of B0 onto C.

Let , be an isomorphism of an additive group R onto C.

(s "4- t), s3"’t3’ (s, R).

Let a be the isomorphism of R onto A0 given by

t’ (ta, b)

let $ be the isomorphism of R onto B0 given by

t3’ (al, t).

(a is equal to , followed by the inverse of a --, (a, bl).)
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Define multiplication on R by

(.) (, t).

Put t, (a, b), so that ta a and tt b. Then t 1 in R, since

(t.t)’ (ta, b) t% (t.t)’ (a, tt) t,.

Multiplication is distributive; e.g.

(s.(t -- t’))’ (sa, t.t’) (sa, t)(sa, t’)

(s.t)’(s.t’)’ (s.t -- s.t’)’.
Hence R is a ring with 1.
Now suppose that a e A0 and b e B0 (i 1, 2) are regular in G. Denote

the corresponding isomorphisms by a, t, and ,, and the two rings by R.
Then -aa2

, "’-) is an isotopism of R onto R, since

saa t )’ sa t s )’

Hence the ring R R(G), constructed as above, is uniquely determined up
to isotopisms.

PgOrOSWoN 21. If G A.B is a regular T-group and R R(G), then
G is T-isomorphic to G(R).

Proof. Suppose thatA A0X CandB B0X C. Then

ta ---> ta, t ---, tb, t. t

are isomorphisms of A0, B0, C onto A0(R), B0(R), C(R) resp.

Since
(sa, t) (s.t)’ -- (s.t)c (sa, tb),

these isomorphisms can be extended by Prop. 1’ to an isomorphism of G onto
(R).
Remark. ta is regular if nd only if t.u v hs unique solution u for

every (i.e. is left-nonsingulr); tb is regular if nd only if x.t y hs
unique solution x for every y (i.e. is right-nonsingulr).

THeOreM 5. If (, } is a transitive P-system, then there exists a ring R
with 1, uniquely determined up to isotopisms, such that (, } is isomorphic to
(t(R ), (R).

Proof. Use Thin. 4 nd Prop. 21.

Remark. The definition of point- nd line-translation in P-system (, }
ws dependent on the choice of two prticulr nets. Thin. 5 shows that the
point- nd line-translations of transitive P-system (I, } induce translations
on every net (50, 5) nd (a0, a) (for regular pirs b0, b nd a0, a).
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Hence in transitive P-system, the concept of point- nd line-translation is
independent of the choice of prticulr nets.

7. Duality
The dul of n incidence system ([, is defined by (I, (, ,

nd the dul of T-group G A.B by Ga B.A. Note that s bstmct
groups G Ga.

Let G A.B be T-group with A A0 C and B B C, nd let
be n utomorphism of G that switches A nd B, hence leaves C invrint.

There exists exactly one e H (see Prop. 11) such that A0 B0 and
B0b A0. Then the utomorphism y- mps A0, B0, C onto B0, A0, C
resp., hence induces n isomorphism of (A, B) onto (B, A) (A, B)a. Con-
versely suppose that G stisfies the conditions of Thin. 2 nd that there exists
a duality of (A, B), i.e. an isomorphism of (A, B) onto (B, A). Then hs

unique product representation g* where is induced by n uto-
morphism of G that mps A0, B0, C onto B0, A0, C resp. Hence in this
cse, the group of all collinetions nd dualities of (A, B) is equal to the
semidirect product A 0*G*, where I,0 is the group of 11 utomorphisms of
G that mp either Ao, B0, C onto A0, B0, C resp., or A0, B0, C onto B0, A0 ,C
resp.
R, denotes the "opposite" ring of R with multiplication o defined by

x y yx (product inR). xu y - v c: u o x - y shows tht the
nti-isomorphism -- of R onto R" induces n isomorphism of ((R), [(R))

(I(R), (R)) onto (I(R), (R)). The corresponding isomorphism
of G(R)a onto G(R) is given by rb ra, sa sb, t)c.
Suppose that ring R possesses n nti-utotopism, i.e. n isotopism (a, , ,)

of R onto R. Then (a, , ,) induces n isomorphism (a, /, 7)* of
((R), (R)) onto ([(R ), (R")), hence onto the dul ((R), [(R)) of
([(R), (R)). Conversely suppose that R is a ring with 1 and that
([(R), (R)) is self-dul. Then there exists semiliner transformation of
(I(R), (R)) onto ([(R’), (R’), nd R possesses n nti-utotopism.
We hve proved

PROPOSITION 22. If R is a ring with 1, then ([(R), (R)) is self-dual if and
only if R possesses an anti-auotopism.

PROPOSITION 23. If a regular T-group G A.B possesses an automorphism
b of order 2 hat switches A and B, then there exists a ring R with inolutorial
anti-automorphism " such that G . G(R ). , 1 if and only if cb c- on C.
(In that case R is commutative.

Proof. Let A A0 X C nd a regular in A0. Put B0 A0b nd b a.
Then B B0 X C and b regular in B0. Construct R R(G) as above.
Then G G(R). Identify with the corresponding utomorphism of G(R).
Then (with " (R)a --* G(R), s above) is n isomorphism of G(R)
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onto G(Rp), induced by an isotopism (a,/3, ,) of R onto Rp. Since kt maps
(1, 0) onto (1, 0), (a,/, ,) is an isomorphism of R onto R’.
Now tckti t,, hence

t, t’),6 ( t’),)e (t,e)-.
Therefore t (te)- for all t R if and only if 1; i.e. c c- on C if
and only if ,), 1.

8. The V-extension of a T-group
In 8 we assume that every T-group is nonabelian and has no elements of

order 2.
LetG A.BbeaT-groupwithA Ao CandB B0 C. Define

the map ro as follows"
--1aro a onA and bro bonBo.

Then
(ar0, br0) (a-1, b) (a, b)-i (a, b)ro

implies by Prop. 1’ that ro can be extended to a T-automorphism ro of G.
Similarly there exists a T-automorphism Xo of G determined by

aXo-- aonAo and bk0 b-lonB.
Then Ao is the subgroup of A that is centralized by ko, and Bo is the sub-

group of B that is centralized by ro.
Since D (Ao, B0)} e, we have A0 e and B0 e. Hence ro and ko

are two distinct, and commuting, elements of order 2; i.e. V {ro, k0} is a
four-group. We call the semidirect product V.G, contained in the
holomorph of G, the V-extension of the T-group G A .B, (V for Vierer-
gruppe).

--1We have r0al’r0a al as in 2. Hence the subset P roA of 2 consists
of involutions (elements of order 2), and P.P A. Similarly L XoB
consists of involutions, and L.L B. Hence 2 {P, L} is generated by
the involutions in P and L. Note that the subgroups {P} and {L} of 2 are
proper.
We define the incidence system (P, L) by

Furthermore

define equivalence relations on P and on L.
Let Po be the class of all conjugates of ro in 2, and Lo the class of all conju-

gates of 0. Since r0 and o commute, we only have to form conjugates with
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g e G. Every g e G has a representation g boa with bo e Bo and a e A. Then
--I --Ig rog a oa oa. HencePo 7roA___P;similarlyL0 0B:L.
Because of the definition of 7to and o, we have A and B normal in t2, hence

also C <3 . Furthermore

-lp -oA roA P,
and similarly

o-Lo L, for all

Remark. If t2 and G are finite groups (or torsion groups), then always
A A and B B; hence P0 P and L0 L.

PorosION 24. {Po, L0} is a P-system. The map x"
1a -- a r0a roa

b -- b-lob ob

is an isomorphism of (A, B) onto (Po, Lo).

Proof. The map x is clearly one-to-one and onto. Let 7r r0a c and
ob c. (with a.e Ao, b e Bo). Then

rh hr if and only if 22 -2 2 -9.

ro^oa 0 cl c2 ^07too a c2 cl

if and only if (a2, b) (a, b) cc.---1if and only if a, b) cc.

if and only if

For ao e Ao, (aoc) e C implies that a e Ao C, i.e. a e and ao e. Hence
for a e A, a e C if and only if a e C. Therefore

a a2 if and only if (a-a2)2 e C

if and only if mal.vVz2 e C

if and only if oa ma2.
This proves that (Po, Lo) is a P-system, and that x is an isomorphism.

(Remark. (P, L) is not always a P-system.)
Po and Lo are classes of conjugate involutions, and C is normal in 2. Hence

the inner automorphisms of induce collineations in (Po, Lo).
Notation. Denote the inner automorphism of a group G, induced by g e G,

by i(g). If a homomorphism of a T-extension V.G onto ’ V’.G’
induces a homomorphism of (Po, no} onto (P’0, L’o) (or onto the dual (L’o, P’0)),
denote the induced homomorphism by a.
PnOPOSTON 25. The map -o i() is an isomorphism of onto the induced

group i() of collineations of (Po, L0}.
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then

*x xi()*
z() e.

note the following.To prove that o x xi()

ag baaoboc b-ag;
and, for e V,

$ --1av v av (int2).

Now let vg(veV, geG). Then

axi( -a-Xroa
z g (-) 6-l(-)x (6--I)

Similarly bxi(o)

Next we prove thato limpliesthat e. Let vg. Then for
point and line e in (A, B), e e* ev*g* eg* implies that g e (by Thm.
1). Now v-day a for all a e A and v-bv for all b e B; hence v-gv g on G,
i.e. v e. Hence all groups , i(), i(2) and 2" are isomorphic; in particular
6o in Z(i2) implies o e.
Remark. If is a homomorphism of (Po, Lo) onto (P’o, L’o), then there

exists a unique g’ e G’ such that
I.=o d o=o

Hence oi(g’) where 0 is a homomorphism of t2 onto t2’ that maps ro onto
ro and Xo onto Xo.
We determine the involutions in t2. We have t2 G u r0G u XoG u roXoG.

Letg ab with a e A, b e Bo Then

roab.roab a-bab b(a, b)b b2(a, b) e

if and only if b e. Hence ro A P is the set of all involutions in ro G.
Similarly ),0 B L is the set of all involutions in ),o G. If r and commute,
then rX e r0X0 G has order 2. Let g ab with a e Ao, b e B, and suppose that
roh0g roa.X0b has order 2. But a product of two distinct involutions
(r0a and h0b) has order 2 if and only if they commute. Hence the involutions
in roo G are the products rX of commuting

Let be an involution in . Denote by J(o) the group generated by all
products o2 of conjugates 1 and

PorosTo 26. Let o be an involution in V.G. Then o is in P or
in L if and only if J(o) is abelian. If o and o2 are involutions in P or in L,
then both are in P, or both are in L, if and only if (J(o), J(o) e.

Proof. Let r be in P. ThenJ(r)

___
P. P A. Furthermore r. a-va

a Ae J(r). Hence

___
J(r)

_
A. Similarly B J(),)

_
B.
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Now let o r00g be an involution in r0X0 G. Then for a e A0,

a-coa rooaga oa a, g);
hence

-i a.a oa (a, g) e J().

Similarly for b e B0, b2(b, g) eJ(). But

52(a2(a,g),b2(b,g)) (a, (a, b) e

if and only if (a, b) e. Since D(G) e, J(o) is not abelian.
Clearly (J(r), J(r)) e and (J(hl), J(X2)) e. A J(r) and

B

___
J(h) imply that (J(r), J(X))

_
(A, B) (A, B) e.

1)ROPOSITON 27. Let q be a homomorphism of V.G onto ’ V’G’.
Then maps either P onto P’ and L onto L’, or P onto L’ and L onto P’.

If in addition A’ A’ and B’2 B’ in G’, then induces a collineation or a
duality of {P0, Lo) onto (P’, L’).

Proof. If for some r e P, r e’, then P (rA) A e’, since
there are no involutions in Aq. Hence either P e’, or all 7r e PC are
involutions. In the second case, J(r) J(r) abelian implies that e P’
or r e L’;

(J(r), J(r)) (J(r), J(r)) e’

implies that either P P’ orP L’. Similarly either L e’, or L P’,
or L L’. We must have either P P’ and L L’, or Pq

___
L’ and

L

_
P’; for in every other case

2’ t2 {P}q {P’} 2’,
or

2’ {L}

___
{L’}

leads to a contradiction.
An involution o not in P or in L is of type o rX (with commuting r e P

and e L). Then q r. is an involution which is neither in P’ nor in
L’. Now every involution in 2’ is image of some involution in 2. Hence we
must have equality everywhere" Pq P’ and Lq L’, or P L’ and
L P’.
To prove the last statement, note that a homomorphism onto maps con-

jugate classes onto conjugate classes, and that P’ P’0 and L’ L’0.
PorosIIO 28. If is a homomorphism of V. G such that D e,

then G A.B is a T-group, and q its V-extension.

Proof. Suppose that rq e for some r e P. Then PC (rA) A e,
since A does not contain any involutions. But then

D {(A, B)} {(A, B)} e
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would contradict De e. Hence all w e PC and all X e L are involutions.
Clearly A and Be normal in G, and G A. Be.
All elements of A anti-commute with
all elements of B anti-commute with
all elements of A0 commute with
all elements of B0 commute with

Hence

Therefore
Aoq n C Bo n C e and A, n B,p C.

A A0 Cq and B B0 X Cq,

and G is a T-group. Since D(G) D(G) e, 2 is the V-extension of G.
Prop. 28 can be stated as follows" If K <:l 2 and K D, then GK/K is a

T-group and 2/K its V-extension. (Compare with Prop. 10.)
Let A be a group of automorphisms of a group G. Then the holomorph of G

contains the semidirect product A.G. Let be a homomorphism of G with
kernel K. If for all automorphisms a e A, we have K"

_
K, then

defines an automorphism a of G. The map a -. a is a homomorphism of A
onto A. We have

(g, o)__ (g)-i(aq,)-(g)(aq,) (g)-ga

(g)-g" (g-a-ga) (g, a);
hence by Prop. 1, the map ag -- ag is a homomorphism of A.G onto A.G.

PROPOSITION 29. Let and ’ be V-extensions of the T-groups G and G’.
Then there exists a natural one-to-one correspondence between the T-homomor-
phisms of G onto G’ and those homomorphisms of onto ’ that map o onto
o and o onto o
Such a homomorphism q of onto ’ induces a homomorphism of (Po, Lo}

onto (Po Lo}, and
q*X X.

Proof. Let be a T-homomorphism of G onto G’. By Prop. 10, the kernel
K of is of the form K AB C with A

_
A0, B

_
B0, C

_
C; hence

K

_
K for all v e V. By the above remarks, can be extended to a homo-

morphism of V.G onto ’ V’.G’. Since clearly 0 o and
0 o, maps 0 onto 0 and 0 onto 0 maps clearly P 0 A onto
o P’, and L onto L’.

Conversely suppose now that is a homomorphism of 2 onto 12’ that maps
0 onto 0 and 0 onto 0. Then maps P onto P’ and L onto L’ by Prop.
27; hence also A onto A and B onto B, and C onto C’ Since 0 and ’0
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centralize exactly Ao and Ao, must map A0 into A’o. But since A Ao X C
is mapped onto A’ A’o C’, necessarily maps Ao onto A’o. Similarly
maps Bo onto B’o, and induces a T-homomorphism of G onto G’.
Since ro ro, maps Po onto Po, and also Lo onto Lo. Hence induces

a homomorphism q of (Po Lo) onto (Po, Lo). Finally we have

aax’ ro(a)2 (ro )q ax

bx’ ),’o (b)2 (hob2) bx.
PROIOSITION 30. Let G A.B and G’ A’.B’ be two (nonabelian)

T-groups such that
every c e C is a commutator c a, b

(ii) C’= Z(G’);
(iii) A’2 A and B’2 B’.

Then every collineation and every duality of (Po Lo) onto (P’, L’) is induced by
a homomorphism of the V-extension V. G onto ’ V’. G’.

Proof. Denote by o a homomorphism of t2 onto t2’ that maps either
ro and ho onto r’o and ho, or ro and ho onto h’o and r’o resp. By Prop. 9, every
collineation and every duality of (A, B) onto (A’, B’) is of the type wog-*’* (g’ e G’ ).
Hence by Prop. 24 and Prop. 29 every collineation and every duality of
(Po, Lo) onto (P’, L’) is of the type with bo i(g’).
We have as a corollary

THEOREM 6. Let G A.B be a T-group such that
( every c e C is a commutator c a, b)
(ii) C= Z(G) rSe;
(iii) A2 A and B B.

Then the automorphism group of the V-extension V. G of G induces, and is
isomorphic to, the group of all collineations and dualities of (P, L).

Let R be a ring such that r -t- r 0 only for r 0 (and R.R 0).
the collineations ro and ho of (I(R), !3(R)) by

Define

(x, u> o -u), (u, v) o (u, -v),

<x, u> ’o (x, (u, v)xo (- u, v).

Then V(R) {ro, Xo} is a four-group. Since

ro ravo (--r)a, ho raho ra,

ro rbro rb, o rbho (-r)b,
ro repro (-r)c, ho rcho (-r)c,

(R) V(R).G(R) is the V-extension of G(R). The transformations in
2(R) are of the type

x y> --* (-4-x "4- r, -+- y -b xs A-
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If R is a ring with 1 and some h such that h W h 1, then A (R)2 A (R)
and B(R)2 B(R); hence Thm. 6 applies. (This holds in every distributive
quasi-field (division-ring) of characteristic 2.)

9. Characterization of the V-extension in terms of its
generating involutions

Let gt be a group with the following properties"

(i) t {P, L} is generated by two sets P and L of involutions;
(ii) P.P.P

_
P and L.L.L L;

(iii) PX P and rLr

___
L for every X e L and r e P;

(iv) distinct involutions in P do not commute, distinct involutions in L
do not commute.
Then (ii) implies that A P.P and B L.L are abelian groups. (iii)

implies that A and B are normal in t, hence normal in G A.B. (iv) im-
plies that A and B do not have elements of order 2.

Notation. always denotes elements in P; always denotes elements in L.
r , or r, means that r and X commute. C A n B. r r’ means that
rr’ e C, and ’ means that ),X’ e C.

Since 1 r2 r. rrl 2, we have A vP, hence rA P; similarly B L
and B L. (ii) implies that

i.e. va a-1 on A; similarly hb b-1 on B.

(v) There are o and Xo such that o o to every there is some v’ such
that ’ ),o and ’ ; to every there is some ’ such that ’i o and X’ ;

(vi) there are 1, 2, 1, . such that 1[ 1, 11 2, l 1 and

THEOREM 7. A group is the V-extension of a nonabelian T-group G without
elements of order 2 if and only if satisfies the properties to (vi ).

Proof. If 2 is a V-extension, then (i) to (iv) are clear. Every a o e A
is a product a aoc with aoeAo, ceC. If ao vor’, then c ’and (v) follows. There area oleAo and b ho ),le Bo such that
(a, b) e; hence (vi) follows.
Conversely suppose now that 2 satisfies (i) to (vi). We have to show that

G A. B is a T-group. Define Ao as the subgroup of A that is centralized by
Xo. (v) implies that a vo ov"’ with ’1,o, hence o’eAo,
and ’ e C. Since moreover all a e Ao commute with ),o and all c e C anti-
commute with Xo, we have A Ao C; similarly B Bo C, where Bo
is the subgroup of B that is centralized by o.

ri r i X2 ri Xi ,r2 >,2 ,ri >,i X ,r2 Xi X2 ,ri r2

implies that G is not abelian.
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Suppose that g aob with a0eA0, beB, and that g e. Then
(ao b) a b(b, a0) e implies that a e; hence a0 e, and b e. G has
no elements of order 2. Put V r0, k0}. Then 2 V. G is the V-extension
of G.

If t satisfies (i), (ii) and (iii), then

rXrX __C P P n L L C,

i.e. (P, L)

___
C. If in addition there exist ,to Xo, then C

_
(P, L).

let c ro r o ),; then ),o r ro k; hence

c or’o o’o’X (o, ).

For

PROPOSITION 31. If satisfies (i), (ii) and (iii), then (vii) and (viii)
equivalent"

(vii) (P,L) C2;
(viii) to every and there exists c e C such that
(i), (ii), (iii), (vi) and (vii) together imply v).

Proof. if and only if rhc-1 c if and only if c. h. rc.
Since (viii) implies (v), the last statement follows.

If t satisfies (i) to (iv), and if P and L are finite (or if A and B are torsion
groups), then A A, B B, and C (P, L) C. Hence we have

PROPOSITION 32. A finite group is the V-extension of a nonabelian T-group
G without elements of order 2 if and only if satisfies the properties (i) to (iv)
and (vi).

10. Some remarks on projective planes
If is a projective plane and Y co an incident point-line-pair, denote by
(YI) the incidence system one obtains from by deleting all lines

through Y and all points on co. (Ylco) is a P-system; every pair of
nonparallel points, and of nonparallel lines, is regular. If moreover is
(Y, Y)- and (co, )-transitive, (hence a translation plane; see e.g. Pickert
[3, Chapter 8]), then (Y ) is a transitive P-system, and the
methods of 6 can be used to introduce coordinates in . As is well known
(see e.g. Pickett [3, p. 101]), is a plane over a distributive quasifield (divi-
sion-ring). If A denotes the group of all translations with axis and B the
group of all translations with center Y, then G A.B is a T-group, and all a
not in C and all b not in C are regular.

Conversely if G A.B is a T-group in which all a not in C and all b not in
C are regular, then there exists a projective plane as above such that
<A, B)

__
(

The collineation group of (Y[o) is equal to the group of all semilinear
transformations of ( Y co) (s defined in 4; see Thin. 2).

If @ has characteristic # 2, the V-extension 2 of G is the group generated by
all point-reflections with axis 00 and all line-reflections with center Y. The
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group of all collineations and dualities of (YI) is canonically isomorphic
with the automorphism group of

Since (P, L} ----- ( Y o), 2 satisfies the following:

(vi’) There are 0, rl, h0, 1 such that
1 is the only line incident with 0 and 1
1 is the only point incident with k0 and ),1

(ix) if ’ t C, there exists
if hk’ t C, there exists 1 k, k.

The following converse holds"

If 2 is a finite group that satisfies (i) to (iv), (vi’) and (ix), there exists
a finite projective plane over a distributive quasi-field such that
<P, L> _- ((Yl).

Proof. By Prop. 32, 2 is the V-extension of a T-group G, which is regular
because of (vi’), hence can be coordinatized by a ring R with 1. (ix) implies
that xa b, and au b, have solutions x and u if a 0. This together with
R finite, implies that R is a loop.

As a consequence of Cor. 19, we have the following"
If @ is a projective plane and

regular P-system <(R), (R)}, then there exists a maximal ideal M in R
such that @(Y ) is isomorphic to <(R/M), !(R/M)>.

(See also Klingenberg [1, p. 108, S 28].)
If F is the Galois field with 3 elements, then <(F), !(F) is a representa-

tion of the abstract Pappus configuration, as was stated in the introduction.
Since 0, 1, and -1 are all the elements of F, the group 2(F) (isomorphic to
the group @ of the introduction) is now the complete collineation group, and
has index 2 in the group of all collineations and dualities of <(F), (F)>.
Therefore 2(F) @ has index 2 in its automorphism group.

Added in proof. Several results of this paper are contained in A. A. Albert,
Finite division algebras and finite planes, Proceedings of Symposia in Ap-
plied Mathematics, Amer. Math. Soc., vol. X(1960), pp. 53-70. T-groups
occur there as elementary collineation groups. Theorem 3 in 4 and Theorem
5 in 6 correspond to Theorem 7 and Theorem 6 resp., in Albert’s paper.
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