ASYMPTOTIC EXPANSIONS FOR THE COEFFICIENTS OF
ANALYTIC FUNCTIONS!

BY
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1. Introduction

The problem of obtaining an asymptotic expansion for the coefficient a,
of f(z) = Z:-o a, 2" arises in many instances. The chief sources of such
problems are number theory and the general area of combinatorics.

There are various aspects of this problem depending on how much precision
one requires. In the simplest case, one asks only for an asymptotic formula of
the kind @, ~ ¢,, as n — o, where ¢, is a relatively simple function of .
On the other hand, one may require that a full asymptotic expansion of the type

(1) an=cfl + Fi(n)/Ba + -+ + Fu(n)/By + o(Fn(n)/82)}

hold for each N = 0 as n — o« ; here, one allows Fi(n) to depend on n but
wishes to have

Fiua(n)/8" = o(Fi(n)/82)

for each k, as » — oo, and one also desires that 8, — « asn — «. In fact,
in most cases, Fi(n) = o(B5) for each ¢ > 0 and each k, asn — .

The literature contains many papers dealing with such problems. Here we
mention only the papers of Hayman [4], Grosswald [1], and a previous paper
[2] of ours. Hayman deals with the simple formula e, ~ ¢, under relatively
weak conditions on f(z2). Grosswald, however, assumes more and obtains a
result of the type (1). In our earlier paper, we also obtained such a result but
for the special function fo(2) = exp (2¢°) which does not satisfy Grosswald’s
hypotheses. In the present work, we generalize our earlier theorem by using
some ideas in Grosswald’s and Hayman’s papers; this yields a result having
weaker hypotheses than Grosswald’s. Finally, we apply our theorem to fo(2)
which is the exponential generating function of U, , the number of idempotent
elements in the symmetric semigroup on 7 letters.

2. Statement of the result
We make the following assumptions (A)—-(E):

(A) f(z) = D% o, 2" is analytic for |2] < R, 0 < R £ =, and is real
for real 2.

(B) There exists an Rye (0, R) and a d(r) defined for all 7 ¢ (Ro, R) such
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that we have
0<d(r) <1, r{l + d(r)} < R;
moreover, f(z) # 0 for each z such that |z — r| < rd(r).
(C) Defining, fork =
A(z) = f(2)/f(2), Bi(z) = (Z/kDA*V(2), B(:) = $Bi(2),
we have B(r) > Ofor By < r < R and By(r) — «© asr — R—.

(D) For suitable Ry and large n, define u, to be the unique solution of
By(r) = m 4+ 1 which satisfies B; < r < R. Define

Cile 1) = { Bte) + T Bl<r>} /B,

and suppose that for a certain fixed N = 0 there exist non-negative D, , E, and
ng such that for alln = ne and for 1 £ j = 2N + 1 we have | Cj(ua, ua)| =
E,D; . In addition, we have for all n = n, that either

(Dy) | Ci(Un,us)| £ E.D} forallj = 2N + 2
or

(D) | Cowse(Unt+itng, un)| = E. DY
for all real ¢ satisfying |¢| = d(u.).

(E) Asn — o, we have
B(un) {d(un)}* = ®, Dy EuB(u){d(ua)}’ >0, Dnd(u,) — 0.

These assumptions require some comment. First, it follows from (A) and
(B) that for each r ¢ (R, R) the function f(z) is nowhere 0 and A(z2), B(z),
By (2) are all defined and analytic on a suitable open disc @, containing the
closed disc {z: |2 — r| = rd(r)}. Moreover, A(z), B(z) and Bi(z) are real
for real 2. Next (C) implies that B{(r) > 0for By < r < R so that By(r) is
strictly increasing for such r. Also, by (C), there exists By € (R, , B) such that
ny = [Bi(Ry)] = no ; for each n, (C) also implies the existence of p, ¢ (R;, R)
such that Bi(p,) > n + 1. Consequently, if » = n, then

Bi(Ry) <m+1=n+4+1<Bi(p);

inasmuch as Bi(r) is continuous and strictly increasing on (R;, R), we see
that the equation Bi(r) = n + 1 has a unique solution 7 in (R;, R) for each
n Z ny. This remark justifies the definition of u, given in (D). Clearly,
Uy 18 & strictly increasing function of » and u, — R— asn — .

Moreover, Cj(z, r) is defined if Ry < r < R, if |2 — r| < rd(r), and if
Jj = 0since B(r) > 0; and if 2 is real, then so is C;(z, r). And since

B(r) = 4r (d/dr){rA(r)} = §r{rA'(r) + A(r)} = Bu(r) + 3Bi(r),
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we deduce that Co(r, r) = —1.
We further define:
(2) Bn = B(un).
(3) vi(n) = Ci(n , Un).

(4) A(r; d) is the maximum value of |f(2)/f(r)| for z on the oriented path
Q(r) consisting of the line segment L from r + ird(r) to /1 — d2(r)
=+ 4rd(r) and of the circular arc C from the last point to ir to —r.

. —B(r) &
max (}\(7‘; d) \/B('I’), ex}:;(r) '\(;)l?d(;'(;)})

(6) E, = min(1, E,), B, = max(1,E,).
(7) §0N(n; d) = max{u(u,. 3 d)7 E;(Dn E::/'\/[}:)2N+2}'
(=1)F3E Tm+ &k + 3)
F =
(8) «(n) VT ,,,Z_l m! 1 T2k
1 imzl
We can now state our main result, of the kind (1), which will be proved in
the next section following which we will compare it with Grosswald’s result.

Tuaeorem 1. If (A)-(E) hold (with either (D) or (D2)), then for the given
N we have, as n — «,

_Jun) - Fu(n) :
Qy = 2%: \/;‘B‘; {1 + ]; ﬁ’; + 0(¢N(n>d))}-

If (D1) holds, then this is valid for all N = 0.

(5) u(r; d)

|

i, (n) - vj,(n).

3. Proof of the theorem

If K is an arbitrary, positively-oriented, simple closed path containing the
origin in its interior and is such that K lies in the disk {z:|2z| < R}, then
Cauchy’s theorem gives

1 [fG), _ 1
n = 5;‘ [l dz = %LM”(Z)CZZ.
Since
(9) M,(2) = Ma(2){Bi(2) — (n + 1)}/z,

the saddle point method suggests that we take K to be a path passing through
U, . Let K, ,the part of K in the upper half-plane, consist of the line segment
from u, to u, + %u, d(u,) and of the path Q(u,), defined in (4), from this last
point to —u,. Let K_, the part of K in the lower half-plane, consist of the
reflection of K., in the real axis with the orientation reversed; thus, K_ extends
from —u, to u,. Since (A) implies that f(2) takes conjugate values at con-
jugate places, it follows that A(u. ; d) is an upper bound of |f(z)/f(r)| for
z not merely on Q(u,) but also for z on the reflection of Q(u,) in the real axis.
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And sinece | z| = u, on Q(u,) which has length not exceeding %, + wu., we
have

[ S+ @)
21 —d(up) (un + 'Lun ¢)n+l

< Mun; d) |F(un) |

n = = 27yt

« 2(un + TUn);

Tun do }

here the integration is along the real axis. Putting

(10) o = d(un),
o 5
) Gule) = (4 ip et i) gy [ ) a
we obtain
(12) f( ”) un Oy — J| = (71' -+ l)k(un,d).

It follows from an earlier remark that f(z) has an analytic logarithm A(z)
in @, where it is never 0. Hence, A’(2) = f'(2)/f(z) = A(z) and A" (2) =
A™(2). So, for all complex ¢ with |¢| < 8, , we have

AU + tun ) — Aun) = 2550 lzm +(1;;?—(iUn )"+ T,

= 2205 Bra(un) (30)™" + V1

Y, = Z:—2N+3 Bm+1(un)(i<p)"‘+l.

By using Taylor’s theorem with integral remainder, we can also write

where

TURP
Y, = (gj\?lrg)‘n.L ACO (0 o) (i 0 — )™ duo

. \ON+4  pe
= ((27’;"_2‘_3)_']; A(2N+3)(u” + tu, ¢) (o — '})2N+3 o

)2N+3

[4 . ( —_
= (- 1" (2N + 4)[0 Buvia(ttn + it 3) s 49

Similarly,

log (1 + ip) = 2% (m'j)l (ip)™ + Y,

where

. © (_ l)m . \m+1
Y, = m=2N+3 mF 1 (740)
and, also,

_ te (1:‘0 _ w)2N+3 _ _ N @ (‘P _ 0)2N+3
Y, = j; 1+ wyv do = (= 1) o (I + o)

From (11), we see that a logarithm of G.(¢) is given by

dd.
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log Gu(e) = A(un + tune) — A(un) — (n + 1) log (1 + dp)

+ T {Bm+1 (w) = (-2t 1} (i)™ + Ya.

Then
(13) log Gu(e) = —Bag’ + T(e) + Y5
where, by (3) and (2),
(14) T(e) = ﬂn¢2 ZZ-IH 'Ya(n)(i‘l’)j
and
Y; = —(n+ 1Y, = B¢ Z;’me vi(n) (p)’
1
= (- DN +9) f {Buvsiun + a0y + SELY
(¢ _ 0)2N+3
B )
_ . 0 . (¢ _ 0)2N+3
= (— I)N 1(2N + 4)an; C2N+2(un + tu, 9, Un) (_l-l-—iz”—mdﬂ'
If (Dy) holds, then the series representation for Y; shows that for n = ny

and —6, < ¢ < 6,

| V5| S Bu & 2ieowss Bn Di|e|’ = E. 8 2 (Dn )™
3| = Pn e j=oN+2 Lin Dy | @ nnﬁol_Dn“ol

provided D, |¢| < 1. In fact, by (E) there exists ny = my such that n = n,
implies D, |¢ | £ D, 6, £ % so that

(15) I Y3l = 2E, Bn¢2(Dn ‘P)2N+2'

On the other hand, if (D;) holds, then the integral expression for Y; shows that
for0 < ¢ = 6,

[4
|¥i| = @N + 08, [ B DI — )™
0
from which (15) follows; it also follows if —8, =< ¢ < 0. Thus, if either (Dy)
or (D) holds, so does (15); and if n = ng = n then (E) shows that
| Ys| < 2E,B.¢"Dnlo| < 2D, EnBn b0 < %
so that e”* = 1 4 O(Y;). Likewise, (14) gives
| T(p) | < Bue® 254" B D |o|’ S 2E.8.6" Dalo| S %
Hence, if n' = ns and —§, < ¢ < 8, , we obtain from (13) that
G.(p) = P i P L e—ﬁnvzeT(fp){l + 0(Y3)}
= (" + 0(T3)}.
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Moreover,

€ =1+ 220 (I/mD){T(e)}™ + Y,

where

| Vi £ Zomeonse (1/m)| T(@)|™ £ Dmeawss (1/m!)(2Dn EnBa |0 )™
= 2(2DnEn B,,gos)w'm.

Thus, on using (15) and allowing the constant implied by the O-symbol to
depend on N, we obtain

(16) Go(9) = €' (1 + 224 (1/m1) (T (e))™ + O(Ys)}

where
(1 Ys = B2 (Da0)™ (60 )™ + En(Du)™ 66"
Now, on writing +v; in place of v;(n), we obtain
(1/mD{T(@)}™ = (1/m}) (Ba @)™ Dogth it iy =+ Yim(tp) T Him
= (Bu)™ 270 Gim(ip)’

where
(18) Gim = (1/M)) D jitertimmis 101, in sS4 Yir®** Vip +
Hence,

|Gim | < (/M) ER Dy 3ittipmis sroensinza 1 S (U/m)ER D™
< (1/)E. D¢

since each of ji, - * * , jm— Can assume at most j values and then j,, has at most
one value. Consequently,

mt (1/m){T ()} S (ip)! Dot gmgamas; itawen smsi Gim(Ba )"
== Zzﬂ'l (1(,0) ZZ»==1 Gjm(Bn (4 ) + O(VN+1(¢))
where
(19) Vp(‘P) = _41=2p I 4 | Zm=1 | Gim ‘(6n‘P )

IIA

Zj=2p | o IJ (eD,)’ (1/.7> Zm=1 (En B <P2)m-

Now forz = 0and 1 £ m = j, we have

m if =1
cs{y § Egsere

Vp(‘P) = Z;’;?p |‘P Ij (eDn)j{En BMP2 + (En B ¢2)j}~
By (E), wehave forn = n, = nzand —d, = ¢ =< 8, that

(20) V(o) S 2E,Bu¢’(eDn @)™ + 2(eDn EnBré")™.

AW

so that
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Thus, (17) shows that Vii(¢) = O(Y;). Hence, (16) becomes
Ga(9) = €' {1 + 23 (i0)? X ois Gin(Ba D)™ + O(Y5)}
= (1 + Si(e) + Sale) + O(Ys)}

where S;(¢) consists of the terms with odd j and S:(¢) consists of the terms
with even j.

Hence, (11) gives, since Si(¢) is an odd function and S:(¢) is an even
function,

Sn .
T =3[0+ Si0) + Sile) + 0¥ do

on ) b
- jo 7 do + [o P SN L (60)% X% Gum(Ba )" do + O(Ye)

where, on setting ¢ = 8, ¢" and using (17), we find

v E2N+2 fno — ( Dn >2N+2 t8N+3
= n [ —_—
’ 0 V6. 2Bt

© — Dn 2N+2 tN+2
+E”fo ¢ (x/E) VA
" -Dn 2N+2
o(Jrlva) mm)
On using (6), we have

E(E2™ + 1) = 2B,(E0)™ = 2B, (E)™
so that Yg = O(¥,) where

E. (D, E\™*
(21) w-(U5)
Putting
(22) An = B 0n = B(un){d(un)}’,
we have

J = \1/_ f o e gt
2 ,e,,
(23)

+ Z ( l)k z G f e—ttk+m—ll2 dt + 0(\1, )
2_\/&; —~ 2k ,m n/e

k=1

Now for s > —3 we have

A
" te12 g, 1y _
(24) [e dt-I‘(s+2)
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where, on integrating by parts,

(25) Z, = f T g = ¢ npT g (s _ %)f O g

n n

Ifs = tand A, = 2(s — 1), then
7. < e_A"A;—lﬂ + s — 1/2 e—tts—-l/2 dt
A, An
< dape-12 1,
Se A, + 2 Z, )
hence, there exists A, in [0, 1] such that
(26) Z, = e i

Moreover, A, = 2(8N — 1) by (22) and (E) if n = ns = n4 ; hence (26) holds
for} S s<3Nifn =2 ns. Andif —% < s < %, then the last term in (25) is
negative so that (26) clearly holds in this case also. Thus, if —} < s < 3N,
then we have by (24)

An
_£ et dt =T (s + %) + 0(e 22,

From (23), we now obtain

"\/ﬁn{ ()“":él( k;Zszkm (k+m+1>}+0(\1r,.)
+o(75 TR {1+ B 5 5 Gualat}).

On using (18) and (8), we find
(e B o)
= i ; + 0(¥,) + 0 Tir L+ Vi)
by (19). By (20) and (E), we have for n = ne = n; that
Vi(8,) S 26" Dy B Bndn{Dabn + Dy Eufa s} < 1L

7= 2 {1+ B+ 0w + 0 (S2))

From (12) and (22), we therefore obtain

T ne - VT { Fk(’n)
R ¥ o = 5 + ‘é + 0(¥1/B2)

Hence,

P

+0
6n\/B—

) + O\ (un 5 d)V/B2) }
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Taking account of (2), (10) and (21), we see that this implies the conclusion
of the theorem.

4. Remarks on Theorem 1

In the more usual treatment of this type of problem, one uses a circle for the
contour K in place of our path which consists of three line segments joined to a
circular arc. One effect of this change is to place our derivation in the exact
setting of the saddle point method as we remarked following (9). In Gross-
wald’s treatment, however, the path is the circle, with center at the origin,
having radius u,—; so that his path does not quite pass through the saddle point
at u,. In the application given in the next section, our present method pro-
duces better numerical results than that based on the circle |2| = 4.1 ; see
our paper [3] for a numerical comparison.

A second effect of this change is that we have to work with the B(z) of
(C) whereas in Grosswald’s treatment the corresponding quantities that arise
are [2(d/dz)]"*{2A(2)} which are usually more difficult to determine.

In the application made in the next section, we use the hypothesis (D,)
rather than (D;). Under the assumption of (D;), the proof can be simplified
a bit by replacing the T'(¢) in (14) by an infinite sum so that Y5 becomes 0;
and in (16) we likewise use an infinite sum so that Y5 becomes 0. As a
consequence, we can proceed directly to the equation preceding (19), and we
need only estimate Vyy1(¢) rather than Y; and Y5 in addition.

Nevertheless, we have treated the case of hypothesis (D.) because this
arises in Grosswald’s work where (D;) does not seem to hold for all n = n,
but only for n = ne(j), and the proof given under this weaker assumption
breaks down. Grosswald essentially uses (D.) with D,(= 1) and E, inde-
pendent of n; in such cases, the second term in the definition of u(r; d) in (5)
can be omitted. Thus, our result generalizes that of Grosswald. In our ap-
plication, we have D,, = u, — « so0 that Grosswald’s theorem is not applicable.

Several additional remarks are in order. If we define

No(r5 d) = {d(r)}* maxses | f(2)/F(1)] + maxae | £(2)/5(r)],

then an obvious modification of our argument shows that (12) remains true
when X is replaced by Ao ; the same replacement can therefore be used in (5),
and the resulting theorem is still valid. If we apply this form to f(z) = ¢’ and
make the (optimal) choice d(r) = (2 logr/r)"?, then for all N = 0 we merely
obtain ox(n;d) = O(log n/+/n) so that only the choice N = 0 is of any signifi-
cance. However, by integrating over the full circle instead of over our path
K, we can obtain a full expansion of the type (1) for the coefficient 1/n! ap-
pearing in the power series for ¢°; in fact, this is done in Grosswald’s paper. It
therefore seems worthwhile to record an alternate form for our general Theorem
1 based on such an integration; the proof adapts an argument given by
Hayman in his Lemma 4.

We require a number of modifications in our hypotheses and definitions. In
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(B), we now require that f(2) = 0 for |z — r| < 2rd(r) where 0 <
d(r) £ $and {1 4+ 2d(r)} £ R. In (C) and (D), we redefine Bi(2), u,
and C;(z, r) by:

Bu(e) = & (z -d")k—l (A(2)}, Bilu) =n, Cilg,r) = —2in(®)
kI\" dz ’ " »TR® 7B
Note that this leaves B1(2) = 24 (z) unchanged in meaning so that now wu, is
the old u,—; ; likewise, B(z) (which is now B,(2)) is unchanged in meaning so
that the new B, of (2) is the old B,,_l In place of (D.), we require that

IC2N+2(un un)l S En D2N+2

for all real ¢ such that | ¢ | < d(u,). Finally, we redefine A(r; d) of (4) to be
the maximum of |f(2)/f(r)| for z on the circular arc from 7™ to ir to —r.
The definitions (3) and (5)—-(8) are used with the new meanings for the various
quantities. With these new meanings, Theorem 1 still holds.

To see this, we use the full circle | 2| = u, as the path of integration in place
of K. Then (12) holds provided we redefine G.(¢) by

Gu(e) = e_impf(un 3i¢)/f(un)-
For all complex ¢ with |¢| < 8, we have
| tn € — Un | < un(e'™ — 1) < un(e™ — 1) < 2u, 8,
gince 0 < 68, < 4. Hence, G,(¢) has an analytic logarithm for |¢| < 8,;
this is given by
m+1

2N+2 " ¢ ¢
—ing + i) + TR E T (i A )+ Vs

= 22 Bra(ua) (o)™ + Yy
= —f, ¢ + Br @ Z?ﬁ.l*_l CJ(un ) 'Um)(W’)] + Y5

which is formally the same as (13). Here Y; has an obvious series repre-
sentation; in addition, Y; has the integral representation

2N+3

Vi = on ¥ 3)|f doTe

{Sun € A(un €*)} (0 — 9)" do

— (=D)¥(2N + 4) fo Buysa(un ¢) (0 — 8)24 43

= (=)™ (2N + 4). j;" Cany2(Un e’ un) (o — 3) 8 dg

which corresponds to the last expression for Y; a few lines below (14). The
rest of the proof of the theorem now proceeds just as before.

As a result of the validity of both forms of Theorem 1, it follows that if both
versions of (A)—(E) hold with N = 0 and if both terms ¢o(n; d) are o(1) as
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n — oo, then asn —

Olp, Nf(un)/(zu::'\/’l—r—é;) ) Oy Nf(un—l)/(2uz—l\/ y n—l)

where u, and 8, now have their original meanings specified By(#.) = n + 1
and 8, = B(u,). Replacingn by n + 1in the second of these asymptotic rela-
tions and using the first one, we see that e, ~ an/u, asn — «.

Finally, we wish to express our gratitude to Professor Grosswald for clarify-
ing a number of points for us.

5. Application to a problem in semigroups

Let U, be the number of idempotent elements in the symmetric semigroup
T, on n elements; i.e., T, is the class of functions mapping the set {1,2, - -+ , n}
into itself, and multiplication is defined by function composition. In a previ-
ous paper [3], we showed that

L4+ o0 () Ua " = exp () = fo(2)
and obtained the result for n — o,

e + 1 "0 G i _
(27) Un {m ZL—E e =] n

where u, is the positive solution of u(u + 1)¢* = n + 1 and C, =
us 4+ 3u, + 1. In an earlier paper [2], we obtained the full asymptotic expan-
sion of the type (1).

We now show that Theorem 1 does, indeed, lead to (1) when applied to
fo(2). 1In this case, R = =,

A(z) = (2 + 1)¢, Bi(2) = (&/k1)(z + k)¢, B(z) = 32(2" + 32 + 1)¢,
and (A)—(C) hold for arbitrary d(r) satisfying 0 < d(r) < 1. Now

i+2
Ci(r,r) = 2 { r (r4+7+2)

T F 3 + De G+ 2)!
("']-)J r
+j+ 3 r(r + l)e}
2 ; 1 1
(28) Cilnr) = — g {(j Fo. T GO
LD 14 l/r} _ Wisa(r)
it2 it V)

where V(r) = 7* 4- 3 + 1 and Wjs(r) is a polynomial of exact degree j + 2
with negative leading coefficient. Forr = 1 and j = 1, we have

|Ci(r,r)| S 20°R + 3+ 3) <3
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so that we can take E, = 3 and D, = u, ~ logn asn — ., Also
_ uy + Bu, + 1 un
Bn = B(un) = m“l-)— un(un +-1)3
_ C,
2(un + 1)

On putting 6, = d(u.), we will have all of (A)—(E) satisfied, including (D),
provided we can determine d(r) so that

(29) (n +1)~—nlogn

(30) Snlogn — o, & nlog’n—0, d,logn—0
asn— ». Wehave B, = 1, By = 3and, asn — o,
"\ 2N+2 N+1
V/Bn n

We will select d(r) so that u(u, ; d) is smaller than the above term which will

then provide an estimate for ox(n; d) of (7). )
Since | fo(2)| = exp ®(z¢°), we have on setting z =  + iy = |2|e” that

(82) |fo(2)] = exp{e”|z|cos (y + ¢)} = exp {¢’ (xcosy — ysiny)}.

Forzon L,wehavey = rd(r) = w/2 provided d(r) < 7/(2r);also0 <z < r
so that

E(zcosy —ysiny) < excosy = re’ cosy
ré{l — 2sin’ (3y)} = rd{l — 2(y/m)%
< rd — ey’ = red’ — W d(r).

I\

Hence, for z on L,
(33) | fo(2) /fo(r)| S exp {—4r'¢" d(r)}.
If zis on C, then
= /1T = &) £ r{l — 3d(r)} = r — rdi(r)

¢ |z]eos (y +8) = & < rde” O
re'{l — 3rd’(r) + $"d'(r)}
re'{l — 3rd’(r) + ¥°d'(r)(3r/r)")
re” — % d*(r)
provided 0 < d(r) = n/(2r) andr = 2. On using (32), we obtain

| fo(2) /fo(r)| S exp {—4r%¢" d*(r)}

which holds not only for z on C but also for z on L as a result of (33). By (4),
A(r; d) does not exceed the preceding quantity so that, since ¥%" < B(r) <

A IA

I\
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3% for r = 2, we deduce from (5) that
—7[2
. — . 3/2 rl2 1.2 52 e __l_srz
w(r;d) =0 { max (r ¢ exp{ r'e (r)} IO exp{ 5 r'e'd (r)})}
=0 (d( 57 e exp{ r2e'd2(r)}) .

Now define d(r) = exp (—2r/5) so that d(r) < »/(2r) < 1if r > R,.
Then as r — «

u(r; d) = 0@ exp{—%rzerlﬁ})
= 0(¢ exp { —3%""})) = O(exp (—7)).
Since u, ~ log n, we have for n = ny
w(tn s d) = Oexp (—ur)) = O(exp {—(N + 1) logn}) = O(1/n"").
By (7) and (31), we have forn — «
extn;d) = 0 (1E2)"

Finally, (30) holds since u, ~ logn.
By (3) and (28), we have v;(n) = Wite(un)/Cn. For the G, of (18), we
have
G'%'m = %@!‘_)_ = lek . ka(un)cﬂk-m
where X}, (%) is a polynomial in « of exact degree 2k + 2m with positive lead-
ing coefficient. So, (29) and (8) give
Fi(n) _ 1 [2(u, + 1)|* (=D)*
g (+ 1P Chn

™

Cgk Z r(m + k + %)Xk m(un)ozk_m
_ 1 . Py(un)
S+ 1F ¥

where Pi(u) is a polynomial of exact degree 7k. On taking e, = U,/n! in
Theorem 1, we now obtain the following result which was given in essentially
the same form in [2].

TuroreM 2. Let u, be the positive solution of u(u + 1)e” = n + 1 and let
Cn = uh + 3u, + 1. Then there exist polynomials Pi(u) of exact degree Tk
such that for each fixed N = 0 we have, asn — oo,

_ Un + 1 N et . Pilun)
Un = /‘/21(71, T 0C wt {1 + ;; n + ¢ Cw

10gnN+l}
+o(lEn)
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In [3], we tabulated U, and the (leading term) I,, of (27) and showed that
the relative error did not exceed .73 % for the nine values of n = 16; 25, 50,
75, -+-, 200. Hence, the asymptotic expansion is very accurate even for
N = 0. Curiously enough, for n = 200 the leading term I, provides a better
approximation than that obtained by taking N = 1,
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