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1. Introduction
The problem of obtaining an asymptotic expansion for the coefficient an

Zof f(z) ,:..oan arises in many instances. The chief sources of such
problems are number theory and the general area of combinatorics.
There are various aspects of this problem depending on how much precision

one requires. In the simplest case, one asks only for an asymptotic formula of
the kind as c,, as n -, , where c. is a relatively simple function of n.
On the other hand, one may require that a full asymptotic expansion of the type

hold for each N >= 0 as n --* ; here, one allows F(n) to depend on n but
wishes to have

f+,(n)/ o(f(n)/)
for each k, as n - , and one also desires that --. as n --* . In fact,
in most cases, F(n) o() for each e > 0 and each ]c, as n -- .The literature contains many papers dealing with such problems. Here we
mention only the papers of Hayman [4], Grosswald [1], and a previous paper
[2] of ours. Hayman deals with the simple formula an c, under relatively
weak conditions on f(z). Grosswald, however, assumes more and obtains a
result of the type (1). In our earlier paper, we also obtained such a result but
for the special function fo(Z) exp (ze) which does not satisfy Grosswald’s
hypotheses. In the present work, we generalize our earlier theorem by using
some ideas in Grosswald’s and Hayman’s papers; this yields a result having
weaker hypotheses than Grosswald’s. Finally, we apply our theorem to fo(Z)
which is the exponential generating function of Un, the number of idempotent
elements in the symmetric semigroup on n letters.

2. Statement of the result
We mke the following ssumptions (A)-(E)

Z(A) f(z) :=oa, is analytic forlz < R, 0 < R

_
, and is real

for real z.

(B) There exists an R0 e (0, R) and a d(r) defined for all r e (Ro, R) such
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that we have

0 < d(r) < 1, r/1 -f- d(r)} < R;

moreover, f(z) 0 for ech z such that z r <= r d(r).

(C) Defining, for >= 1,

A(z) f’(z)/f(z), B(z) (z/k!)A-(z), B(z) -zB(z),

wehveB(r) > 0forR0 < r < RndB(r)--* sr--,R-.

(D) For suitable R nd lrge n, define Un to be the unique solution of
B(r) n -t- 1 which stisfies R < r < R. Define

/C(z, r) B+(z) -- B(r) B(r)
+2 /

and suppose that for a certain fixed N >= 0 there exist non-negative D, E and
no such that for all n _>- no and for 1 -< j

_
2N + 1 we have ]C(u, u)l <=

ED In addition, we have for all n => no that either

(D) C(u=,u,)l <= E,D for a11j >= 2N A- 2

or

u )l -<_

for all real satisfying --<
(E) Asn , we have

These assumptions require some comment. First, it follows from (A) and
(B) tha for each r (R0, R) .the function f(z) is nowhere 0 and A(z), B(z),
B(z) are all defined and analytic on a suitable open disc t, containing the
closed disc {z iz r <= rd(r)}. Moreover, A(z), B(z) and B(z) are real
for real z. Next, (C) implies that B(r) > 0 for R0 < r < R so that Bl(r) is
strictly increasing for such r. Also, by (C), there exists R (R0, R) such tha
n [BI(R)] >= no ;for each n, (C) also implies the existence of (R, R)
such that B() > n -f- 1. Consequently, if n ->_ n then

B(R) < n -t- 1 =< n A- 1 < B(p.);

inasmuch as B(r) is continuous and strictly increasing on (R, R), we see
that the equation B(r) n + 1 has unique solution r in (R, R) for each
n >- n. This remark justifies the definition of u. given in (D). Clearly,
u. is a strictly increasing function of n and u --* R- as n -- .Moreover, C(z, r) is defined if R < r < R, if z r <= r d(r), and if
j >= 0 since B(r) > 0; and if z is real, then so is C(z, r). And since

B(r) 1/2r (d/dr){rA(r)} 1/2r{rA’(r) -4- A(r)} B(r) -+- 1/2B(r),
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we deduce that C0(r, r) 1.
We further define"

(2) , B(u,).

(3) %.(n) Cj(u,, u,).

(4) (r; d) is the maximum value of If(z)/f(r)l for z on the oriented path
Q(r) consisting of the line segment L from r ir d(r) to rVl d.(r)
+ ir d(r) and of the circular arc C from the last point to ir to -r.

(r; d)= max ((r;d) exp{-B(r)d(r)})(5)

(6) E. min(1, E.), E: max(l, E.).

(7) (n; d) max{(u, ;d) s(n, /,)+l

(8) F(n) (--1) F(m + k + )
(n) (n).

,"

We can now stute our main result, of the kind (1), which will be proved in
the next section following which we will compare it with Grosswald’s result.

TonM 1. If (A)-(E) hold (with either (D) or (D) ), then for the given
N we have, as n ,

f(un) f N Fk(n)

I (D) holds, th this is valid for al N O.

-t- 0(N(n; d))}.
3. Proof of the theorem

If K is an arbitrary, positively-oriented, simple closed path containing the
origin in its interior and is such that K lies in the disk {z’l z <: R}, then
Cauchy’s theorem gives

l f f(z) dz=-
l fM.(z)dz.

Since

(9) M(z) M(z){Bl(z) (n - 1)}/z,
the saddle point method suggests that we take K to be a path passing through
u,. Let K+, the part of K in the upper half-plane, consist of the line segment
from u to u, + iu d(u,,) and of the path Q(u,), defined in (4), from this last
point to -u. Let K_, the part of K in the lower half-plane, consist of the
reflection of K+ in the real axis with the orientation reversed; thus, K_ extends
from -u to u. Since (A) implies that f(z) takes conjugate values at con-
iugate places, it follows that ),(un d) is an upper bound of [f(z)/f(r)l for
z not merely on Q(u,,) but also for z on the reflection of Q(u) in the real axis.



And since ]zl >- u on Q(u.) which has length not exceeding u -t- ru, we
have

1 fa(,,,) f(u. + iu. q) d)
2r u+

here the integration is along the real axis.

(10) . d(u,),

(11) G,() (1 + i)-’*- f(u. +
we obtain

(2)

Putting

J=1/2 G.()d,

f- u, a, J -< (r -}- 1)X(u, ;d).

It follows from an earlier remark that f(z) has an analytic logarithm h(z)
in 2 where it is never 0. Hence, A’(z) f’(z)/f(z) A(z) and A(m+l(z)
A(m)(z). So, for all complex o with I <-- -, we have

where

X7’+ A(m+l)(u-) (iu, o)+ + Yxh(u, -+- iu,o) A(u,) ..,,,,=o
(m-t-" 1)!

X?+ B+(u.) ()+ "t- Y

Y Y._.+a B+I(u.) (i)+x.
By using Taylor’s theorem with integral remainder, we can also write

1 ]’ A(+) (u. + .,) ( iu. ,Ya= (2N+3)! ao

Similarly,

where

a (O-- 0)22V’+3

(-- 1) s’ (2N + 4) B2r+(u, + iu, O)
(1 + i0)2+

dO.

xy’.N+2 (-- 1) i)+log (1 + /)---- z.,,0 m+ 1
( -]- Y2

y. .=+a 1)m (io)+
m+l

and, also,
f (i )+Y 0 (1 + w)N+

,,+ f (, o)+
1 ) Jo (1 + iO)

dO.

From (11), we see that a logarithm of G.(o) is given by
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log G,,(o) A(u. -F iu.q) A(u.) (n -F 1) log (1

{Bl(u.) (n q- 1)} io

-F z..,,.=l B,,,+ (u.) ( 1)

Then

(13) log G.(o) -.o" -F T(o) -F Y,

where, by (3) and (2),

(14)

n -t- 1 \
m+ lj -t- Y3.

and
Y3 Yx (n + 1) Y. , s.N+ 7(n)(i)’

Y, 1 2N + 4) B+ u. + iu. O) + 2N +
( 0)+
(1 + io)+

(-- 1)N+a(2N q-4)/3n C2r+2(un q- iu,, O, u,)
(1 q- iO)2v+4

dO.

dO

On the other hand, if (D2) holds, then the integral expression for Y3 shows that
for 0 0 < 6.

0)+Y, =< (2N q- 4)3. E. D2:+(o dO

from which (15) follows; it also follows if -6. <- o =< 0. Thus, if either (D1)
or (D) holds, so does (15); and if n >- n _>- n then (E) shows that

Y[ <= 2E.3.,p"D.I,#I <= 2D.E. 3,,6 <= 1/2

so that er" 1 + O(Y3). Likewise, (14) gives

T(o) < .o xT"n+ is < 2En. 1/2.z..,s.= E.D I .D.I[ <-

Hence, if n’__> n and -6, _-< -<_ 6., we obtain from (13) that

G,,(q) e-"+r(’)er" e-"’er(*’){ 1 -F O(Y)}
e-"’"{er(’) -F O(Y)}.

provided D, [! < 1. In fact, by (E) there exists n2 -- n such that n >_- n
implies D. [[ =< D 6. <= 1/2 so that

(15) Ya < 2E, . )2(D. 2N+2

If (D) holds, then the series representation for Y3 shows that for n => na
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Moreover,

where

2Nq-Ier(’)= 1 + z.,,ffil (1/m!){T() -t-- Y4

Y41 -<_ -":-+ (l/m!)] T()I <- ,_+ (1/m!)(2D,,E,,,,I,i3)
-< 2 2D E, .a)+.

Thus, on using (15) and allowing the constant implied by the 0-symbol to
depend on N, we obtain

(16) G() e-a’{1 + = (1/ml)(T() + 0(Y)}
where

(17) Y E[+:(D)+()+ + E(D)+.
Now, on writing in place of (n), we obtain

(llm’){T()} (l/ml)() V+;,...,= , (i)+" "+

(+)G(i)()
where

(18)

Hence,

G,}, <= (1/m!)E’D ’xl+...+x-x; x,,...,>_-I 1 <= (l/mi)E’ D3"-’
<_ /y)D5 e

since each of j,, jm_ can assume at most j values and thenj has at most
one value. Consequently,

’(2N+l).= (l/m!){ T()} z..,’= (i) ’__.+1; ’/(2+)__ Gm(.)
2+ 2= (i)

_
G(. + o(g+l())

where

(19)

={ (eD)(1/j)

_
(E

Now forx 0and1 m j, wehave

X < < XXif 1 <
so that

G() % (eD)qEn + (E)}
By (E), we hve for n, => m > m nd - =< =< 5 that

(20) G() 2En (eD) + 2(eD E ).
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Thus, (17) shows that V+() O(Y). Hence, (16) becomes

’2+ 72)

where $1() consists of the terms with odd j and $2() consists of the terms
with even j.

Hence, (11) gives, since $1() is an odd function and $2() is an even
function,

J=

e-: a + e-:f (#)’ ,,()e + o(

where, on seging and using (17), we find

/ D 2+2 +z

(21)

Putting

(22)

we have

’ v’K \-v’K :

,5,, fl,, ( B(u,,){d(u,,)} ,

(23)

1 fa e-UJ 2/ dt

:Now for s > --1/2 we have

(24) e-t’-/dt= r(s +)-Z.

( E" fD"l:+:

On using (6), we have

+,, -F 1 <__ 2E,,(E)v+: 2E’, (E:)v+.
so that Y 0(.) where
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where, on integrating by parts,

_-zxnA-l/9. e-tt-3/2 dr.(25) Z e-tt"-1/’ dt za, -t- s

Ifs andh. 2(s-),then

=< --a’A’-m T s --A1/2 f. e_:-/ dt

1e-’a-/s + Z.

hence, there exists h, in [0, 1] such that

(26) Z. 2h, e-a"A-/.
Moreover, A, 2(3N ) by (22) and (E) if n n n hence (26) holds
for s 3N ff n n. And if - < s < , then the last term in (25) is
negative so that (26) clearly holds in this case Mso. Thus, if - < s 3N,
then we have by (24)

From (23), we now obtain

s =2 r + e,,.r +m+ +o(.)

+ 0
1 e-a- 1 Z IG,,.la%+

On using (18) and (8), we find

s + F(n + 0(.) + 0 { + V(.)}

by (19). By (20) and (E), we have for n n n that

Hence,
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Talcing account of (2), (10) and (21), we see that this implies the conclusion
of the theorem.

4. Remarks on Theorem 1
In the more usual treatment of this type of problem, one uses a circle for the

contour K in place of our path which consists of three line segments ioined to a
circular arc. One effect of this change is to place our derivation in the exact
setting of the saddle point method as we remarked following (9). In Gross-
wald’s treatment, however, the path is the circle, with center at the origin,
hving radius u_ so that his pth does not quite pss through the sddle point
at un. In the application given in the next section, our present method pro-
duces better numerical results than that based on the circle [zl un-1 see
our paper [3] for a numerical comparison.
A second effect of this change is that we have to work with the B(z) of

(C) whereas in Grosswald’s treatment the corresponding quantities that arise
are [z(d/dz)]-llzA (z) which are usually more difficult to determine.
In the application made in the next section, we use the hypothesis (D1)

rather than (D). Under the assumption of (D1), the proof can be simplified
a bit by replacing the T(q) in (14) by an infinite sum so that Y8 becomes 0;
and in (16) we likewise use an infinite sum so that Y5 becomes 0. As a
consequence, we can proceed directly to the equation preceding (19), and we
need only estimate VN+() rather than Y8 and Y5 in addition.

Nevertheless, we have treated the case of hypothesis (D.) because this
arises in Grosswald’s work where (D) does not seem to hold for all n >_- no
but only for n >- no(j), and the proof given under this weaker assumption
breaks down. Grosswald essentially uses (D) with Dn( 1) and E inde-
pendent of n; in such cases, the second term in the definition of (r; d) in (5)
can be omitted. Thus, our result generalizes that of Grosswald. In our ap-
plication, we haveD. u. --, so that Grosswald’s theorem is not applicable.

Several additional remarks are in order. If we define

X0(r; d) {d(r)} max,,,. ]f(z)/f(r)] -i- max,c If(z)/f(r)],
then an obvious modification of our argument shows that (12) remains true
when 7, is replaced by X0 the same replacement can therefore be used in (5),
and the resulting theorem is still valid. If we apply this form to f(z) e and
make the (optimal) choice d(r) (2 log r/r) 11, then for all N _>- 0 we merely
obtain N(n; d) 0(log n/’) so that only the choice N 0 is of any signifi-
cance. However, by integrating over the full circle instead of over our path
K, we can obtain a full expansion of the type (1) for the coefficient l/n! ap-
pearing in the power series for e; in fact, this is done in Grosswald’s paper. It
therefore seems worthwhile to record an lternate form for our general Theorem
1 based on such an integration; the proof adapts an argument given by
Hayman in his Lemma 4.
We require a number of modifications in our hypotheses and definitions. In
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(B), we now require that f(z) 0 for z r < 2rd(r) where
d(r) <-_ and r{1 -t- 2d(r)} -< R. In (C) and (D), we redefine Bk(z),
and Ci(z, r) by:

Bk(z) .. z ] {zA(z) }, Bl(u,) n, C(z, r) _Bi+(z)
B(r)

Note that this leaves BI(z) zA (z) unchanged in meaning so that now us is
the old u-i likewise, B(z) (which is now B(z)) is unchanged in meaning so
that the new fin of (2) is the old ._. In place of (D.), we require that

C+2(u e, u)! <- ED2+

for all real such that i1 -<- d(u). Finally, we redefine ),(r; d) of (4) to be
the maximum of If(z)/f(r) for z on the circular arc from re(r) to ir to -r.
The definitions (3) and (5)-(8) are used with the new meanings for the various
quantities. With these new meanings, Theorem 1 still holds.
To see this, we use the full circle z us as the path of integration in place

of K. Then (12) holds provided we redefine G.() by

G() e-f(u e)/f(u).
For all complex q, with el --< we have

u,e’- u,[ <-_ u(eI1- 1) <_- us(e’"-- 1) < 2ut

since 0 < -<_ . Hence, G() has an analytic logarithm for =< t;
this is given by

,+ (d, )+ eA e) - Y-in + iS(u) +
_

(m + 1)k {iu. (u.
-o

V+ B+(u.)()+ + Yml

which is formally the same as (13). Here Ya has an obvious series repre-
sentation; in addition, Ya has the integral representation

1 f d+Ya (2N + 3)! dOv+
{iue"A(u, eO)}.(q, O)+a dO

(-1)(2N + 4) B.m+(u, e’)(q, )+ dO

(-1)+(2N + 4) C.+.(u e, u)(
which corresponds to the last expression for Y a few lines below (14). The
rest of the proof of the theorem now proceeds just as before.
As result of the validity of both forms of Theorem 1, it follows that if both

versions of (A)-(E) hold with N 0 and if both terms 0(n; d) are o(1) as
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n --, o, then as n

:(u._)/((U.)/(2U./n)
where u nd . now hve their original meanings specified B(u.) = n -F l
and t, B(u,). Replacing n by n -f- 1 in the second of these asymptotic rela-
tions and using the first one, we see that a+

Finally, we wish to express our gratitude to Professor Grosswald for clarify-
ing a number of points for us.

5. Application to a problem in sem|groups

Let U, be the number of idempotent elements in the symmetric semigroup
T on n elements; i.e., T is the class of functions mapping the set 1, 2, n}
into itself, and multiplication is defined by function composition. In a previ-
ous paper [3], we showed that

1 + ,o__ (1/n!) U, z exp (ze) fo(Z)

and obtained the result for n --
(27) U 2(n - 1)Cf -where u is the positive solution of u(u -t- 1)e n + 1 and C.
u -t- 3u. -t- 1. In an earlier paper [2], we obtained the full asymptotic expan-
sion of the type (1).
We now show that Theorem 1 does, indeed, lead to (1) when applied to

fo(z). In this case, R ,
A(z) (z-l- 1)e, B(z) (z/lc!)(z -k)e, B(z) 1/2z(z-{-3z + 1)e,
and (A)-(C) hold for arbitrary d(r) satisfying 0 < d(r) < 1. Now

C(r,r) -r(r+ 3r+ 1)e (j+ 2)[
(r-t-j-l- 2)e

2r r f 1(28) C(r, r) -r + 3r -t- 1 (j - 2)! +

(-1) }-I- j .+_ 2
r(r -l-1)e

1
(j -t- 1)!r

1) 1 q- 1/r’[. Ws+(r)
jq- 2 -+ f V(r)

where V(r) r q,- 3’," q- 1 and Ws+(r) is a polynomial of exact degree j q- 2
with negative leading coefficient. For r _-> 1 and j >_- 1, we have

ICe(r, r)[ <= 2rJ( -4- 1/2 -4- -) < 3r
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so that we can take E 3 and D u log n as n -, . Also

,, =-- B(u.) u,, -{-" an,, -k 1 u.(u,,-b,1)eTM
2(u, -b 1)
C, (n-b I) 1(29)

2(u, + 1)
n log n.

On putting 6, d(u,), we will have all of (A)-(E) satisfied, including (D1),
provided we can determine d(r) so that

(30) ti n log n ---. co, i n log n 0, t,, log n 0

as n . We have E’,, 1, E’.’ 3 and, as n o,

\/(D"E:v+ 0og )v+.(31) E, O\n
We will select d(r) so that u(u, d) is smaller than. the above term which will
then provide an estimate for oN(n; d) of (7).

Since [f0(z)l exp 6(zeZ), we have on setting z x + iy zle that

(32) If0(z)] exp{e:]zlcos(y-[-0)} exp{e’(xcosy--ysiny)}.
For z on L, we have y r d(r)

_
r/2 provided d(r) <- r/(2r) also 0 < x =< r

so that

e’(x cos y y sin y) <= e% cos y <- re cos y

<- rer{ 1 2 sin (1/2y)} __< rer{ 1 2(y/r)}
lr,,r.2< re vy re- rSe"d(r).

Hence, for z on L,

(33)

If z is on C, then

-rSd(r)}]fo(z)/fo(r)l < exp{

x <= r%/i d(r) =< r{1 1/2d(r)} r 1/2rd(r)

elzlcos (y -k- ) <- er <-_ ree-()/

<= rer{ 1 1/2r d(r) + -r d(r)}
<- re"{ 1 1/2r d(r) %- -r d(r)(1/2r/r)}

1 2r< re r e d(r)
provided 0 < d(r) <= r/(2r) and r >- 2. On using (32), we obtain

Ifo(z)/fo(r)] <- exp {-re’d(r)}
which holds not only for z on C but also for z on L as a result of (33). By (4),
X(r; d) does not exceed the preceding quantity so that, since 1/2re <- B(r) <-



276 BERNARD HARRIS AND LOWELL SCHOENFELD

-re for r => 2, we deduce from (5) that

,(r;d) 0 max rme exp -- (r) dr)r exp --Now define d(r) exp (-2r/5) so that d(r) <-_ /(2r) < 1 if r > R..
Then as r -- (r; d) O(r2egl exp

= 0(e exp {--rer/5}) 0(exp (-r)).
Since u. log n, we have for n >= n7

(u. ;d) O(exp (-u)) O(exp {-(N -- 1)logn}) 0(1/n2+1).
By (7) and (31), we have for n -, o

(n; d) 0 (!g n)+.\ n

Finally, (30) holds since u, log n.
By (3) and (28), we have .(n) W+(u,)/C,. For the G of (18), we

have

G,, X,,(u) 1 t2k--m

C C X,

where X,,(u) is a polynomial in u of exact degree 2k -{- 2m with positive lead-
ing coefficient. So, (29) and (8) give

F(n) 1 2(Un + 1)\ (--1)
-(n+.)’’ : J" ; -r(+ + )x,(u)2

1 P(u)
(n + ) c?

where P(u) is a polynomial of exact degree 7k. On taking a,, U/n! in
Theorem 1, we now obtain the following result which was given in essentially
the same form in [2].

THEOREM 2. Let u,, be the positive solution of u(u + 1)e n 1 and let
C, u,, - 3u,, 1. Then there exist polynomials P(u) of exact degree 7
such that for each fixed N >= 0 we have, as n

u. + 1 n__.t e(+l)(+ 1 + (n + 1)
U,

2r(n + 1)C u =x
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In [3], we tabulated U and the (leading term) I of (27) and showed that
the relative error did not exceed .73 % for the nine values of n 16; 25, 50,
75,..-, 200. Hence, the asymptotic expansion is very accurate even for
N 0. Curiously enough, for n 200 the leading term I provides a better
approximation than that obtained by taking N 1.
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