TOPOLOGICALLY UNKNOTTING TUBES IN EUCLIDEAN SPACE

BY
R. C. LacuEer!

In this paper we consider closed, locally flat embedding of tubes B*™ X R
and 8" X R'into R*. In Part I we show that B*™ X R' knots in R® but
unknots in R* if n > 4. The situation with $*' X R'is more complicated.

In Parts IT and ITI, we show that $*™ X R' can knot in R*** and in R* and
in most R" fork 4+ 2 < n < 2k. Thus a general low-codimensional unknot-
ting theorem is nonexistent. However, in Part IV we show that any closed,
locally flat embedding of 8* X R'in R", k¥ < n — 3, is unknotted provided
that it is ‘“unlinked at infinity”, a condition derived while proving that the
examples in Part III actually knot. A corollary is that S* X R’ unknots in
R*ifn > 2k + 1,k > 2.

Embeddings of §* X R'into R" are studied in Part V.

Several discussions with Joe Martin were helpful in the formulation of
Parts IT and IIT.

Added in Proof. Closed, locally flat embeddings of 8*~* X R'in R" are clas-
sified by the homotopy group m—1 (8" ™), provided 3(k + 1) < 2n.

Definitions and Notation. We think of B as the closed unit ball in euclidean
n-space R", and we identify R* with R* X 0in R". Also, 8" is the boundary of
B™". Thus B* X R"™* < R"and 8 X R"™* c R". R"is used to denote
the one-point, compactification of R”. Of course, R" is homeomorphic to 8.

Let K be a (topological) k-manifold contained in the interior of the n-mani-
fold N. K is locally flat at the point x e Int K (the ¢nierior of K) if « has a
neighborhood U in N such that (U, U n K) and (R", R*) are homeomorphic
as pairs. K is locally flat at the point x ¢ Bd K (the boundary of K) if x has a
neighborhood U in N such that (U, U n K) and (R", R%) are homeomorphic
as pairs, where RS = R*7 X [0, ») c R".

An embedding f of a k-manifold K into the interior of the n-manifold N is
locally flat at the point x ¢ K if f(K) is locally flat at «; f is called a locally
flat embedding if f is locally flat at every point of K.

Finally, an embedding is closed if its image is a closed subset of its range.

Part I. Unknotting B X R'in R* forn > 4

Before stating the main unknotting theorem, we prove two propositions.
The first says essentially that ‘“setwise” unknotting implies ‘‘pointwise”
unknotting. The second shows that knotting occurs in dimension three.
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Prorosition 1.1. Any homeomorphism of B*™ X R' onto dtself can be
extended to a homeomorphism of R" onto itself, k < n.

Proof. Let f be a homeomorphism of B* X R'. Notice that the closure
of the complement of B*™ X R'4n R* is homeomorphic to §*7% X R' X [0, « ).
Thus f can be extended to a homeomorphism F of R* by transposing the
formula

(z,t) = (f(x),t), zeSXR, t>0.
But then F can be extended to a homeomorphism of R” by a standard method.

Prorosirion 1.2. For k = 1, 2, 3, there is a closed, locally flat copy X of
B*™ X R'in R® such that the pairs (R®, X) and (R®, B X R") are not homeo-
morphic.

Proof. Tirst notice that there are locally flat, closed, copies ¥ of R'in
R? such that the pairs (R?, Y) and (R®, R') are not homeomorphic. For ex-
ample, one could take a simple trefoil knot (S°, K) and remove a point p of
K from the pair, letting

(Ra, Y) = (83 - {p}’K - {p})'
The proposition follows by modifying (R, Y) in obvious ways.

TurorREM 1.3. Let f be a closed, locally flat embedding of B*™ X R' into
R". If n > 4 then there is a homeomorphism h of R" onto itself such that hf is
the identity on B* ™ X R'.

Proof. Welet X = X u {«} denote the one-point compactification of the
space X. Set A" = [f(B*™" X [0, »))]*. A*is a k-cell in R", and A® is locally
flat at every point other than the point «, a boundary point of A*. Corollary
2.4 of [7] says that, since n > 4, the pairs (R", A¥) and (R", k-simplex) are
homeomorphic. Since this homeomorphism may be chosen to leave the ideal
point fixed, we simply assume that A* = [B*™ X [0, »)]*. We think of A
as a simplex of R" having « as a vertex.

Let b be an interior point of A*. Let A} be the join of b with the face of
A* opposite «, and let A be the line segment joining b and «. Denote by ¢
the homeomorphism of A} onto A* which “stretches” line segments parallel
to A. That is, ¢ is the identity on the face of A} opposite b,¢(b) = «, and
@is linear on Af. Itis easily seen that ¢ can be extended to a mapping (de-
noted again by ¢) of R” onto itself with the following properties:

The only non-degenerate inverse set of ¢ is ¢ *(®0) = A, and
¢ is the identity on B*™ X (— «, 0] and on f(B*™ X (— =, 0]).

Now, let Q = [f(B*" X (=, 0])]*uAi. Qis a k-cell in R" which is
locally flat except possibly at the point « of Bd Q. Again applying [7], there
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is a homeomorphism g; of R” onto itself such that
01(Q) = [B"' X (=, 0]]*uAf.
It is a simple matter to modify g, so that
9:1(Q) = [B*™ X (=, 0]]*u A
g (A7) = AL,
g1(b) = b and gi(®) = o.

Moreover, using Corollary 3.2 of [8], we can find a homeomorphism ¢ of
R" onto itself such that

g is the identity on ¢1(Q)
and

gs agrees with g1 on g,(4).

(Here, again, the restriction n» > 4 is needed.) Notice that g.g; is a homeo-
morphism of R™ which agrees with g; on @ and is the identity on A.

Define g; by the formula gs = ¢g2 g1¢ . Even though ¢ is not a function,
gs is a well-defined homeomorphism of R" onto itself. It follows immediately
that

gsf(Bk-l X Rl) — Bk—l X Rl.

Finally, by applying Proposition 1.1, let g4 be a homeomorphism of R" onto

itself which agrees with (gsf)™ on B* X R', and let h = gsg;. This com-
pletes the proof.

CoROLLARY 1.4. Let f be a closed, locally flat embedding of S X R into
R",n > 4. If f can be extended to a closed, locally flat embedding of B* X R

into R" then there is a homeomorphism h of R™ onto itself such that hf is the
identity on 8" X R

Part ll. Remark on links and cones

A. Links. We describe here a well-known procedure for constructing a
pair of linked k-sphere in 8" whenever m(S" ™) % 0,1 < k < n — 2.
These and other constructions may be found in [12].

Let ¢: 8 — 8" be a piecewise linear, essential, mapping, and let
g: 8 — 8 X 87" be the graph of ¢, given by g(z) = (2, ¢(z)).

We regard 8* and §" " as spheres in general position in a high-dimensional
euclidean space, so that S* 8", the join of S* and 8", is a piecewise
linear copy of S". Moreover, 8* X 8" is embedded in a natural way in S"
as the set of midpoints of segments joining S* to 8",

g : 8¥ — 8" is a piecewise linear, locally flat embedding.

Clearly g is piecewise linear. To see that g is locally flat, let V be an open set
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in 8" * and h: V &~ R" a homeomorphism, and let U = ¢ (V). We have
a homeomorphism H : U X V &~ U X V by the rule

H(z,y) = (z, 1h(y) — he(a)]).

Since Hg(z) = (x, K2(0)), x e U, g is locally flat in 8* X 8" and hence
in 8™,

g : 8" — (8" — §) is not homotopic to a constant map.

This last statement is clear, since there is a retraction of 8* — S* onto 8"
which takes g(z) to o(z), zeS".

B. Cones. Now we describe a procedure for “local” linking of two cells
in 8". Suppose that S; and S, are locally flat (k — 1)-spheres in $”* such that
S; is not contractible in 8" — S,. Write S” as the join S* " * {p, ¢} of S"
with two points, and let D; = S;xq,7 = 1, 2.

Let =; and 2, be the respective boundaries of disjoint k-simplexes in "7,
and let A; = Zixq,7 =1, 2.

There ts no homeomorphism of S™ which takes Dyu Dy onto Ayu A, .

In fact, suppose such a homeomorphism exists. Then there is an isotopy of
of S” which moves points only in a neighborhood of ¢ and which pushes D,
onto a k-cell D; such that BdD, = 8;, D € 8" "¢, and Dyn D, = 6.
But then retraction of (8" ' x¢) — {q} onto 8" along join lines maps Dy
into 8" — 8,, and the fact that S; is not contractible in 8" — S, is con-
tradicted.

CoroLLARY 2.1. Let K be the cone over the disjoint union of two (kK — 1)-
spheres. If m1(S" ") 5= 0 then K knotsin S*,2 < k < n — 2. In par-
ticular, K knots in S* for k > 2.

Added in proof. Using [4], [9], [11] and [13], one can prove: Equivalence
classes of embeddings of K into 8", locally flat on each simplex of K, are in
one-one correspondence with m—1(S" ™) provided 3(k + 1) < 2n.

Part lil. Knotting " X R'in R"

A. Codimension two. Knotting occurs in codimension two simply as a
reflection of the knotting of codimension two sphere pairs, as follows. If
S is alocally flat (k — 1)-sphere in R**, let (R**? ¥) = (R*™ X R', 8 XR").
Clearly (R***, Y) deforms onto (R*™, §), so that, in particular, the homotopy
groups m(R* — Y) and =, (R*** — 8) are isomorphic.

CoroLLARY 3.1. If k > 1 there exists a closed, piecewise linear, locally flat
copy Y of 871 X R' in R*** such that the pairs (R***, Y) and [R*™, 8 X R')
are not homeomorphic.

(This follows from the above discussion if £ > 2. The case k = 1 is well
known.)
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B. Codémension three or more. Suppose that S; and S are locally flat
(k — 1)-spheres in 8" with the following two properties: S, is not contrac-
tible in 8" — 8,, and there is a nice piecewise linear annulus A properly
embedded in 8" % p such that Bd A = S;u S:. Then we can construct a
knotted embedding of 8 X R'in R" as follows. Write 8" = 8"« {p, ¢},
let K = (Siu8:)*q, and let

(Rna Z) = (Sn - {Q}, AuK — {Q})-
It follows from IIB that (R", Z) and (R", 8" X R') are not homeomorphic.

TarorEM 3.2. If m1(S"™") # 0, there is a closed, piecewise linear,
(locally flat) copy Z of S X R in R" such that the pairs (R", Z) and
(R, 8 X R") are not homeomorphic.

Proof. This follows from the above discussion, except for the existence of
the annulus, which follows from Theorem 1.1 of [6].

Remarks. 1. If n > 4, any “non-standard” embedding of 8*™* X R'into R"
provides an example of and embedding which cannot be nicely extended
over B¥' X R'. See Corollary 1.4.

2. Corollary 3.1 and Theorem 3.2 illustrate the fact that closed, locally
flat embeddings f of 8" X R'into R" may knot for two reasons: the spheres
f(S¥ X t) may be knotted in cross-sectional hyperplanes, or the spheres
(S X t) and f(8*" X (—t)) may be linked in cross-sectional hyperplanes
for large . In Part IV we show that, if ¥ < n — 3 (so that (k — 1)-spheres
cannot knot in R™™) and if the spheres f(S*™ X t) and f(§** X (—t)) are

topologically unlinked for large ¢, then f is unknotted. See Theorems 4.3
and 4.4.

3. The example in Theorem 3.2, n = 2k, is the non-compact version of
Hudson’s example of a knotted 87 X 8" in S¥*. (See a description of
Hudson’s example in [11].)

Added in proof. Using [4] and [13] it follows that closed, locally flat em-
beddings of §*™ X R'in R" are classified by m—1(S" ") provided 3(k + 1)
< 2n.

Part IV. Unknotting S X R'in Codimension Three

As in Part I, the ‘“pointwise” and “setwise” unknotting problems are

equivalent. This fact is stated explicitly in the corollary following the next
proposition.

ProrosiTioN 4.1. Any homeomorphism of S¥1 X R onto itself, k > 2,
can be extended to a homeomorphism of B* X R' onto itself.

Proof. Letfbe a homeomorphism of §*™ X R' onto itself. For eachteR’,
let 8, = 8" X ¢t and 2, = f(8,). Since =, separates $* X R for each t,
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we can define 2, < Z, if Z, lies in the complementary domain of =, which
contains S, for arbitrarily large values of u. The following is an easy ex-
ercise:

The function { — =, is either order-preserving or order-reversing, and con-
sequently the ordering £, < Z,is alinear ordering. Since the homeomorphism
(z,t) — (x, —t) of 8 X R’ can obviously be extended to a homeomorphism
of B* X R', we may, and henceforth do, assume that the function ¢ — 2, is
order-preserving.

Now we need the following

SuBLEMMA. Suppose that =, lies interior to S* X [a, b] for some a < b.
Then there is a k-cell Agin B* X (a, b) with the following properties:
(i) An (8P X RY) = Bda, = 24,
(ii) Int Aqids locally flat in B* X R', and
(iii) A s “locally topologically perpendicular” to 8 X R' at each point
Of 250 .

Proof of sublemma. B* X [a, b]is a (k + 1)-cell, and Z,, is a bicollared’
hence flat, (k¢ — 1)-sphere in the boundary of B* X [a, b]. The existence of
Ao follows immediately. (See [1].) Thanks to the referee for pointing out
this short proof of the sublemma.

We can now extend f as follows. Construct a sequence {f;}7=—. of num-
bers, with t; < %1, such that

for each 7, there is a number ¢ with Z,; separated from 2., by S;,
ti— woast— o and ¢ — —®asi— — o,

Then, using the sublemma, construct cells A;, pairwise disjoint, and let T';
be the (k + 1)-cell in B* X R' bounded by
AU A u f(ST X [t teal),

set D; = B* X t;and C; = B* X [t;, t:a). Extend fradially to a homeomor-
phism of D; onto A; for each 7, and then extend radially to a homeomorphism
of C; onto T; for each <.

COROLLARY 4.2. Any homeomorphism of 8** X R' onto itself can be ex-
tended to a homeomorphism of R™ onto itself, 3 < k < n.

Proof. Apply Propositions 4.1 and 1.1.

TaEoREM 4.3. Let f be a closed, locally flat embedding of 8" X R' into
R*", kE < n — 3. If f can be extended to a closed, locally flat embedding of
S X R'u B* X [b, ) into R", then there is a homeomorphism h of R onto
itself such that hf is the identity on S*™ X R'.

Proof. As in Theorem 1.3, we work in the one-point compactification
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R™ of R*. We may assume that the embedding f can be extended to an em-
bedding F of (8" X R')u (B* X [0, »)) into R” in such a way that
[F(B* X [0, »))]* isa locally flat (k + 1)-cell in R" (see [7]). We assume,
therefore, that F is actually the identity on B* X [0, «).

The proof proceeds now following the same idea as the proof of Theorem
1.3. We consider the k-sphere 8 = [f(§*™" X (=, 0])]*u B* X 0. This
sphere is locally flat except possibly at the ideal point, so [10] there is a homeo-
morphism g of R” onto itself taking S onto [S* X (—, 0]]*u B* X 0;
here is where we use the hypothesisk < n — 3. It is easy to modify g so that,
n addition,

g(B* X 0) =B*X0, g(o) =o and g¢(0) = 0.
Using Corollary 3.2 of [8], we may assume that
g is the identity on [0 X [0, »)]* = 4.
Now, let ¢ be a mapping of R™ onto itself with the following properties:

The only non-degenerate inverse set under ¢ is ¢ () = A.
¢ is the identity on 8¥™ X (— 0, 0] and on f(8*™" X (— e, 0]), and
¢ maps B* X 0 homeomorphically onto [S*™ X [0, « )]*.

Define h by h = ¢go. Clearly & is a homeomorphism of R", and
RS X RY) = 8 X R\

An application of Proposition 4.1 completes the proof, provided k > 2. The
case k = 1 may be handled separately altogether using trivial range techniques.

Remark. Intuitively, Theorem 4.3 says than an embedding f unknots if,
for sufficiently large t, f(S*™ X t) is geometrically unlinked from f G
for all s. We can refine this idea slightly, making use of the following defini-
tion.

In the light of the proof given in Part IIB, it seems reasonable to say that a
closed embedding f of 8* X R'into R" is topologically unlinked at infinity if
there is a locally flat (n — 1)-cell Q in R such that the following conditions
are satisfied.

(i) The ideal point « is an interior point of @,
(ii) @ does not intersect the image of f, and
(iii) There is an open set U in R" containing « which is separated by Q
such that U nf(8*™ X (—, —1]) and U n f(8*™ X [1, »)) lie in different
components of U — Q. That is, (8 X (—w», —1]) and f(8* ™ X [1, ))
approach o« from opposite sides of Q.

Turorem 4.4. If f is a closed, locally flat embedding of S X R' into R",
k < n — 3, which is topologically unlinked at infinity, then there s a homeo-
morphism h of R" onto itself such that hf is the identity on S X R
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Proof. It suffices to show that f can be extended to a closed, locally flat
embedding of 8* X R'u B* X [b, «) into R for some b.

Let Dy = f(S8* 7! X (—o, —1]) and Dy = f(S*' X [1, ©)). Let Q be a
locally flat (n — 1) — cell in R" such that « e Int Q and such that D; and
D, approach « from opposite sides of Q. By a collaring argument [1],
we can find a locally flat embedding ¢ of B~ # ¢ into R" such that

o(B"™") = Q and ¢(B"'xg)nD, = {x}.

Let A be the arc ¢(0%q).

Since ¢ can be extended to a homeomorphism of R, there is a mapping v
of R" onto itself whose nondegenerate inverse sets are precisely the sets
o(S,xtg), 0 < t < 1, S, being the sphere of radius ¢ in R*™. ¢ maps the
(n — 1)-cell (S, *tg) onto ¢(tg) ¢ A. We may take ¢ to be the identity
on D2 .

Now, D, is a locally flat k-cell in R” by Corollary 5.3 of [3], since we have
n > 4. Also, since n > 4, there is a homeomorphism ¢ of R™ such that

g(Ds) =[S X [1, o)t

and g(A) is a straight line segment. (See Theorem 3.1 of [8].) Since there
is a neighborhood U of « such that U n¢f(S*™ X R') lies in A u D, , it is
clear that there is a locally flat (k + 1)-cell E, containing g(D.) as a locally
flat face, such that

Engyf(S* X R') = g(D:) and Eng(A) = {w}.

Thus ¢ is defined and continuous on g~*(E), as well as on a neighborhood of
g '(E) — {»}. Therefore f can be extended to a closed, locally flat em-
bedding of

ST X R'uB* X [b, ©)

into R™ for some b by mapping B* X [b, « ) onto ¢ g (E) — {=].
An application of Theorem 4.3 completes the proof.

CoROLLARY 4.5. If f s a closed, locally flat embedding of S*™ X R' into
R, k > 2,n > 2k + 1, then there is a homeomorphism h of R" such that hf
is the identity on S*' X R

Proof. First, it follows that £ < 2n/3 — 1. Therefore, by Theorem 1
of [4] the embedding f of [S*™* X R']* into R" is locally tame at the point «.
That is, there is a homeomorphism g of R™ such that gf is piecewise linear on

[ X (=, =blu 8™ X [b, =)]*

for some b > 0. Since k-dimensional cones unknot piecewise linearly in S”
forn > 2k + 1, it is clear that gf is topologically unlinked at infinity, and the
result follows from Theorem 4.4.

The fact that k-dimensional cones unknot piecewise linearly in S™ for
n > 2k 4+ 1 follows by combining [5] and [9].
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Part V. Unknotting 8" X R'in R" forn > 4

We begin by showing that S* X R' knots in R’ in the worst possible way,
as follows. (Compare with Proposition 1.2.)

ProrosITiON 5.1. There exists a closed, locally flat embedding f of S* X R
onto R® with the following properties:

() f cannot be extended to a closed embedding of B* X R' into R®, and

(ii)  f cannot be extended to a closed embedding of ' X R' X [0, ) into R®.

Proof. Let g be a closed, locally flat embedding of B* X [0, =) into R’
which embeds 0 X [0, « ) as a wild ray in R®. Now let h be an embedding of
B’ X (— =, 0] into B* X [0, ® ) such that & is the identity on B* X 0,

hB® X (—,0)) C (Int B* X (0, »),
and h ties a trefoil knot in 0 X (— «,0]. Then define f by
FI8 X (— 0,01 =gh|S' X (—»,0] and f|S X[0,)=g|8 X][0, ).
We have the following criterion for unknottedness when n > 4.

TuroreM 5.2. Let f be a closed, locally flat embedding of S** X R' into
R™ n > 4. Iftherearenumbersa < b such thatf can be extended to an embedding
of (82 X R"Yu (B"" X (a, b)) into R, then there is a homeomorphism h
of R” onto itself such that hf is the identity on 8" X R'.

Proof. Consider the induced embedding f of (8" X R')*into N. By the
hypothesis, f can be extended to an embedding F of (8" X R)*u (B"™ X ¢)
into R™ in such a way that the spheres

Sy = F(S"? X [c, »)*uB"™ X ¢)
and

S_=F(S" X (—w,c]*uB"™ X ¢)

are locally flat in R™ except possibly at the ideal point. Therefore [2], since
n > 4, S, and S_ are locally flat, and [1] bound n-cells Q, and Q_ in R"
such that Q. nQ_ = {} uF(B"" X ¢). Hence F can be extended to an
embedding (B*™ X R")* into R" by radial projection. An application of
Corollary 1.4 completes the proof.

In order to pinpoint the unknotting problem for $"* X R'in R", n > 4,
we consider the following conjectures.

a(n). Let M be an (n — 1)-manifold in the interior of the n-manifold N,
and let p be an interior point of M. If p has a neighborhood U in M such
that U — {p} is locally flat in N, then M is locally flat at p.

r(n). Letfbe a closed, locally flat embedding of 8> X R'into R*. Then
f can be extended to a closed embedding of B"™ X R'into R".

TuroreM 5.3. o(n) < 7(n) for n > 4.

Proof. TFirst suppose that ¢(n) is true, and let f be a closed, locally flat
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embedding of S"* X R'into R". Consider D = [f(8"2 X [0, »))]*. D is
an (n — 1)-cell in R™ which is locally flat except possibly at the ideal point.
By a(n), D is locally flat, and hence we can construct an extension of f over
(872X R") u (B X [0, »)), making use of a collar for D on the side “away”’

from (8" % X (— o, 0]). Then f can be extended over all of B"* X R' by
Theorem 5.2.

Now suppose that 7(n) is true, and let D be an (n — 1)-cell in R™ which is
locally flat except possibly at «, an interior point of D. By a collaring
argument [1], we can find a closed embedding G of 8" X R' X [0, «) into
R" such that

G(‘Sm_z X 0 X [07 °°)) =D — {w},
and

G(8"? X R' X 0) is locally flat in R".

Let f be @ restricted to 8" X R'. By 7(n), f can be extended to a closed
embedding F of B*" X R' into R". Since the complementary domain of
f(8"* X R') which intersects D is not homeomorphic to R", it follows that
F(B"™" X R') and G(S"* X R' X [0, ®)) intersect in f(S** X R'). Since
B™™ X R'and 8" X R' X [0, « ) intersect in 8** X R' and fill up R" in a
natural way, we have constructed a homeomorphism H = Fu G of R” onto
itself which takes 8" > X 0 X [0, ) onto D — {»}. Thus A takes a standard
cell onto D, and the proof is complete.

Remark. Botho(3) and 7(3) are false. See Proposition 5.1.
Added in Proof. R. C.XKirby has proved ¢ (n) for n > 4.
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