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1. Introduction

Throughout this paper all groups are abelian. The notion of a cotorsion
group, introduced by Harrison in [8], plays an important role. Some basic
properties of cotorsion groups are listed in [4]. A torsion free group is called
completely decomposable if it is isomorphic to a direct sum of torsion free
groups of rank one. If G is a torsion free group and H is a subgroup of G, we
use the symbol H. to denote the minimal pure subgroup of G containing H.
The symbols and + will be used for direct sums; whereas the subgroup of
a group G generated by subsets S and T will be denoted by IS, TI.

Recently, the author gave a negative answer [7] to a question posed by
E. Weinberg [9] which asked: Does there exist a torsion free abelian group of
cardinality greater than the continuum with the property that each pure sub-
group is indecomposable? In this paper we use the techniques of [7] to gen-
eralize our result concerning Weinberg’s question. In fact, if G is a torsion
free group we show that there is a completely decomposable pure subgroup
C of G such that GJ _< C . Our investigation of completely decomposa-
ble pure subgroups of torsion free groups requires the study of a distinguished
class of independent subsets of a torsion free group, An independent subset
S of a torsion free group G will be called quasi-pure independent if ,s {x},
is a pure subgroup of G and {x}, Ix} whenever {x}, is cyclic and x e S. Note
that {S}, ,8 {x}, if S is a quasi-pure independent. We remark that
quasi-pure independence is equivalent to pure independence if G is Rrfree.
In Section 2 we establish a number of remarkable properties of quasi-pure
independent subsets.

2. Quasi-pure independence
We observe that, although nonvoid pure independent subsets may not exist,

nonzero torsion free groups always have quasi-pure independent subsets. The
proof of the following proposition can be accomplished by standard tech-
niques.

PROPOSITION 2.1. Any quasi-pure independent subset S of a torsion free
group G is contained in a maximal quasi-pure independent subset of G.
One might hope that the cardinality of a maximal quasi-pure independent

subset of a torsion free group is an invariant of the group, in [6] it was shown
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that a torsion free group may contain a finite maximal pure independent sub-
set as well as a maximal pure independent subset of infinite cardinality. Un-
fortunately, the following example demonstrates that the same situation occurs
for quasi-pure independence. Let J II I where p ranges over the primes
and I denotes the p-adic group. We show that J contains maximal quasi-pure
independent subsets S and T such that S 1 and T >- 0. For each
prime p let x be an element of J whose pth coordinate is a nonzero element of
I and whose other coordinates are all zero. The set [xl p is a prime] is
easily seen to be quasi-pure independent. Therefore, let T be a maximal
quasi-pure independent subset of J containing [xl p is a prime]. Since the
additive group of integers Z can be embedded in J as a pure subgroup such
that J/Z is divisible, it follows that J contains a maximal quasi-pure inde-
pendent subset S of cardinality one. Although this example shows that the
cardinality of a maximal quasi-pure independent subset is not an iavariant of
a torsion free group, we are able to establish a slightly weaker result. The
proof of this next theorem is essentially the same as Chase’s proof of Theorem
3.1 in [2]. For notational convenience we use the symbols D(A) and tA to
denote the minimal divisible group containing the group A and the torsion
part of A, respectively.

TtIEOREM 2.2. Let G be a torsion free group and suppose that S and T are

infinite maximal quasi-pure independent subsets of G. Then S T ].

Proof. It suffices to show that if X and Y are quasi-pure independent sub-
sets of G where XI < Y and R0 < Y then there is a quasi-pure inde-
pendent subsetX containing X such that X Y I. Set H , {x}.,
K ,r {y}., and/ Y I. Then H and K are pure subgroups of G,
[HI < IKI, andlgl =. Let=G/gand/= {H,K}/K. Therefore
/

_ , is torsion free, and D() D(/) + M where M is torsion free
and divisible. D(G)/H may be identified with (D(t)/IZl) -5 M, in which
case

t(G/I) t(D(G)/I:7l) t(D(l:l)/17I).

t(D(I)/I) has cardinality less than f, since is uncountable and since
I//I _< H < . Obsem/ng that // G/{H, K}, we have shown that
t(G/{H, K} has cardinality less than .

Since is infmite, we may construct a free group F of rank less than/ and
an epimorphism

f (G/{H, g} ).

Then there is a homomorphism F --, G such that # is the composition of
with the canonical map of G onto G/{H, K}. Since i{H, (F)} < , f is
infinite and, K is completely decomposable, we may write K A -5 B where
A and B are completely decomposable, K n{H,q(F)} c_ A, and rank
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(B) Bi . Observing that

HtB (HtK) tB _AaB O,

set C H -t- B. Then clearly rnk (C) ad C is completely decompos-
able. Since B is completely decomposable of crdinaliy/, B contains
quasi-pure independent subset V of crdinality . Thus, X u V will be a
quasi-pure independent subset of G if C H -t- B is pure subgroup of G.
Suppose nx C where x e (7 nd n is non,ero integer. Then nx h - b
where h H nd b e B. Therefore, x mps onto n element of finite order
in G/{H, K}. Hence, there is an element y e F such that x (y) e {H, K}.
But then

x-(y) hd-ad-b.

where h e H, a e A, and b e B. We then have that

h d- b nx n y d- nh. d- na d- nb
or that

h n(y) nh na nb b.

The left side of this equation is easily seen to be in A and the right side in B.
Thus both sides are zero and we have that b nb. Therefore

h nx nb e nG t H nil.

It follows that nx h - b enC, in which case x e C. Hence, C is a pure sub-
group of G and X u V is a quasi-pure independent subset of G. Setting
X X u V, we have that X is a quasi-pure independent subset of G such
thatlX! IYI.
CORO..XRY 2.3. (corollary to proof). If a torsion free group G contains

an uncountable quasi-pure independent subset, then any two maximal quasi-pure
independent subsets o] G have the same cardinality.

If a torsion free group G contains maximal quasi-pure independent subsets
S and T such that S < T I, then Corollary 2.3 implies that any quasi-pure
independent subset X of G is at most countable. In particular, T -< b0.
Beer proved in [1] that a homogeneous torsion free group is separable if

and only if every pure subgroup of finite rank is a direct summand. (For the
definitions of a homogeneous group and a separable group, see [3].) Thus, for
separable, homogeneous torsion free groups, we have the following corollary.

COROLLARY 2.4 If G is a separable, homogeneous torsion free group, then
the cardinality of a maximal quasi-pure independent subset of G is an invariant
of G.

Proof. Suppose S and T are maximal quasi-pure independen subsets o G.
If S n < 0, then, by Baer’s theorem [1], SI , {x}, is a direc
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summand of G, i.e., G S}, W M. Clearly, if M 0, we can choose y M
such that S u [y] is quasi-pure independent. Therefore, M 0 which implies
that SI rank (G)= n. Since rank (G)--n < , it follows that
T < N0. By the same argument we have that T rank (G) S I.

If N0 _< S I, then N0

_
T since the rank of G cannot be finite. Hence,

applying Theorem 2.2, we again have that S T ].
We now establish in the following theorem a remarkable relationship be-

tween the cardinality of a torsion free group and the cardinality of any maxi-
mal quasi-pure independent subset of the group.

THEOREM 2.5. If G is a non-zero torsion free group and if S is a maximal
quasi-pure independent subset of G, then

Proof. Let G Go D where Go is reduced and D is divisible. Since D
is torsion free divisible, it is elementary to show that the cardinality of any
maximal quasi-pure independent subset of D is rank (D). It is also clear
that S n D is a maximal quasi-pure independent subset of D whenever S is a
maximal quasi-pure independent subset oi G. Hence, it is enough to prove
the theorem when D 0, that .is, when G is reduced.

Let E be the cotorsion completion of G and let H be the closure of
S}. ,s {x}. in the n-adic topology on E. Since H must be pure, E/H

is torsion free and reduced. It follows that H is a direct summand of E since
Ext (E/H, H) O. Let E H -t- M. Since E is torsion free, E H -t- M,
and G is pure in E, then H n G M n G is a pure subgroup of G. Therefore,
if M n G 0 we can choose y e M n G such that S u [y] is a quasi-pure inde-
pendent subset of G. But this contradicts the maximality of S. Therefore,
M n G 0 and the natural projection v of E onto H is a monomorphism when
restricted to G. Hence, GI i(G) -<: H I. Since {S}. is dense in H
and since the n-adic topology on H is Hausdorff, we have that

IHI <_ I{S}, (]S]-t- 1)s.
Thus, ]G

_
IS] W 1)s.

COROLLARY 2.6. (corollary of proof). If S is a maximal quasi-pure inde-
pendent subset of a torsion free group G, then G is isomorphic to a subgroup of the
n-adic completion of ,s {x}. {S} ..
With the aid of Theorem 2.4, we can establish a stronger version of Theorem

2.2 for torsion free groups of cardinality greater than the continuum.

THEOREM 2.7. If G is a torsion free group of cardinality greater than the
continuum, then any two maximal quasi-pure independent subsets of G have the
same cardinality.

Proof. Theorem 2.5 implies that any two maximal quasi-pure independent
subsets of G are infmte. Hence, by Theorem 2.2, any two maximal quasi-pure
independent subsets of G have the same cardinality.
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The following theorem we shall need in Section 3.

THEOREM 2.8. If E is a reduced torsion free cotorsion group and if S is a
quasi-pure independent subset of E, then S is maximal (with respect to being
quasi-pure independent) if and only if El s x} ,) is divisible.

Proof. IfE (S x} .) is divisible, then S is clearly a maximal quasi-pure
independent subset of E. Hence, suppose S is a maximal quasi-pure inde-
pendent subset of E. Let H be the closure of ,s z}. in the n-adic topology
onE. Then.E= H - M. IfM 0, we may choose y e M such that
S u [y] is quasi-pure independent. Therefore, M 0 and E H which
implies that El (s x} ,) is divisible.

3. Decomposition of pure subgroups of torsion free groups
Immediate consequences of Theorem 2.2 and Theorem 2.5 are the following

theorems.

THEOREM 3.1. I A and B are completely decomposable pure subgroups of
infinite rank of a homogeneous torsion free group G, then there are isomorphic
completely decomposable pure subgroups H and K of G such that A and B are
direct summands of H and K, respectively.

THEOREM 3.2. If G is a torsion free group, then G contains a completely
decomposable pure subgroup C such that GI <_ C .
For a cardinal _> 2, we call a group G -indecomposable if in each direct.

decomposition of G the cardinal number of the set of non-trivial direct sum-
mands is less than . A group G will be called purely/-indecomposable if
every pure subgroup of G is #-indecomposable. For 2, the above defini
tions correspond, respectively, to the definitions of indecomposability and pure
indecomposability. L. Fuchs has established results concerning t-indecom-
posable primary groups [3] and, as mentioned in the introduction, the author
has given characterizations of purely indecomposable torsion free groups [7].
We conclude by generalizing a portion of the results in [7].
THEORV.M 3.3. If G is a torsion free purely #-indecomposable group, then

Proof. By Theorem 3.2 there is a completely decomposable pure subgroup
C of G such that GI _< C . By hypothesis rank (C) < #. Therefore
C < o.
THOR 3.4. There is a purely -indecomposable torsion free group G. of

cardinality greater than or equal to t if and only if there is a cardinal number a

such that < <_ a.
Proof. The necessity follows from Theorem 3.3. Therefore, assume that

/ and a are cardinals such that a < # <_ as. If a < _< 2, set G I
where I denotes the p-adic group. Hence GI 2 >_ . If H is a pure
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subgroup of G such that H ,xH, then H contains a quasi-pure inde-
pendent subset S of G such that Si I I. We may also assume that
each x e S has zero p-height in G, i.e., s Ix} is p-pure in G. It follows that
’es {x} is a direct summand of a p-basic subgroup of G (For definition of a
p-basic subgroup, see [5]). It is well known that any p-basic subgroup of
has ranka. Hence, II ISi _< a < #. If > 2sthenamustbein-
finite. Let G be the cotorsion completion of the free group F
where AI a. ThenlGI a >_ . Suppose thatH Hisa
pure subgroup of G. Then H contains a quasi-pure independent subset S of
G such that S I I. By Proposition 2.1 there is a maximal quasi-pure
independent subset T which contains S. Theorem 2.8 implies that X [xx],
is also a maximal quasi-pure independent subset of G. Applying Theorem 2.2,
we havethatlI ISI-< ITI -< XI AI a < .
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