
HARMONIC FUNCTIONS ON THE UNIT DISC

Gv JOHNSON, JR.
1. Introduction

This report continues a study begun in [3] of harmonic functions defined
on the unit disc in the plane. In part I it was proved that f is harmonic on
{r < 1} if and only if

(1.1) f(r,O) (0- t)g(t) dt
nO

where P(0 t) is the Poisson kernel and {g} is a sequence of continuous
functions satisfying lim (n g= [[)1/, o.

In this part we present three characterizations for functions which have a
terminating series representation and two results concerning the lack of
uniqueness of the representation.

In Section 2 two characterizations are obtained for those harmonic func-
tions which have a representation

(1.2) f(r,O)

where F denotes the unit circle and 0, "’, re measures on r. Attention
may be limited to those harmonic functions which are zero at the origin.
The n-th integral F of f is the unique harmonic function such that
f OnF/O0". Then (1.2) is equivalent to each of the following conditions.

2

(1.3) Jo [F(r,O)[dO B for 0 r < 1,

(1.4) F+ is bounded and limz F+(r,
iunction of bounded vriation.

Turning to a consideration of radial growth another criterion for (1.2)
is discussed in Section 3. These are the functions f(r, 0) 0((1 r)-)
uniformly with respect to 0 for some positive k. More rapid growth requires
n infinite representation. For unalytic functions the growth conditions
re somewhat more precise than for hrmonic functions in general.
The representation (1.2) should prove useful in the study of various

special classes of functions. For example, if un analytic function f(r, O)
O(exp (1 r)-) has no zeros, then log f(r, 0) has representution (1.2)
with N 3. Such is the case for the elliptic modular function.
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Section 4 deals with a special case in which a unique extremal solution for
the sequence {0, N} in (1.2) is possible. To obtain some insight into
the character of the multiplicity of sequences lg} in (1.1) and to illustrate
the use of the Hardy H spaces in this theory we assume in Section 5 that
{g} is a sequence in H. A certain quotient space of the sequence space is
linearly and topologically isomorphic to the space ffa of analytic functions on
{r < 1} provided with the subuniform convergence topology.

2. Terminating series
Our problem is to characterize those harmonic functions which have

representation
h 2r

(2.1) f(r,O)

where as is a function of bounded variation on [0, 2r].
To relate this to a familiar result suppose first that N 0; that is, f is a

Poisson-Stieltjes integral.

(2.2) f(r,e) Jo P(O- t) da(t).

The function a may be normalized so that

a(t) (1/2)[a(t -t- 0) -t- a(t 0)] for t(0, 1),

a(0) 0, and a(2) a(0 -{- 0) -{- a(2r 0). Then (see [11)
2r

(2.3) If(r,t) ldt <-_ B for0 <_- r < 1

(2.4) fo ](r,t) dta(O) for all0asr / 1.

Condition (2.3) is also sufficient in order that the harmonic function f be a
Poisson-Stieltjes integral.
example f(r, O) P2)(O).

converges to zero for all 0.
attention by Lohwater [5].

That (2.4) is not sufficient is illustrated by the
The integral

P(I)(O) fo P2)(t) dt

This property of PI) was brought to the author’s

With the use of integrals of f, (2.4) may be reformulated as a necessary
and sufficient condition for (2.2) and both conditions may be extended as
criteria for (2.1). Before embarking on the description of a notational
scheme for handling the extension let us look at the first integral of (2.2).
We suppose that f is zero at the origin which means a(2) a(0) 0.
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Taking the indefinite integral of (2.2) and integrating by parts

fo a(t)[P,(O- ) P,(--t)] dr.

The function

F(r,O) fo f(r,r) dr H- f" P(-t)a(t) dt- fo a(t) dt

fo P,(O--t)a(t)dt-- fo a(t) dt

" 1 a(r) dr dtP,(O-- t) a(t) ---1fo2 2r
P,(O- t)B(t) dt

is harmonic and is zero at the origin. Moreover f OF/O0 so that. F is
the first integral of f.

In view of the representation of F as the Poisson integral of/ we may re-
place (2.4) with

(2.5) F is bounded and Ft(r, 0) -- 2r #(0) for all 0 as r /" 1.

Conversely, using Fatou’s theorem (2.5) implies that F is the Poisson in-
tegral of/ and (2.2) is a consequence.
We must consider the k-th ntegral F. of a function

where a, is normalized as in (2.2).

F,,(r,O) fo
and for k n

F.,.(r, O) f="

P(}) (0 t) da,(t)

Fork 0,1,...,n- lthisis

P("-*)(O-- t) da,(t)

P,(O t) da,,(t) fo da.(t)

P.(O- t) dO.,.(t)
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where fin.,(t) an(t) an(2r)t/2r. Also for k n -t- 1, n -t- 2,...

Fn,(r, O) f P,(O t),(t) dt

where

,1

for/ n q- 2, n q- 3,....
From these expressions for Fn.k we may conclude

2r

(2.6) Jo IFn,(r,t) ldt
_
B for0 =< r < 1

and

(2.7)

THEOREM 1.
representation

ifn<k

F,. is bounded and F,,,(r, 0) -+ 2r f.,(0) for all 0 as r/* 1 if n -t- 1 =< k.

If f is harmonic on the unit disc then the possibility of the

N

(2.1) f(r,O) f pn)(o_ t)da,(t)
==0

is equivalent to the validity of either of the conditions
2r

(2.8) Jo [F(r,t){dt U for0 r < 1

(2.9) F+ is bounded and F+(r, O) 2w 5(O) for all O as r 1 where
is a function of bounded varii.

F and F+, are integrals of f f(O).

Proof. We may suppose that f(0) 0. If (2.1) holds we write it in
the form f f0 + + f and using the notation previously established

F F0, + + F. and Fn+, F0.+ + + F.+.
Then (2.8) and (2.9) are consequences of (2.6) and (2.7).

Conversdy (2.8) implies
2

0
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and (2.9) implies

Fv+l(r, O) Jo Pr(e t)#(t) dt

p)Fv(r, O) (0 t)#(t) dt

fo " P(o t)d(t)

and the proof is completed with N liffereatiations as above.
Property (2.7) will find application ia a uniqueness discussion for an

extremal representation in Section 4. Another criterion for a terminating
series seems appropriate for consideration now. It follows from (2.4) in
[3] that any harmonic function f with a representation (2.1) satisfies a growth
condition f(r, O) 0((1 r)--) uniformly with respect to 0 as r / 1.
That this growth rate is also sufficient for a terminating series representation
is the subject of the next section.

3. Growth conditions

Iff(r, 0) 0((1 r)-N+l), N > 1, and N is even thenf has a representa-
tion (2.1). For an analytic function the result is valid for any N > 1 and
if f(r, 0) 0(log (1 r)-1) then the representation is possible with N 1.
Some remarks on the sharpness of the latter statement are made at the end
of the section.

It will be convenient to consider u real-valued harmonic function u which
is zero at the origin. Let v denote its coniugate harmonic function also
zero at the origin and set f u - iv. The n-th integrals Fn, Un, V satisfy
F, U, + iV and F is analytic.
From the Cauchy-Riemann formula rOu/Or Ov/O0 we obtain- Or(p, 0)u(r, 0) p

00
dp

and

Then

(3.1) U(r, 0) fo
is the first integrul of u.

p-[v(p, 0) v(p, 0)] dp.

/o /ou(r, t) dt -}- p-v(p, O) dp

Since -u is the conjugate of v

(3.2) VI(p, 0) p-lu(r, 0) dp

p-v(p, 0) dp

is the first integral of v.
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PROPOSITION i.

(3.3)

(3.5)

If v is the harmonic conjugate of u then

u(r, O) O( 1 r)-’) implies Vl(r, ) O( 1 r)-’+l) if n > 1.

u(r, 0) 0((1 r)-1) implies V(r, 0) 0(log (1 r)-)

u(r, ) 0(log 1 r)-l) implies V(r, ) O(1).

All growth conditions are uniform with respect to .
Proof. Ifn >__ 1, u(r,O) 0((1 r)-),andu(0) 0, then there is a

constant B such that lu(r,0) <= Br(1 r)-’forO =< r < 1. Using (3.2)

Vl(r, 0) < fo F lu(, O) d <- B fo (1 p)-dp

from which follow (3.3) and (3.4). A similar argument gives (3.5)

It may be remarked that each result stated in the proposition is the best
possible. This assertion is verified by consideration of the example f(z)
z/(1 z)". Forn > 1

and for n 1

Fl(z) n-- li I’(1 -zl)"--1]
Fl(z) ilog(1 -z).

THEOREM 2. Let u be harmonic on {[ z < 1}. If N > 1, N is even and
u(r, ) O( (1 r)-v+l), then u has a representation

N fo2r(3.6) u(r, O) _, P(")(O t) dam(t).
nO

Proof. Suppose u is zero at the origin and let us consider the case N > 2.
According to (3.3) V(r, 0) 0((1 r)-+:). Applied to the function
V, (3.3) yields Us(r, 0) O( 1 r)-+). Inductively one finds U_(r, 0)

0((1 r)-l). Now using (3.4) and (3.5) one obtains successively
V_(r,O) 0(log(1 r)-1’) and U(r,O) 0(1). ForN 2onlythe
last two steps are required. The proof is completed by an application of
Theorem 1.

If u grows as an even power of (1 r)-1, u(r, O) 0((1 r)-N+:),
then u(r, 0) 0((1 r)-N+I) and the above representation applies. If
u(r, O) O(log (1 r)-1) then the representation is possible with N 2.
When both functions u and v satisfy the growth condition, i.e. when the
analytic function f= u- iv satisfies the growth condition, the result for
these latter cases may be sharpened.
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THEOREM 3. Let f be analytic on {[ z < 1}.
0((1 r)-N+l), then f has a representation

If N > 1 and f(r, O)

(3.1) f(r, O) P(") (O t)

If f(r, 0) O(log 1 r)-l), then the representation is possible with N 1.

Proof. Reasoning as in the proof of Theorem 2 with u and v simultaneously
we find that FN is bounded. The result follows from Theorem 1.

There are a number of questions lurking behind the results of this section"
Only the question of sharpness of the second part of Theorem 4 will be men-
tioned. A theorem of MacLane [6] proves that this result is the best possible.
He proves that for any function (r), 0 < (r) / as r / 1, there is a
function f u - iv analytic on{I z < 1} such that f(r, O) O((r)) uni-
formly with respect to ,

lim supr/l u(r, 0) and lim infr/l u(r, 0)

for each 0 e [0, 2). The function if is not a Poisson-Stieltjes integral. For
if it were, it would have radial limits for almost all 0 by Fatou’s theorem.
A MacLane function having growth 0(log (1 r)-1) is an example for

which Theorem 3 cannot be improved. With regard to boundary limit
questions, it is interesting to notice that even in the case N 1 a function
with the representation (2.1) may have no radial limits.
The function exp [1/(1 z)] is an example of an analytic function which

has no terminating series representation. We now turn to the extremal
problem mentioned in the introduction.

4. An extremal representation
The object of discussion in this section is a harmonic function f which has a

representation

(4.1) f(r,O) P")(O t)

where 0, are Radon measures on r {I z 11. There seems to be
no useful extremal representation for all such f. However, if there is an
extremal of the type to be described below, it is unique and takes a rather
special form.

Let be the space of Radon measures on 1 and denote by (0, )
an arbitrary element of the (N + 1)-fold direct product
A linear mapping T of this space into the space of harmonic functions is
defined by (4.1). For fixed N and certain harmonic functions $, the set
G { f T} will have an extremal which minimizes ll. An element

e G is extremal in this sense if and only if is singular with respect to
Lebesque measure. The measure is the same for all extremal



HARMONIC FUNCTIONS ON THE UNIT DISC II 393

Among these extremal elements it may be possible to minimize
and again

_
is singular and uniquely determined. One thus obtains a

decreasing sequence of extremal classes. If the process continues to include a
minimal !l t], then the only arbitrary term remaining in the extremal ele-
ments # is the measure 0. But then #0 is the unique measure appearing in
the Poisson-Stieltjes representation of a fixed harmonic function.
Roughly speaking, if there is a e G in which the mass of its terms has been

shifted to the left as far as possible, then there is no more than one and, ..., are singular measures. The latter property for insures that it is
the desired extremal element of G.
In proving these assertions we note first that the norm of a nonsingular

measure can always be reduced by an integration by parts to the left. For
suppose n >__ 1 and d, f dt d where f f dt is the absolutely continuous
part of #, and , is the singular part. Then
It is possible to choose a periodic function g e C

f de. Then

P’)(O- t)d,,.(t) (O- t)[f(t) g(t)] dt

+ +

+

mentioned above, if it exists, is singular.
Thus the extremal N

PROPOSITION 2. Let inf,,o I! b. Suppose there is a constant B and
a sequence } c G such that I[ [! <= B, n O, 1,... N 1, k 1, 2, ...,
and II -- b. Then there exists G such that I[ I! b.

Proof. The set { e i)rg - B} is compact in the w*-topology. Choos-
ing asubsequence if necessary we may suppose thatz --. z e in the w*-topol-
ogy for n 0, N. If z (z0, "", z) it follows that f Tz and z e G.
Since the norm is lower semicontinuous on 9rg relative to the w*-topology,

!! <- lim II b and consequently ]] b. This completes the
proof.

That zN singular implies [[ z is minimal and that there is a unique singular
is a consequence of

THEOREM 4. If Tz 0, then is absolutely continuous.

Proof. Using the notation of Section 2 and taking the (N - 1)-st integral,
0 F0.+l -t- -t- FN.+I. Letting r / 1 and applying (2.7),
0 f0.+ - W .+1. Recalling that ,. is absolutely continuous for
n - 2 _-< k, we see that fN.+l is absolutely continuous.
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Continuing to use the formulation in Section 2 let aN be the normalized
function of bounded variation associated with the measure ,N. Then

SN.N+I(t) tN.(t) tZ.N(r) dr

1

from which the absolute continuity of aN is apparent. This is the assertion
of the theorem.
To verify the first statement preceding the theorem suppose that , e G

and #N is singular. Then T( ) 0 and N N is absolutely continuous.
Hence t* is the singular part of N and consequently tin <-- N II. As
for the second assertion, if t* and N are both singular then ,N N is both
singular and. absolutely continuous which implies ,N N 0.
The remaining statements in the introduction to this section are immediate

consequences of what we have proved.
If t* (it0, it1, is an infinite sequence in 9g satisfying

lira (.! 0

and the measures 1, 2, are singular then it is not possible to reduce the
mass of any term in favor of lower order terms in the representation

](r,O) _, Pn)(O- t)dla,(t).

It should be possible to show that t is the only sequence with singular terms
which yields the function f but a proof has eluded the author.

5. An isomorphic representation space for the analytic functions

The results of Section 4 have indicated to some extent the character of the
multiplicity of the representation in special cases. The object of this section
is to provide a general setting in which one may consider the problem for all
cases.
One of the elegant theories related to the Poisson integral concerns the

Hardy H speces. Denoting fr(O) f(r, 0), H is the space of analytic
functions f for which the L norms I1 fr ]] are uniformly bounded for 0 -<_ r <: 1.
If 1 <- p <_- , f is the Poisson integral of a boundary function ] e LP(F).
In the case p 1 this is an important theorem of F. and M. liesz. (See
[2].) With the norm IIf lim/ IIf I1 ] ll, uP is a nanach space
isomorphic to a closed subspace of LP(I’) which is also denoted Hp. The
subspace is characterized by the condition, f)f(O)e dO O, n 1, 2, ....
The space ffa of all analytic functions on {i z 1} with the topology of

subuniform convergence (uniform convergence on compact subsets) is a
Frechet space; that is, a metrizable complete locally convex space. An iso-
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morphism will be established with a certain space of sequences in Hv considered
as the space of boundary functions ] described above.

Let v denote the linear subspace of the countable complete direct product
H consisting of sequences g (go, gl, "") satisfying

(5.1) lim (n! g I1) 0.

We define the translation invariant metric

(5.2) g h SUpn__>0 (n! gn hn lip) 1/(n+1)

on 9. Providing with the metric topology we have

PROPOSITION 3. v is a Frechet space.

Proof. The continuity of the mapping (g, h) -- g h of 9 X into v
is an immediate consequence of the metric properties. We must prove also
that the mapping (X, g) -- Xg of C X into 9, where C denotes the complex
plane, is .continuous.

gOThe inequality [g <= e implies n![[ g, g0 [Iv <__ en+l for all n. From
(5.1) we obtain

<= vn+l forn >= n(v)

where a is a positive constant. Making use of

one can show that

for IX X01 sufficiently small and for n >= 0. Thus the image of a neigh-
borhood {(X, g) IX X0] -<_ v, g gl -<- c} is contained in

Therefore v is a linear topological space. That it is locally convex fol-
lows from the convexity of {g gl <= c} for each > 0. It remains to be
proved that 9v is complete. It is sufficient to prove that oov is sequentially
complete relative to the metric. This follows from a standard type of argu-
ment using (5.1) and (5.2).

Consider the linear mapping f Tg defined by

1 f’ pn)(e t)g.(t) dt(5.3) f(r, 8)
0

of 9vontoya. T is continuous. For ifp < 1 anda > 0ischosen, as in
(2.5) of [31, such that P(n)(8 t) <--_ n!a on {r --<_ p}, then

If(r, 8) < n! a gn I[v < (a g I) n+’ a g
n=o n---o 1 a Igl
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on {r <- p} for gl < 1/a. That is, the image of {geg:lgl

_
e/a} is

contained in the neighborhood {f e if(r, O) <= for r
The null space T-0 is a closed linear subspace of 9 and the quotient space

c 9/T-O is a Frechet space. If Q denotes the quotient mapping of
9 onto 3C, then hi inf{I g I: h Qg} defines an invariant metric on

which determines its topology.
There is a continuous isomorphism U of C onto such that T U o Q.

By the theorem on inverse maps U is a toplogical isomorphism. (See [4,
p. 98]) The author is indebted to M. G. Arsove for suggesting the applica-
bility of this theorem. We huve therefore established

THEOREM 6. The spaces 3C’ and ff are linearly and topologically isomorphic.
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