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Introduction

Let ( be a full subcategory of . A morphism e X -. X* is said to be a

reflection map which reflects X into the category iff X* e ( and every mor-
phism f" X -+ A with A e ( can be factored as f ge for a unique g X* -- A.The full subcategory a is reflective if every object X e admits a reflec-
tion map e" X -+ X*. Dually ( is coreflective if each X e ( admits a

coreflection map e X* ---> X such that X* e a and each morphism f" A --. X
with A e a factors as f eg for a unique g.
In this paper we obtain necessary and sufficient conditions for a full sub-

category to be reflective. Our methods also yield some information about the
reflection maps and the full reflective subcategory generated by certain types
of subcategories. Applying the dual of these results to the category of pointed
topological spaces (i.e. topological spaces with base points), we show that the
simply connected spaces in the sense of Hu [4] generate an interesting core
flective subcategory. The coreflection maps, p (X*, x*) --> (X, x) can be
regarded as generalized universal coverings since p is the usual universal cover-
ing if such a covering exists. In general X* is simply connected in the sense of
Chevalley [2] and p is a fiber map with pathwise totally disconnected fibers.
(An example shows that the fibers are not always discrete.) X* appears to be
related to the universal procovering of X obtained by Lubkin [11] for certain
spaces. Our coreflection enables us to .extend some of the Lubkin and Cheval-
ley theory of covering spaces to the category of all topological spaces.
As is the case with many conditions for reflectivity our conditions are closely

related to the Freyd adjoint functor theorem [3 p. 84] even though a knowl-
edge of that Cheorem is not a prerequisite for reading this paper. In effect, we
show that for full reflective subcategories, the "solution set" hypothesis of the
adjoint functor theorem can always be satisfied in a convenient, canonical way
which leads to simplifications; these simplifications are illustrated by the well
known type of theorem that for a well-behaved category , a full subcategory
( ( is reflective if a is closed under the formation of products and subobjects
(e.g. see [3, p. 87]). Isbell in [5] and [6] demonstrates that the notion of "sub-
object" is often best defined in the context of a bicategory structure (defined
below). In [5, p. 1276], it is shown that if is well-behaved and has a suitable
bicategory structure, then a is reflective whenever ( is closed under the
formation of products and subobjects in the bicategory sense. These condi-

Received July 30, 1966.

353



354 . F. KENNISON

tions, moreover, imply that a is epi-refiective by which we mean a full reflec-
tive subcategory all of whose associated reflection maps are ep’..lmorphisms.
If a is co-well-powered (which is defined below and in [3]), then Isbell’s re-
sult can generally be used to obtain necessary and sufficient conditions for
a a to be epi-reflective. By constructing a suitable bicategory structure,
we show that this result can in effect be extended to obtain necessary and suf-
ficient conditions for reflectivity in general. This bicategory structure is also
used to investigate the reflection maps and the smallest reflective subcategory
containing a cate2ory.
We must mention our indebtedness to 1Viaranda’s paper [13] from which we

have borrowed an important definition. We are also indebted to the referee
for suggesting much needed improvements in the organization of this paper.

1. Right and left bicategory structures
For technical reasons we need to investigate a generalization of Isbell’s no-

tion of bicategory. First we shall establish the following notation.
Notation. In general, our terminology is based on Freyd [3]. We shall

also use the following special conventions:

(1) The class of all epimorphisms of shall be denoted by Ee or simply
E if there is no danger of confusion. Similarly Me or M shall denote the class
of monomorphisms of .

(2) The statement "X is an obiect of " is sometimes denoted by
e. Similarly "6 e’ indicates that 6 is a full subcategory of e.

The following definition is equivalent to Isbell’s.

DEFINITION Let be a category. Let I and P be classes of morphisms
on . Then (I, P) is a bicategory structure on provided that:
B0. Every equivalence is in I n P.
B1. I and P are closed under the composition of morphisms.
B. Every morphism f can be factored as f fl f0 with f e I and f0 e P.

loreover this factorization is unique to within an equivalence in the sense
that if f gh and g e I and h e P then there exists an equivalence e for which
ere h and ge f
Bs. PE.
B4. IM.
We shall consider the following generalization"

DEFINITION. (I, P) is a right bicategory structure on e if it satisfies B0,
B, B and Bs.

Dually, (I, P) is a left bicategory structure on e if it satisfies B0, B1, B, and
84.

DEFINITION. Let be a category and let I and P be classes of morphisms
of e. LetX e . ThenA is anI-subobjectofXifInHom(A,X) t.
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The category is I-well-powered if each X e has a representative set of I-
subobjects (such that every I-subobject of X is equivalent to a member of
the representative set).
The terms P-quotient and P-co-well-powered are defined dually.
Note that well-powered as defined in [3] means the same thing as M-well-

powered and, dually, co-well-powered is synonomous with E-co-well-powered.
DEFINITION. A bicategory structure (I, P) on is well-founded if is I-

well-powered and P-co-well-powered.

Notation. (1) In the context of a right (or left) bicategory structure
(I, P) on , the notation "f fifo" shall always be understood to indicate
the factorization mentioned in B2 (that is, for which fl e I and f0 e P).

(2) Let {f X --* YI be an indexed set of morphisms of a category
which has products. Then II {f} denotes the morphism f: IX {X} --.
II {Y} for which/5 f f p for all i (where p and i5 are projection maps).

If e has coproducts then If} is defined dually.

The following proposition shows that many of the properties of bicategory
structures readily generalize to right bicategory structures.

PROPOSITION 1.1. Let (I, P) be a right bicategory structure on e. Then:
(1) f I iff fo is an equivalence and f P iff f is an equivalence. Thus
n P is precisely the class of all equivalences.
(2) fe e l implies e e I.
(3) gh e P and h e E implies g e P.
(4) I is uniquely determined by P. In fact

I {gig =fe and eeP imply e is an equivalence}.

(5) P is uniquely determined by I. In fact
P {flf=gh, heE and gel imply g is an equivalence}.

(6) Every commutative diagram of the form indicated by the figure can be
filled in at r with commutativity preserved, provided f P and g I.

feP

(7) fie P for all i implies {f} e P (if e has coproducts).
(8) fie I for all i implies IX {f} e I (if e has coproducts).
(9) Let e, f, g and h form a pushout diagram with fe hg.

implies h e P.
Then e P
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Proof. (1) If fo is an equivalence then f0 e I and so f ff0 is in I as I is
composition closed. Conversely if f e I then f0 is equivalence in view of
and the factorizations f f f0 f" 1. Similarly f e P iff f is an equivalence.

(2) The factorization fe (fe)(fe)o eo implies (fe)o e0 is an equivalence.
Since e0 e E it readily follows that eo is also an equivalence. Thus e e I.

(3) Apply B2 to the factorization 1. (gh) g(go h)(g ). Thus there
exists an equivalence e for which e(gh) (go h)o and g(go h) e 1. We claim
(goh) eg 1 thus proving (go h) e is the inverse of g and so g is an equiva-
lence. This last equation follows since (go h) eg.(go h) go h and go h e E.

(4) and (5) are now obvious.
As for (6), observe that n(nof) (gm)mo. Let e be the equivalence

mentioned in B2. Choose r m eno
As for (7), let f /f} and let c and be the coprojections such that

fc f for all i. In view of (6) there exists r such that rf f c and
f r for each i. Let r be determined by r= r. Then f r and
so f r is an identity morphism. Similarly (rf) (f0 c) f0 c for all i, which im-
plies rf fo fo and so rf is also an identity as f0 e E. Thus f. is an equiva-
lence and f f foe P. An analogous proof works for (8).
As for (9), observe that, in view of (6), there exists r such that re ho g

and h r f. Since e, f, g and h form a pushout diagram, there exists s such
that sf r and sh ho. It is readily verified that s h- (since sh is an
identity as sh ho ho and h s is an identity as h sh h and h sf f). Thus
h is an equivalence and so h h h0 eP.

DEFINITION. A subcategory (B ( is replete if B e and X equivalent to
B imply X e .

DEFINITION. Let P be a class of morphisms of e. Then e is P-re-
flectiv if is replete, reflective and if every reflection map is in P.

THEOREM 1.2 (Freyd-Isbell). Let be a category with products. Let (I, P)
be a right bicategory structure on such that is P-co-well-powered.

Then a is P-reflective iff a is closed under the formation of products and
I-subobjects.

Proof. Assume that a is closed under the formation of products nd I-
subjects, a is then P-reflective in view of Isbell’s proof of Freyd’s theorem,
given on p. 1276 of [5] nd sketched here. Let X e a be rbitrry. Let
/f X --* A} be representative set of morphisms for which A e a nd
f P. Let f: X -- IX {A} be determined by pf f for 11 a. Fctor
f f f0. Then f0 e P is a reflection map reflecting X into a. Finally a is
replete since every equivalence is in I and a is closed under the formation of
I-subob]ects.

Conversely assume that a is P-reflective. It is well known that a is then
closed under the formation of products. As for I-subob]ects, assume A e a
and that f" X --* a is in I. Let e X -- X* reflect X into a. Then there
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exists g X* -- A such that f ge. Since f I it follows that e e I by (2)
of proposition 1.1. But e e. P as a is P-reflective. Thus e is an equivalence
and X e a as a is replete.

COROLLARY. Let be a category with products and let (I, P) be a right bi-
category structure on such that is P-co-well-powered. Let ( be a full subcate-
gory which is closed under the formation of products. Let 5 be the full subcate-
gory of all I-subobjects of members of a. Then is the smallest P-reflective
subcategory containing (.

Proof. Since I is composition closed, is closed under the formation of I-
subobjects. Moreover, 5 is also closed under the formation of products in
view of (8) of Proposition 1.1.

PROPOSITION 1.3. Let be a category with pushouts and coproducts. Let P
be a class of epimorphisms of for which is P-co-well-powered. Then there is a
unique I for which (I, P) is a right bicategory structure on if the following con-
ditions are satisfied:

(1) P contains all equivalences.
(2) P is composition closed.
(3) e e P for all i implies {e} P.
(4) If e, f, g and h form a pushout diagram with fe hg and if e e P then

heP.

Proof. The necessity of (1)-(4) follows from the definition and from
Proposition 1.1. The uniqueness of I follows from (4) of proposition 1.1.
As for the existence of I, assume that (1)-(4) are satisfied. Define

I {gig =fe and eeP imply e is anequivalenco}.

We first claim that I is composition closed. To this end assume that g e I,
h e I and that hg fe with e e P. It suffices to show that e is an equivalence.
Construct morphisms m and n so that e, g, m and n form a pushout di’agram
with me ng. Since fe hg there exists a unique morphism r for which
rm fundrn h. ButnePby (4). Thus n is an equivalence as h e I.
This implies g n-me and so e is an equivalence as g e I.

It is readily shown that all equivalences are in I since P

_
E. Thus (I, P)

satisfies B0, B and B. It remains to show that B. is also satisfied. To this
end let f X: -, Y be a given morphism. Let e} be a representative subset of
the class of all morphisms in P, with domain X, which are fight factors of f.
(In other words, each e is such a fight factor which means there exists a mor-
phism g for which g e f. Moreover if e P is any other right factor of f
then e is equivalent to at least one e in the sense that there is an equivalence
h for which e he.) The existence of such a representative set, e}, follows
from the hypothesis that is P-co-well-powered.

Let e {e/. Thus there exist coproiections ci and 5 for which
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ec e. By (3), e e P. Let g be the morphism determined by the equa-
tions gS g and let d be determined by dc 1.

Let s and be morphisms such that e, d, s and form a pushout diagram with
td se. Since fd ge (as fdc gec for all i) there exists a morphism r
such that f rt and g rs.
We claim that f rt is the desired factorization of f. First note that e P

by (4). To show that r e I, assume r uv with v e P. Then f uvt and
so vt e P is a right factor of f. Hence without loss of generality we may as
well assume vt e and hence u g for some i. Then sS vt sS e t.
Since e E we conclude that sS v 1, a suitable identity morphism. Thus v
is an equivalence as v e E. We have proven that r e I.

Finally we claim that such factorizations are unique to within an equiva-
lence. Assumef ffo ghwithf,g eIandf0,h eP. Obtainsandt
so that f0, h, s and form a pushout diagram with sfo th. Since f fo gh
there exists r such that rs f and rt g. By (4) we see that s, e P and
by definition of I we see that s and are equivalences. It follows that e t-s
is the desired equivalence for which efo h and ge f.

2. Conditions equivalent to reflectivity
In this section we obtain a sort of two-stage converse to the Freyd-Isbell

theorem. That is given a well-behaved category we prove that ( is
reflective if there exists (B with ( (B

_
such that ( is reflective in (R and

d5 is reflective in by virtue of the Freyd-Isbell theorem. This result is stated
in the form oi a set of conditions on a which are necessary and sufficient for
reflectivity. For convenience we have only considered the case in which a is
replete. (The extension to the general case is trivial.) Our approach de-
pends on the following definition which is due to Maranda [13].

DEFINITION. Let ( be given. A morphism f" X -- Y is injective
with respect to ( if for all morphisms g X --, A with A e a there exists at
least one h Y --+ A for which hf g.

The class of all morphisms of which are injective with respect to ( is
denoted by Pe(() or simply P(a) if there is no danger of confusion.

Dually f" X --, Y is projective with respect to a if for all g A -- Y with
A e a there exists h A -- X such that fh g. The class of all morphisms of

which are projective with respect o ( is denoted by ]e(() or simply (a)

LEMMA 2.1. Let (Io, Po) be a well-founded bicategory structure on the com-
plete category . Let ( be a full subcategory closed under the formation of
products. Let qt be the full subcategory of all Io-subobjects of members of: (.

Let P (() E. It then follows that"
(1) P Io.
(2) If 5 is P-co-well-powered there exists a unique I such that (I, P) is a

right bicategory structure on .
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Proof. (1) Let f: X Y be a member of P. Then X e (, as f e Y (a)
and so there exists g" X --* A with g I0 and A! e a. Since ] is injective
with respect to a there exists h for which hf g. Thus f e I0 by (2) of
Proposition 1.1.
As for (2), observe that 6 is a reflective subcategory of e by the corollary

to Theorem 1.2. It follows that is complete and hence Proposition 1.3
can be applied to . A straightforward verification shows that P satisfies
(1)-(4) of Proposition 1.3.

THEOREM 2.2. Let be a complete category and let (Io, Po) be a well-founded
bicategory structure on . Let ( be a replete full subcategory of .

is then a reflective subcategory of iff the following three conditions are satis-
fied:

(1) ( is closed under the formation of products.
(2) 6 is P-co-well-powered (where 6 and P are defined as in the above

Lemma).
(3) ( is closed under the formation of (Io n I)-subobjects (where I is the class

of morphisms for which (I, P) is a right bicategory structure on B; the existence
o I is guaranteed by the above conditions and the above Lemma).

Proof. Assume that a is reflective. Then it is well known that (1) must
hold. We claim that a is P-reflective in . To prove this choose B e (B and
let e B -- A be the reflection map. It is clear that e e I,(a), hence it re-
mains to prove that e e E. Assume that fe ge where f, g A -- B’ and
where B’ e 5. By definition of 6 there exists h B’ -- A’ with A’ e a and
h e I0. Thus hfe hge. But e is a reflection map and A’ e ( hence hf hg.
This implies f g as h e I0 M. Thus e e E and so e e P showing that a
is P-reflective in 6.

It remains to prove (2) for then a is closed under the formation of/-sub-

obiects (by theorem 1.2) and (3) follows. Choose B e (B and let f" B --. B’
be in P. Let e" B --* A be the reflection map which reflects B into (. It
suffices to show that B’ is an I0-subobject of A for then every P-quotient of B
is an I0-subobiect of A and A has a representative set of I0-subobjects. Since
f e 9(() there is an h B --, A with hf e. Thus h E as e E. More-
over it can readily be shown that h e (a) using the facts that e e (A) and
f e Ea. Thus h e P I0 and so B’ is an I0-subobject of A.

Conversely assume (1), (2) and (3) hold. Then by (1) and the corollary
to the Freyd-Isbell theorem, ( is reflective in . It thus suffices to prove that
a is reflective in 5. By the Freyd-Isbell theorem it suffices to show that a
is closed under the formation of I-subobjects. To prove this let f" X --.A be
given with f I and A a. Then X (B (as I is a class of (B morphisms) and
so there exists g X --. A with g e Io and A e a. Consider h X -- A X A’
for which p h f and p h g. Then by (2) of Proposition 1.1, we see that
heI, aspheI, andheloasphelo. HencehelnloandXeaby(1)
and (3).
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Remark. The notion of a reflection can be thought of as a generalization
of Birkhoff’s notion of a "completion process," given in [1]. It is of interest
that Birkhoff showed that each completion process determines a closely re-
lated notion of "closed subsystem". Among other things closed subsystems
of complete systems are then complete.

If we translate [1] into category theory, the completions become examples of
reflections and the closed subsystems correspond to (Io I)-subobjects.

3. Generation of reflective subcategories
Given a , under what conditions does there exist a smallest replete, re-

flective .subcategory a* for which a a* ? The answer to this question
is not known. Even if is the category of uniform spaces and uniform maps,
it is an open question as to whether every a ( admits such an a*; see [8, p.
33]. In this section we shall obtain conditions on a and under which such
an (* can be constructed.

THEOREM 3.1. Le be complete and le (Io, Po) be a. well-founded bica$e-

gory sructure on . Le ( be replele and closed under the formation of
produc$s. Let 5

_
be the subcategory consisting of Io-subobjects of members

of a. Let P (a) nE.
Assume that 6t is P-co-well-powered. Let I be such that (I, P) is a right bi-

category structure on (see Lemma 2.1). Then (*, the full subcategory of all
I-subobjects of members of (, is the smallest replete reflective subcategory for which
( (*.

Proof. (

_
a* is clear and (* is reflective in by the corollary to Theo-

orem 1.2. Since 5 is reflective in , by the same corollary, it follows that a*
is reflective in .

Next, let us assume li)

_
is replete and reflective with ( ). To prove

a*
_

let X e be given. Then there exists g X --. A with g e I and
A e a. Let h" X --, D reflect X into ). It suffices to prove that h is an
equivalence.

Since A e a ) there exists d D --. A such that dh g. Let e D --* B
reflect D into . Then e e P0 by the corollary to Theorem 1.2. Moreover,
since A e a

_
( there exists f" B -- A such that fe d. Hence feh g.

Thus eh I by (2) of Proposition 1.1.
We claim that h e E. Assume rh sh where r, s’D --* Y and

Y )u (B. If Y ethenr s as h is a reflection map. If Y e(Bthere

existst" Y--A’witht eI0andA’ e a. Thustrh tsh. ButA’e(_
and h is a reflection map so tr ts. Hence r s as e I0

_
Me.

It is easily proven that eh e (a) as e and h are reflection maps and
a n (. Sincee eP0

_
Ee andh eE)(R)weseethaeh Eandso

eh P. But eh e I has been shown above, hence eh is an equivalence. It now
follows that h isan equivalence with h- (eh)-e. (The fact that
h(eh)-e 1 follows from h(eh)-eh h and h eE(R) .)
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The following characterizations of a* are used in our example concerning
simply connected spaces.

PROPOSITION 3.2. (We use the notation and hypothesis of the previous
theorem.) Let X 5 be given. Then the following statements are equivalent:

(1) X e

(2) f" X --* Y and f P imply f is an equivalence.
(3) f X -, Y and Y e d imply f I.

Proof. (1) =:,(2) Assumef X--, Yisin P and that X which
means there exists g X -, A for which g e I and A e a. Since f P

_
(a)

there exists h "Y -. A with hf g. This implies f e I by (2) of Proposition
1.1 and so f I n P implying $ is an equivalence.

(2) (3). Let f" X --, Y be given with Y e (. Factor f f f0, with
f e I and f0 e P. Then f0 is an equivalence by (2), so f e I.

(3) (1). Since X e 5 and since a is a P-reflective subcategory of
there exists e X --. A for which e e P and A e By (3) we see e e I and

(*so e is an equivalence and X e

Since our main example concerns coreflectivity, it is convenient to summarize
the dual of our results"

THEORE 3.3 (Dual of previous results). Let be a complete category with
a well-founded bicategory structure, (Io, Po). Let a be closed under the
formation of coproducts. Let 5 be the full subcategory of Po-quotients of members
of a. Let I (() n Ma. Let a* be the full subcategory consisting of all
X 5 such that f" Y -, X and f I imply f is an equivalence. Then:

(1) a is-coreflective in iff 5 is I-well-powered and a (*.
(2) If 5 is 1-well-powered then a* is the smallest replete coreflective subcate-

gory which contains a.

4. Simply connected spaces, an example
It is well known that certain reasonably well-behaved spaces have universal

simply connected covering spaces (e.g. see [4, p. 93 if.I). This implies that for
certain categories of spaces with base points, the simply connected objects
form a coreflective subcategory. In this section we shall apply Theorem 3.3
to the simply connected spaces. As a result we shall show that every pointed
topological space has a generalized universal simply connected covering space.
For pathological spaces, however, "simple connectedness" may have to be in-
terpreted in the sense of Chevalley, [2, p. 44], and fiber maps with totally path-
wise disconnected fibers will, when necessary, be used in place of genuine cover-
ing maps. Nonetheless, this generalized universal "covering" has the usual
universal factoring properties and coincides with the standard universal cover-
ing if such a covering exists.
To be formal, we shall let be the category of all pointed topological spaces.

a shaft be the full subcategory of all coproducts of simply connected and lo-
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cally pathwise connected members of e. (The term "simply connected" is
being used in the sense of Hu [4, p. 42].)

Let (I0, P0) be the bicategory structure, for which P0 is the class of onto
morphisms of and I0 is the class of into-homeomorphi’sms. Then (I0, P0)
is well-founded.
We shall let 6 be the full subcategory of all P0-quotients (i.e. images) of

members of a. It is easy to prove that (B is then the full subcategory of path-
wise connected spaces. As shown in the last example of [9], 6 is well-powered
and hence/-well-powered where I (R)(a) n M.
Thus (2) of Theorem 3.3 is applicable and there exists a smallest coreflective

subcategory a* for which a a*. We now seek topological descriptions of
I and a*. We first note that by the dual of Lemma 2.1 there exists P such that
(I, P) is a left bicategory structure on
We claim that every f e I is a fiber map with totally pathwise disconnected

fibers. To prove this let S be a simplex and let g S --. S X [0, 1] be con-
tinuous. Then g e P by the dual of (3) of Proposition 3.2 as S X [0, 1] e a*.
Hence any commutative diagram of the form indicated by the figure can be
filled in at. r with commutativity preserved (in view of (6) of Proposition 1.1,
which is self-dual).

S X [0,1]

/

This clearly implies that f is a fiber map (see [4, p. 63]). Moreover f has
totally pathwise disconnected fibers since f e M.
We do not know ii every fiber map with totally pathwise disconnected fibers

is in I, but every covering in the sense of Hu is in I (Theorem 16.2 on p. 89
of [41).
We note that a is contained in the coreflective subcategory of all locally

pathwise connected spaces (this subcategory is coreflective even if the base-
points are ignored, see Theorem A of [10]). It follows that every member of
a* is locally pathwise connected.
By Theorem 3.3, a space X is in a* iff X admits no non-trivial fiberings by

members of I. Thus if X e (* then X is simply connected in the sense of
Chevalley (i.e. X has no non-trivial coverings since every such covering is in
I. Observe that the Chevalley covering maps coincide with the Hu covering
maps as X is locally pathwise connected. Unlike [2], we do not require that all
spaces considered be T..).
We have shown that there exists a*, a class of spaces which are "simply-
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connected" in a sense between Chevalley and Hu. Each space X, with
basepoint, admits a coreflection map p X* -- X where X*, 6" and where p
is a fiber map with totally pathwise disconnected fibers.

Remarks. (1) Let ) be the largest full subcategory of 6 for which
I

_
ft() (i.e. D iff I 2({D} ). Then is easily shown to be I-co-

reflective in by the dual of the Freyd-Isbell theorem. (To show ) is closed
under P-quotients requires the use of (6) of Proposition 1.I.) Thus 6"

_
)

and so I

___
e(R)(a*).

It follows that the coreflection map p X* X coreflecting X into a* is a
’"universal/-map." For if f" Y -- X is in I then there exists g X* --* Y for
which p fg as f e I ts(6*) and X* e (t*. Moreover g , I by the dual
of (3) of Proposition 1.1.

(2) When dealing with pathwise connected spaces it is often permissible
to ignore the base point. In general the base point can be freely moved along
a path in view of the following results"

LEMMA 4.1. Let
f: (Y, y0) -- (X, x0)

be in I. Assume that h [0, 1] ---> X is continuous with h(O) xoand h(1) xl
Since f e I there exists a unique f [0, 1] -- Y such that f(o) yo and ff h.
Let yl f(1). Then

f (Y, yl) ---. (Z, x)
is also in I.

Proof. To show that f ( Y, y) -- (X, xl) is in t(a), let

g (A, a) -- (X, x)

be a morphism with (A, al) e 6. We may as well assume A
Let A [0, 1] be the space obtained from A u [0, 1] by identifying a with 1.
Define

g $ h: (A [0,1], 0) (Z, x0)

in the obvious way. Since f: (Y, yo) -- (X, x0) is in I there exists m for

whichfm g h. Cleaxlyml0. / and so m(a) (1) y. Let
0 ml Then g f0 and so f Y, y) --+ (X, x) is in t(a). The lemma
now follows easily.

COROLLARY. Let xo and x be in the same path component of X. Then
(X, Xo) e (* iff (X, x) e (*. In general the coreflection of (X, xo) is the same
as the coreflection of (X, xl) except for a change of base point.

Proof. Follows readily by applying the dual of (2) of Proposition. 3.2.

COOLLXnY. Let X be pathwise connected and let p X* X be the coreflec-
tion map which coreflects X into 6*. (Since X is pathwise connected we may
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suppress the base point.) Suppose that p(xo) p(xl). Then Shere exist as
unique automorphism g X* ---. X* for which g(xo) xl and pg .

Proof. Let x p(x0) p(xl). Then

p (X*, x0) --* (X, x) and p (X*, xl) - (X, x)

are both coreflections of (X, x) and hence there exists a uniquo

(x, x0) -, (x,

for which pg p. There also exists h (X, x,) --* (X, x0) with ph p and
it is easily shown that h is the inverse of g.

(3) Consider the space X R X R\{ (2-, 0)}. This is the space of Ex-
ample 9 on p. 232 of [11]. Let p X* -- X be the universal pro-covering of
X, which is defined on p. 228 of [11]. It can be shown that X* is simply con-
nected in the sense of Hu and that p e I, hence p X* --* X is the coreflection
of X into a*. It can also be verified that p-l(0, 0) is not discrete, hence the
coreflection maps are not always covering maps. I do not know how closely
the coreflection is related to the universal pro-covering which Lubkin defined
for semi-simple spaces (see [11]).

(4) The above techniques can be applied to other notions of simple con-
nectedness. For example it can readily be shown that the class of all pathwise
connected spaces which are simply connected in the sense of Chevalley form
a coreflective subcategory. For by Theorem 3.3 the pathwise connected and
Chevalley simply connected spaces generate a coreflective subcategory and by
the above arguments every member of this coreflective subcategory is path-
wise connected and Chevalley simply connected.
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