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1. The theory of Raichmn nd Zygmund on localization properties of
trigonometric series (see for instance [6, pp. 330-344, 363-370]) hs been
extended to the multi-dimensional cse by Berkovitz, Gosselin and Shapiro
in [1], [2] and [4] (for a brief ccount of some of their results see [5, p. 83-85] ).
They discuss the localization problem for summability kernels of a very special
type and their methods are very closely linked to the prticular properties
of the kernels. Our im is to present a method, in one dimension bsically
the same as Zygmund’s method in [6] (the proof of his Theorem 9.6), nd
which is pplicble to lrger class of kernels.
The method cn be applied to R s well s to Zn. We choose to present

it on R" for the resoa that the study oa R contains ll the essential ideas
which are needed for the corresponding study on Z, on the other hand, it is
more general due to the non-compactness of the character group of R. In
order to facilitate a comparison of our results on R with the previously es-
tablished results on Z we hve, in the last section, formulated a localization
theorem for Bochner-Riesz summbility.

In the following we mke freely use of the bsic concepts of Fou’rier analysis
of tempered distributions, s presented in any standard text-book on the
subject.

9.. Let q be positive and continuous function on R’, such that

(1) p(x) supRn q(x + y)/q(y)

is finite for ll x e R, bounded on compact sets and O( x ), for some posi-
tive number A, s Ix -- . Obviously p is Borel mesurble positive
function. We introduce the spce M of Borel measures on R with a
finite norm

p(x) d(x)

the spce B of Borel mesurble functions g on R with finite norm

nd finally the spce B of Borel mesurble functions f on R th finite
norm

f ess sup
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and having the property that f(x)/q(-x) O, as xl -- , except in a
set of Lebesgue mesure 0.

Let us ssume that f e B, g e B nd # e M. Using (1), which gives

(2) q(x d-- y) <= q(y)p(x),

for x nd y in R, nd using standard rguments in the theory of convolution
of measures, we find that

f g(x) f  f(x y)g(y) dy

exists for every x e R, that

f ,#(x) f,,f(x y) d#(y) nd g,#(x) f,g(x- Y) d#(y)

re well defined except in sets of Lebesgue mesure 0, nd define functions
in B nd B, respectively, which stisfy

respectively, nd finally that

($ , #) , g 1, (] *
for every point in R.
We hd ssumed that, for some A > 0,

slxl --* , hence by (2)

q(x) O( x ") nd 1/q(x) O( x "),
s ]xl --* . This implies that

f(x) o( x

as x -’-) , if f Bq, while

if f e Bq. Hence, if we consider f in one of these classes as a distribution on
R, it belongs to the sub-class of tempered distributions. This has the conse-
quence that its Fourier transform ], formally defined by

f,,, e’’’f(x) dz,

where x.y denotes inner product, exists as a tempered distribution on the
dual

RFor every fixed e we denote by T the translation operator, defined
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for every distribution f by the formal relation

(Ttf)(x) f(x + t).

The difference operator At is defined at Tt To. If f is a tempered distribu-
tion with Fourier transform ], then the translate T f is a tempered distribu-
tion with Fourier transform

](y)et’.

3. DEFINITION 1. Let m be a positive integer. A sequence g} of
functions in Bq is said to belong to the class A’ if, for every sequence
(h, t2, t) of points in R",

L(C) fc
tends to 0, as --* , for every compact C c R",
is bounded, as -- , if C R.

We are now in a position to formulate and prove our first basic theorem.
We recall that multiplication of a distribution and an infinitely differentiable
function is a well-defined operation which gives a new distribution, and that
two distributions are said to coincide in an open set if the support of their
difference is contained in the complement of this set.

THEOREM 1. Let f e Bq have a Fourier transform with a compact support.
We assume that, in some neighborhood of y 0 on the dual R and for some
non-negative integers N and m

where i are Fourier transforms of functions hi e Bq and where t3i are homogene-
ous polynomials of positive degree m on R’. Furthermore we assume that

eAq. Then

dx -- O,

as ,---,

Proof of Theorem 1. Let e , where ) denotes the class of infinitely
differentiable functions with compact support. Since p is of at most poly-
nomial growth, is the Fourier-Stieltjes transform

e-’ d#(x)

of a measure # e M, in fact this measure is absolutely continuous. If fo Bq,
then the distribution ]0 is the Fourier transform of f0 * , which belongs to
Bq by the properties stated in 2.

Let us choose this function such that it takes the value I in an open neigh-
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borhood of y 0.

(4)

Then (3) shows that

in this neighborhood. By the above-mentioned results, the distributions. , as well as the distributions j A-tPj are Fourier transforms of functions
in Bq. Thus we have exchanged (3) to a representation (4) where the factors
in front of/. still are Fourier transforms of functions in Bq, but now such
that the factors have compact supports, and where the right hand member,
too, is the Fourier transform of a function in B.
Hence there is no restriction to assume that these properties hold already

for the representation (3). We then denote by h the function in B, for which

The distribution ] has then a compact support not containing y 0.
Using the identity

where yk are the coordinates of R’, it is easy to see that there exist a positive
integer M, homogeneous polynomials /, 1, 2, ..., M of degree m,
and rational functions , 1, 2, M, infinitely differentiable except
at y 0, such that

1 o.
Let e D have support not containing y 0 and coincide with 1 on an open
set containing the support of . Then

hence

But a D, hence, by the rguments used in the discussion of (4),
is a distribution with compact support, and it is the Fourier transform of
a function in B. Thus we have exchanged (3) to a representation (5)
which holds everywhere, and where the factors in front of the polynomials
are distributions with compact supports and which are Fourier transforms
of functions in B. Thus there is no restriction to assume that all these
properties hold already for the representation (3). And this means, using
the linearity, that it is enough to consider the case when (3) has the form

where 1 -< pk _<- n, and where has compact support and is the Fourier trans-
form of a function h e B.
We choose 8 > 0 so small that
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j 1, 2, n, on the support K of , except if y 0. Then there exists
function # e , such that

#(Y) I---1 (exp iyk- 1) ]I’=1
on n open set, cluding K. With 0 we obtain

] 0 H= (exp iy- 1).

0 is then the Fourier transform of function hoe Bq, by the argument in the
beginning of this proof.
We let x, x, x denote the coordinate basis in R which corresponds

to y, y, y in the sense that

x.y = xy

and introduce the operator

It is then easy to see that f Dho. Hence

f ho(x y)(Dg)(y) dy,

nfor every x e For x 0 we obtain from this

q(y)

Since we had assumed that {g} e Aq the right hand member tends to 0,
as v , which proves the theorem.

Remark. Theorem 1 can be generalized the respect that it can be proved
to hold for functions q of more general type. The condition that the function
p, defined by (1), is of polynomial groh can thus be exchanged to the con-
dition that it sutisfies

p

for every x e R. This can be seen by application of the theory in [3], which
is possible, since p is necessarily sub-multiplicative. It is also possible to
obtain corresponding theorems for other spaces than Bq and Bq.

4. DEFINITION 2. A sequence {g} in the class A’ is said to belong to
the class a’ if, with the notations of Definition 1, I(R is bounded, as -- ,uniformly for t, i 1, 2, m, in any fixed compact subset of Rn.
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The following is our second basic theorem.
the case when has non-compact support.

This theorem is relevant for

TEOEM 2. We assume that the hypotheses of Theorem 1 are true, except
that we strengthen the assumption on {g} by demanding that it belongs to a,
while we weaken the assumption on f by allowing the support of ] to be non-com-
pact. Then the conclusion of Theorem 1 still holds.

In the proof of this theorem we need the following lemma.

LEMMA 1. Let g Bq, let be infinitely differentiable on R’, with support
in {Y Y <= 1} and satisfying (0) 1, and let be a bounded Borel measure
on R with its support compact and included in the set {u u >= 1} on R. We
denote by h the summable and continuous function on R’* which has the Fourier

transform .
Then there exists a function go e Bq, such that the Fourier transforms of g and

go coincide on the set Y Y > 1} and such that

.for ever x R

Proof of Lemm 1.

h(y) dy,

We introduce the function h0 defined by

ho(x) h(x/u)u d#(u),

for every x. The integral is well defined, since we integrate over a compact
set, not containing u 0. The assumptions on imply that h(x) tends to
0 faster than any power of Ix I, as xl -- . Hence the same is true for
ho(x). Furthermore its Fourier transform 0 satisfies

o(y) (yu) d#(u),

for every y. Hence 0 is infinitely differentiable and its support is contained
in the set {Yii y --< 1}.
We put

go g-g.ho,

which obviously is well defined and belongs to Bq. We denote by and
0 the Fourier transforms of g and go, respectively. The Fourier transform
of g h0 is 0, hence its support is contained in {Yll Y -< 1}. This implies
that and 0 coincide on the set {Yll Y > 1}.

Furthermore, by absolute convergence, we have for every x e R
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(7)

and

Lgo(x) g(x) g(x y) h(y/u)u-" d(u) dy

g(z) ,,h(Y) dy-- oog(x-- yu)h(y) d(u) dy

which immediately gives the desired inequality.

/)roof of Theorem 2. Let e iO hve the property that its vMue is 1 in
open set, containing IYl IYl -< i}. Then, using the same arguments as
in the proof of Theorem I, it is easy to see that

gives a partition of ] into two parts, both satisfying the conditions of the
theorem, the first part with compact support, the second with support in-
eluded in {Yl] Y > i}. For the first part Theorem I is directly applicable.
IIence, by linearity, there is no restriction of the validity of the proof to s-
sume that we already from the outset have the support of ] included in the
set {Yll Y > i}. It is then easy to see, using standard convolution
ments, that

if gO e B,, and if the Fourier transforms of g. and gO. coincide on {y y
This makes it possible to use Lemma i in order to estimate the left hand mem-
ber of (6). We choose as/ in the lemma the discrete measure with the point
masses

at the pointsp 1,2, ...,monR. Hence

g,(x) g,(x yu) dla(u) (--1)m{(k--y)mg,} (X),

for every x e R". We can conclude from this, with h chosen as in the lemma,
0that we can find {g,} g, e Bq for every v, such that (6) holds and such that

.f,,’ g(x)iq(x)dx<-_ .f,, Ih(y),f,. I/=-,g,I qdx dy,] R

(8) J(C) fo g,(x) q(x) dx <_ f., h(y) fc k"ug, q dx dy

for compact sets C.
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We have to prove that the left hand member of (6) tends to 0 as , -- ,hence it is enough to show that

f, (x) dxf(-x) 0,

as v -- . To prove this, it is enough to show that J(R’) is bounded while
J(C) tends to 0, for every compact C, if v . By the assumption

fl g q 0,dx

as , for every ed y eR. By this, (7), (8) and the Lebesgue theorem
on dominated convergence, it is enough to prove that there exists a Borel
measurable function k on R such that

dx k(y)

for every y e R, while

(9)

In order to do this we form simple equlity which we for lter use mke
slightly more general thn wht is needed right t the moment.

Let t, t be rbitrry poims in {x ] x] 1} nd s n rbitrry posi-
rive integer. Then

(10)

k=l

gp q dx.

By the assumption we know that there exists a constant C, such that

f IA2gl q <-dx C

for every and every y satisfying Yl =< 1. (10) then shows that for any
positive integer s

f A’2-8g q dx Cs"( p(x))’.sup
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Due to the conditions on p we thus have constants D and E such that, for
every y e R

dx D(1 -J- l) k(y).q Y

This function/c obviously satisfies (9), and thus the theorem is proved.

5.. In this section, we shall discuss some sequences {g} of particular
interest and show that they belong to the class a under certain conditions
on the parameters involved. The inequalities (10) show that it is enough
to consider iterated differences AtlAt Arm, where all ti satisfy ti[ <= 1.
We start with a simple lemma which we shall use repeatedly in the sequel.

LEMMA 2. Let g be a distribution on R such that, for some set tl & t,
in R’, satisfying 0 < t <= 1, i 1, 2, m, the partial derivative of order
m in the directions of the vectors t

OttO& Ot
g= Dg

is a measure tt. Let F be a closed subset of R and F. the set of all points in
R at distance <= m from F. Then

AtlAt2 At.g Ag
is a measure and

fq(x) dX(x) - sup p(x) fv q(x) dg(x) I.

Proof of Lemma 2. It is of course no restriction to assume that g has com-
pact support. Then it is easily seen, for instance using the Fourier transform,
that

Ag Dg r (r. . , (r,,

where the operations are convolution of measures and where for any j 1,
2, m, a is the uniform mass distribution with total mass t.] on the seg-
ment between 0 and t.. Hence

Ag Dg o"

where is a measure with total mass -<_ 1 and with its support in {xl[ x _<-
m}. Hence by absolute convergence

f q(x) IdX(x)[ <- f f q(x--y)p(y) du(x-- y) d(y)
eF ,]yeR

_-< sup p(x) f q(x) du(x) [.
I<m .Vm
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In all remaining theorems we assume that

q(x) + ix I)",
for every x e R where is a real number.

THEOREM 3. Let h Bq and let m be a positive integer, m >= n . We
assume that every weak partial derivative of h of order m is a measure t, except
possibly at x O, and that these measures satisfy

f Ix I" d#(x) O(p"-’-"),
_1/.o

as p . We put for x R
g(x) h(x/R),

where R as and assume that {g} fulfills
I(C) -- O,

as , ---> oo, uniformly in tl t, tM t’[ __--< 1, for every compact C, using
the notations of Definition 1. Then {g} e aq.

Proof of Theorem 3.
is enough to show that

By the remark in the beginning of this paragraph, it

f AI A. A,g qdx
>_ra-kl

is bounded, as -- oo, uniformly if tl 1, j 1, 2, m.
2 it is enough to show that

Ingl qdx

By Lemma

is bounded, as - oo, for every partial derivative Dg, of g,, uniformly for
every choice of the m directions of the derivations. The uniformity of the
last condition causes no problem, since it is a direct consequence of the fact
that the derivatives of order m form a finite-dimensional vector space. Hence
we have only to verify the boundedness for an arbitrary chosen set of direc-
tions. We denote by t the corresponding m-th derivative of h. Then, with

and the right hand member is bounded, as p -- oo, by the assumption.
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THEOREM 4.

We assume that

Let m be a positive integer and a real number such that

m>__cn, q-l>=an, q-l>O.

for every x e R’, where Rp ---+ o, as ---+ oo

h(x) (1 z !)a

0
Then {gp} eaq.

g(x) h(x/R),

Here

iflxl > 1.

Proof of Theorem 4. It is immediately seen that I(C) --+ 0 for every com-
pact C, as , --+ oo, uniformly if tl -< 1, using the notations of Definition 1.
Hence it remains to show that

f I, a,h(x/)[( +ix
=>mq-1

is bounded, as p --+ oo, uniformly if t.[ =< 1. We split this integral into two
pans, integrating over m + 1 Ix] p m 1 and p m 1, respectively. For the first of these parts we have, by Lemma 2, apart
from a constant, the upper bound

I h ]x ]"dx,
il- OtOt Ot

and for the second, we have apart from a constant, the upper bound

I f h(x/)" dx.
--2m--1 Ix] p

It is easy to see, that
0 h(x) O( x [),

Ot Ot Ot

if Ix] < 1, unifory if t 1, where

(t) d t)_+l-t(1
Hence, we have, if p --+

l(i x I/p)p-’ x "dx)
=o (,"+- f t( x l) z dx)

Ixl<i
z(I x I)
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The first integral in this expression has the upper bound 0(1 -t- p--),
if a -n, 0(log p) if a -n, hence 0(1 + p in all cases. The
second integral is 0(1 - pm--l). Hence

--a--n-t-1 pm----II 0(+-’( + + ))
a-kn--m pl--m parn--fl--1o( + + o()

by the assumption on m, and a.

Since furthermore by the assumptions

I2 f-(2m+l)lp<=lx] <=l
h(x)p"+’ dx

)0 p"+’ (1 t)dt

the theorem is proved.

O(paq-n-fl-1) 0(1),

THEOREM 5. Let m be a positive integer and let be a real number such that

m > a W n, B-l--1 >= a A-n, /-4-1 >0.

We assume that
g(x) k(x)(h(x/R’) h(x/R7) ),

where R’ and R , as , . Here h is defined in Theorem 4, whereas
has m continuous derivatives, except at x O, and satisfies

for every k O.

(xx) (z),

Then {g} e aq.

Proof of Theorem 5. It is easy to see that I(C) 0 for every compact
C, uniformly if all t.i <- 1, as u --* . (As in the earlier proofs, we use
the notations of Definitions 1 and 2.) Hence it remains to show that

i Atl At , ((x)h(x/)) x I" dx

is bounded, as p -- , uniformly if [t.[ _-< 1. We can split this integral
into two parts in exactly the same way as we did in the proof of Theorem 4,
and, as in this proof, there remains to estimate the two integrals

Otl Ot Ot.
((x)h(x/))

12 I k(x)h(x/p)p" dx.
-2m-1 =< Ixl -<_

The second integral is treated in exactly the same way as before and we
then obtain that it is 0(1) as p --. .
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Since all partial derivatives of ] of order =< m are 0( Ix I-m), we have that,
forO < [[ < 1,

(()h(x)) 0(i i-(i i)),
Ot Ot. Otto

where was defined by (11). Hence

(k(x)h(x/p)) (k(x/p)h(x/p))
c3t c3t. Otto Ot Ot Otm

o(I x I-’(I x ]/p)),

if 0 < ]xl < p as p -- , and this holds of course uniformly if t’l =< 1.
Hence

and using the corresponding estimates in he proof of Theorem 4, we see hag

--a+m--n pm----II 0("+-’( + , + ))
aWn--mO(p +1+ )= 0(1).

6. We now turn to the function f in Theorems 1 and 2. We shall give
a more explicit sufficient condition which guarantees that ] in a neighborhood
of y 0 has a representation of the form (2).

THEOREM 6. Let m be a positive integer. We assume that h e Bq and that
the Borel measure satisfies

f.(1 +l l)’"’+’ d(x) <

and has the property that its Fourier transform ; vanishes at y 0 together with
its m l first derivatives. Then f h t fulfills the assumptions in Theorem 2.

Proof of Theorem 6. It is obviously enough to show that we hve a repre-
sentution

(Y) j=l Pj(Y)j(Y)

in R, where P are homogeneous polynomials of degree m, and where
are the Fourier-Stieltjes transforms of measures . e Mp, j 1, 2, N,
where p(x) (1
We denote by (xl, x., x) and (yl, y2, y) the coordinates in

the definition of the Fourier-Stielties transform

,(y) f du(x).

Let 0 be the proiection of this measure into the coordinate plane x 0.
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Obviously

fR 1 x I)l"’+’ do(x) </ o

Furthermore, it is easy to see that there exists a uniquely determined measure
1 such that

and such that ff the measures are considered as distributions

iy p,(y) (y) o(y) (Y) (0, y, ...,
By a similar projection of 0 into x 0 we obtain a representation

iy (y) (0, y, y) (0, O, y y)

of a similar kind. Proceeding in this way we obtain

(y) (y) (o) (R(y) (0, y, ..., y,)) +
+ (R(o, ..., y,) (o, 0, ..., 0))

= iu (u),

where p are Fourier-Stieltjes transforms of measures satisfyg

f.. (1 )"+- d(x) <Ix
It is also easy to see that p vnish together with their m 2 first derivatives
aty 0.
The same argument can then be repeted for the measures , and proceed-

ing in this way we arrive at the statement in the theorem.

7. We say that a locally bounded function f on R is Bochner-Ries
summable of order fl, > -1, to the value a, if

limR, ff(x) (1 Ix 12/R2) dx a.

The following theorem is a direct corollary of Theorems 2, 4, 5 and 6.

TEOEM 7. Let q(x (1 x ["), where a is real and let m be a positive
integer. We assume that f fulfils the conditions of Theorem 6.

Then f is Bochner-Riesz summable of order to 0 if
m>=-n, l >__an,

Let k fulfil the conditions of Theorem 5. Then fk is Bochner-Riesz summable
of order fl if
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This theorem is very convenient to use in order to compare our results
with the results in [1], [2], [4], [5], and [6]. Such a comparison reveals that
our general methods give, for the case of Bochner-Riesz summability, results
which are as refined as the results in the papers cited. The only essential
property of the Bochner-Riesz kernel which is relevant in this problem is
thus the degree of differentiability which enters in a significant way in the
proof of our Theorems 4 and 5.
To conclude we wish to point out that our results can, of course, be formu-

lated as theorems on the summability of the Fourier integral of f at the point
y 0. Of course, it is quite inessential that this point is chosen, to extend
the results to other points, we have only to multiply f with the corresponding
character. Theorems on equisummability can then be obtained exactly
as in the papers cited.
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