ON THE ZEROS OF A CLASS OF DIRICHLET SERIES I

BY Bruce C. Berndt

1. Introduction

The purpose of this paper is to show that many theorems concerning the distribution of zeros for the Riemann zeta-function $\zeta(s)$ can be generalized to a large class of Dirichlet series [1]. For the most part, our results are concerned with the distribution of zeros in a certain vertical strip. The proofs are similar to those that have been given for $\zeta(s)$. Most of the corresponding theorems for $\zeta(s)$ can be found in [10].

DEFINITION 1. Let $\{\lambda_n\}$ and $\{\mu_n\}$ be two sequences of positive numbers tending to ∞ , and $\{a(n)\}$ and $\{b(n)\}$ two sequences of complex numbers not identically zero. Let

$$\Delta(s) = \prod_{k=1}^{N} \Gamma(\alpha_k s + \beta_k),$$

where N is a positive integer, $\alpha_k > 0$, and β_k is an arbitrary complex number. Consider the functions φ and ψ representable as Dirichlet series

$$\varphi(s) = \sum_{n=1}^{\infty} a(n) \lambda_n^{-s}, \qquad \psi(s) = \sum_{n=1}^{\infty} b(n) \mu_n^{-s}, \qquad s = \sigma + it,$$

with finite abscissae of absolute convergence σ_a and σ_a^* , respectively. If r is real, we say that φ and ψ satisfy the functional equation

(1.1)
$$\Delta(s)\varphi(s) = \Delta(r-s)\psi(r-s)$$

if there exists in the s-plane a domain D which is the exterior of a compact set S, such that in D,

- (i) φ is holomorphic,
- (ii) $\varphi(s) = \Delta(r-s)\psi(r-s)/\Delta(s), \sigma < r-\sigma_a^*$
- (iii) there exists a constant K > 0 such that

$$\varphi(s) = O(\exp|s|^K),$$

as |s| tends to ∞ .

Throughout the sequel we set $A = \sum_{k=1}^{N} \alpha_k$. If C denotes a simple closed curve, let I(C) denote the interior of C and let $I'(C) = I(C) \cup C$. Finally, B always designates an unspecified positive constant, not necessarily the same with each occurrence.

2. Summary of results

THEOREM 1. There exists a positive integer m such that

$$-(m+j+\beta_k)/\alpha_k$$
, $k=1, \dots, N, j=0, 1, 2, \dots$

Received March 21, 1968.

are simple zeros of φ . Moreover, the remaining zeros of φ belong to a vertical strip, $\sigma_1 < \sigma < \sigma_2$.

This is, of course, a classical result for several Dirichlet series whose coefficients are of number theoretical interest. Lekkerkerker [7] has proven the result for $\Delta(s) = \Gamma(s)$. In the sequel the zeros of φ outside the strip, $\sigma_1 < \sigma < \sigma_2$, will be called the trivial zeros.

Theorem 2. The number of zeros of φ in the vertical strip, $\sigma_1 < \sigma < \sigma_2$, is infinite, and the distance between ordinates of successive zeros is bounded.

THEOREM 3. Let N(T) denote the number of zeros of φ in $D \cap I(R)$, where R denotes the rectangle with vertices σ_1 , σ_2 , $\sigma_1 + iT$ and $\sigma_2 + iT$. If h is any positive number, no matter how large,

$$N(T+h) - N(T) = O(\log T),$$

where O = O(h).

Corollary 4. The multiplicity of a zero of φ does not exceed $O(\log T)$.

THEOREM 5. Let $\rho = \beta + i\gamma$ run through the zeros of φ . Then,

(2.1)
$$\varphi'(s)/\varphi(s) = \sum_{|t-\gamma| < 1} 1/(s-\rho) + O(\log t),$$

uniformly for $\sigma_1 - 1 \leq \alpha \leq \sigma_2 + 1$.

THEOREM 6. We have

$$\log \varphi(s) = \sum_{|t-\gamma| < 1} \log (s - \rho) + O(\log t),$$

uniformly for $\sigma_1 - 1 \le \sigma \le \sigma_2 + 1$, where $-\pi < \arg(s - \rho) \le \pi$.

Theorem 7. There exists a positive constant K such that each interval (T, T + 1) contains a value of t for which

$$|\varphi(s)| > t^{-K},$$

where $\sigma_1 - 1 \le \sigma \le \sigma_2 + 1$. Furthermore, if H > 1 is arbitrary, then

$$|\varphi(s)| > T^{-KH},$$

where $\sigma_1 - 1 \le \sigma \le \sigma_2 + 1$, $T \le t \le T + 1$, except possibly on a set of t values of measure 1/H.

The proofs of Theorems 6 and 7 will be omitted since they resemble the corresponding proofs for $\zeta(s)$ [10, pp. 185–186] with only obvious changes being necessary.

THEOREM 8. For T > 0 sufficiently large, φ has a zero $\beta + i\gamma$ such that

$$|\gamma - T| < B/(\log \log \log T).$$

Theorem 9. For any fixed h > 0, no matter how small,

$$N(T+h) - N(T) > B \log T$$

where B = B(h).

There is no difficulty in constructing a proof along the same lines as that given for $\zeta(s)$ in [10, pp. 194–196], and so the proof of Theorem 9 will be omitted.

Theorem 10. Let c and d be the least positive integers such that $a(c) \neq 0$ and $b(d) \neq 0$, respectively. Let $N_i(T)$, i = 1, 2, denote the number of zeros of φ outside S which lie in the strips $\sigma_1 < \sigma < \sigma_2$, 0 < t < T and $\sigma_1 < \sigma < \sigma_2$, -T < t < 0, respectively. Then,

$$N_i(T)$$

(2.2) =
$$(A/\pi)T \log T - (T/2\pi)(\log \lambda_c \mu_d - 2\sum_{k=1}^N \alpha_k \log \alpha_k + 2A) + O(\log T).$$

Von Mangoldt first gave the proof of the above formula for $\zeta(s)$. However, Backlund later gave another proof, and it is essentially his method which we employ in our proof. Landau [5, p. 534] has proven Theorem 10 for Dirichlet L-functions. Potter and Titchmarsh [8] have proven the theorem for a class of Epstein zeta-functions. Lekkerkerker [7] has proven the result when $\Delta(s) = \Gamma(\mu s)$, where $\mu > 0$.

THEOREM 11. Let $\varphi = \psi$, a(n) be real and β_k be real, $k = 1, \dots, N$. Suppose also that $(\sigma_a - \frac{1}{2}r)A < \frac{1}{2}$. Then, the number of zeros of φ on the critical line $\sigma = \frac{1}{2}r$ is infinite.

The corresponding theorem for $\zeta(s)$ was first proven by Hardy. The method we use for Theorem 11 is that used by Landau in his proof of the theorem for $\zeta(s)$ [6, p. 83]. The conclusion of Theorem 11 is valid, of course, for other subclasses of Dirichlet series in Definition 1. Potter and Titchmarsh [8] have proven the theorem for a class of Epstein zeta-functions and Kober [4] for a somewhat larger class of the same. Hecke [3] and Lekkerkerker [7] have proven the result for large classes of Dirichlet series when $\Delta(s) = \Gamma(s)$. Hecke [3, p. 95] and Lekkerkerker [7, p. 59] have pointed out that the theorem can only hold for a restricted subset of the series given in Definition 1 and have given examples of Dirichlet series with no zeros on $\sigma = \frac{1}{2}r$. It is interesting to note that entirely different methods must be used to prove the theorem for different classes of Dirichlet series. The conditions of Theorem 11 are satisfied by $\zeta(s)$, but not, in general, by the other classes mentioned above.

THEOREM 12. Suppose that β_k is real, $k = 1, \dots, N$. Let

$$\chi(s) = \Delta(r-s)/\Delta(s).$$

Then, for |t| large enough and $\sigma > \frac{1}{2}r$,

(2.3)
$$|1/\chi(s)| > 1.$$

This theorem was first proven by Spira [9] and then by Dixon and Schoenfeld [2] for $\zeta(s)$.

Corollary 13. For |t| large enough and $\sigma > \frac{1}{2}r$,

$$|\psi(r-s)| > |\varphi(s)|,$$

except at the zeros of $\varphi(s)$.

COROLLARY 14. Let f(s) be a Dirichlet series of signature $(1, r, \gamma)$ (cf. [3] or [7]). If $|t| \ge 6.8$ and $\sigma > \frac{1}{2}r$, then

$$|f(r-s)| > |f(s)|,$$

except at the zeros of f(s).

3. Preliminary results

We first give three forms of Stirling's formula.

For Re s > 0 [12, p. 251],

(3.1)
$$\log \Gamma(s) = (s - \frac{1}{2}) \log s - s + O(1),$$

as |s| tends to ∞ . For the proof of Theorem 12 we shall need the more precise result [2],

 $\log \Gamma(s)$

$$(3.2) = \left(s - \frac{1}{2}\right) \log s - s + \frac{1}{2} \log 2\pi + \frac{1}{12s} - 2 \int_0^\infty \frac{P_3(x) \, dx}{(s+x)^3},$$

where $P_3(x)$ is a function with period 1 which is equal to

$$x(2x^2-3x+1)/12$$

on [0, 1]. On this interval

$$(3.3) 6|P_3(x)| \leq \frac{1}{8}.$$

By periodicity (3.3) is valid for all $x \ge 0$. (3.2) is valid in the s-plane cut along the negative real axis.

A direct consequence of Stirling's formula is [10, p. 68]

(3.4)
$$\Gamma(\sigma + it) = t^{\sigma + it - \frac{1}{2}} e^{-\frac{1}{2}\pi t - it + \frac{1}{2}i\pi(\sigma - \frac{1}{2})} (2\pi)^{\frac{1}{2}} (1 + O(t^{-1})),$$

as t tends to ∞ . A similar formula may be given for t < 0 and t tending to $-\infty$ by using the fact that $\Gamma(\sigma - it) = \overline{\Gamma(\sigma + it)}$.

Lemma 3.1. φ is of finite order in any half-plane $\sigma \geq \eta$.

Proof. Let σ be fixed. For $\sigma > \sigma_a^*$, $\psi(\sigma + it) = O(1)$ as |t| tends to ∞ . Thus, from the functional equation for $\sigma < r - \sigma_a^*$,

(3.5)
$$\varphi(s) = O\left(\frac{\Delta(r-s)}{\Delta(s)}\psi(r-s)\right) = O\left(\frac{\Delta(r-s)}{\Delta(s)}\right) = O(|t|^{(r-2\sigma)A}),$$

by (3.4), as |t| tends to ∞ . As $\varphi(s) = O(1)$ for $\sigma > \sigma_a$, it follows from property (iii) and a Phragmen-Lindelöf theorem [11, p. 180] that φ is of finite order in any half-plane $\sigma \geq \eta$.

LEMMA 3.2 [10, p. 49]. Let f be holomorphic and

$$|f(s)/f(s_0)| < e^M, M > 1,$$

on I'(C), where $C = \{s : |s - s_0| = r\}$. Then,

$$|f'(s)/f(s) - \sum_{\rho} 1/(s-\rho)| < BM/r, |s-s_0| \le r/4,$$

where ρ runs through the zeros of f(s) such that $|\rho - s_0| \leq \frac{1}{2}r$.

LEMMA 3.3 [10, p. 62]. Let F(x) and G(x) be real functions on [a, b] such that

- (i) G(x)/F'(x) is monotonic,
- (ii) $F''(x) \ge r > 0$ or $F''(x) \le -r < 0$,
- (iii) $|G(x)| \leq M, M > 0.$

Then,

$$\left| \int_a^b G(x)e^{iF(x)} dx \right| \le 8M/\sqrt{r}.$$

4. Proofs of the theorems

Proof of Theorem 1. Let c and d be the least positive integers such that $a(c) \neq 0$, $b(d) \neq 0$, respectively. Since φ and ψ converge in some half-plane, we can choose $\alpha > \max(0, \sigma_a, \sigma_a^*)$ so that

(4.1)
$$\sum_{n=c+1}^{\infty} |a(n)| \lambda_n^{-\alpha} \leq \frac{1}{2} |a(c)| \lambda_c^{-\alpha},$$
$$\sum_{n=d+1}^{\infty} |b(n)| \mu_n^{-\alpha} \leq \frac{1}{2} |b(d)| \mu_d^{-\alpha}.$$

Thus, for $\sigma \geq \alpha$,

$$|\varphi(s)| \ge |a(c)|\lambda_c^{-\sigma} - \sum_{n=c+1}^{\infty} |a(n)|\lambda_n^{-\sigma} \ge \frac{1}{2}|a(c)|\lambda_c^{-\sigma}.$$

Similarly, for $\sigma \geq \alpha$,

$$|\psi(s)| \ge \frac{1}{2} |b(d)| \mu_d^{-\sigma}.$$

Thus φ and ψ are free of zeros and holomorphic in the half-plane $\sigma \geq \alpha$. Also, since $\sigma_a > \frac{1}{2}r + 1/4A$ [1, p. 111], $r - \alpha < \alpha$. Now, $\Delta(s)$ has simple poles at $s = -(n + \beta_k)/\alpha_k$, $k = 1, \dots, N, n = 0, 1, 2, \dots$. It follows that if we let m be the least positive integer such that

$$-(m + Re\beta_k)/\alpha_k < r - \alpha,$$
 $k = 1, \dots, N,$

 $\varphi(s)$ has simple zeros at $s = -(m+j+\beta_k)/\alpha_k$, $k = 1, \dots, N, j = 0, 1, 2, \dots$. The remainder of the zeros must lie in the strip $r - \alpha < \sigma < \alpha$.

Proof of Theorem 2. Let c and α be as given in the proof of Theorem 1. Without loss of generality we assume $\lambda_c = 1$, for the zeros of $\varphi(s)$ are the same as those for $\lambda_c^{-s}\varphi(s)$.

Now, let $M = \max \{ | \operatorname{Re} a(c) |, | \operatorname{Im} a(c) | \} > 0$. Suppose $M = \operatorname{Re} a(c)$. Then choose $\alpha_0 \geq \alpha$ large enough so that

$$\text{Re } \varphi(s) = \text{Re } a(c) + \{ \text{Re } a(c+1) \cos (t \log \lambda_{c+1}) + \text{Im } a(c+1) \sin (t \log \lambda_{c+1}) \} \lambda_{c+1}^{-\sigma} + \cdots$$

$$> \text{Re } a(c) - | \text{Re } a(c+1) \cos (t \log \lambda_{c+1}) + \text{Im } a(c+1) \sin (t \log \lambda_{c+1}) | \lambda_{c+1}^{-\sigma} - \cdots$$

$$> 0,$$

for $\sigma \geq \alpha_0$. Similarly, if $M = \operatorname{Im} a(c)$, $\alpha_0 \geq \alpha$ can be chosen large enough so that $\operatorname{Im} \varphi(s) > 0$ for $\sigma \geq \alpha_0$. If $M = -\operatorname{Re} a(c)$ or $-\operatorname{Im} a(c)$, $\alpha_0 \geq \alpha$ can be chosen large enough so that $\operatorname{Re} \varphi(s) < 0$ or $\operatorname{Im} \varphi(s) < 0$, accordingly, for $\sigma \geq \alpha_0$. Thus, for all cases we may define a branch of $\operatorname{log} \varphi$ for $\sigma \geq \alpha_0$,

(4.3)
$$\log \varphi(s) = \log |\varphi(s)| + i \arg \varphi(s),$$

where arg $\varphi(s)$ ranges over an interval of length no greater than π . Hence, for $\sigma \geq \alpha_0$,

For $\sigma < \alpha_0$ we define $\log \varphi(s)$ as the analytic continuation of (4.3) along the line segment $(\sigma + it, \alpha_0 + it)$, provided that φ is holomorphic and $\varphi(s) \neq 0$ on this segment.

Next, let β be a positive real number chosen so that $\alpha_0 - \beta < r - \alpha_0$. Consider a system of four concentric circles C_1 , C_2 , C_3 and C_4 with center $\alpha_0 + 1 + iT$ and radii 1, $\beta + 1$, $\beta + 2$, and $\beta + 3$, respectively. Here |T| is chosen large enough so that $I'(C_4) \subset D$ and none of the trivial zeros lies in $I'(C_4)$.

Suppose that $\varphi(s) \neq 0$ on $I'(C_4)$ so that $\log \varphi(s)$ is holomorphic on $I'(C_4)$. Let M_2 and M_3 denote the maximum moduli of $\log \varphi(s)$ on C_2 and C_3 , respectively. By Lemma 3.1 Re $\varphi(s) = O(\log T)$ for s on $I'(C_4)$. Hence, by (4.4) and the Borel-Carathéodory theorem [11, p. 175],

$$M_3 = O(\log T).$$

Next, we apply Hadamard's 3 circles theorem [11, p. 172] to C_1 , C_2 and C_3 to obtain

$$M_2 \leq B(\log T)^{\rho}$$
,

where $\rho = \log (\beta + 1)/\log (\beta + 2) < 1$. In particular,

$$(4.5) \varphi(\alpha_0 - \beta + iT) = 0(\exp{\{\log^{\rho} T\}}) = O(T^{\epsilon}),$$

where $\epsilon > 0$, since $\rho < 1$.

On the other hand, by our choice of β and (4.2),

$$|\psi(r-\alpha_0+\beta-iT)| \geq \frac{1}{2}|b(d)|\mu_d^{-\alpha_0}=K$$
,

say. Hence, by (1.1) and (3.4),

$$(4.6) \qquad |\varphi(\alpha_0 - \beta + iT)| \ge K |\Delta(r - \alpha_0 + \beta - iT)/\Delta(\alpha_0 - \beta + iT)|$$

$$\ge B |T|^{(r+2\beta-2\alpha_0)A}.$$

As $r + \beta - 2\alpha_0 > 0$ and $\beta > 0$, $r + 2\beta - 2\alpha_0 > 0$. Thus, (4.6) is a contradiction to (4.5), and $\varphi(s)$ must have at least one zero on $I'(C_4)$. The last statement of the theorem easily follows from the proof.

Proof of Theorem 3. Let $r_h = \{(\sigma_2 - \sigma_1 + 1)^2 + h^2\}^{1/2}$ and define r_k similarly for k > h. Consider a circle C of radius r_k and center $\sigma_2 + 1 + iT$, where T is chosen large enough so that $I'(C) \subset D$. Then, clearly,

$$(4.7) N(T+h) - N(T) \leq n(r_h),$$

where n(x) denotes the number of zeros of φ in the circle of radius x and center $\sigma_2 + 1 + iT$. By Jensen's theorem [11, p. 126] and Lemma 3.1,

(4.8)
$$\int_{0}^{r_{k}} \frac{n(x)}{x} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \log |\varphi(\sigma_{2} + 1 + iT + r_{k}e^{i\theta})| d\theta$$
$$- \log |\varphi(\sigma_{2} + 1 + iT)|$$
$$< B \log T.$$

On the other hand,

(4.9)
$$\int_0^{r_k} \frac{n(x)}{x} dx \ge \int_{r_h}^{r_k} \frac{n(x)}{x} dx \ge n(r_h) \int_{r_h}^{r_k} \frac{dx}{x} = Bn(r_h).$$

Combining (4.7), (4.8) and (4.9), we obtain the conclusion of the theorem.

Proof of Theorem 5. In Lemma 3.2 put

$$f = \varphi$$
, $s_0 = \sigma_2 + 1 + iT$ and $r = 4(\sigma_2 - \sigma_1 + 2)$.

Here T is chosen large enough so that $I'(C) \subset D$. By Lemma 3.1 we may take $M = B \log T$. Thus,

(4.10)
$$\frac{\varphi'(s)}{\varphi(s)} = \sum_{|\rho - \epsilon_0| < \frac{1}{s}r} \frac{1}{s - \rho} + O(\log T),$$

where $|s - s_0| \le \sigma_2 - \sigma_1 + 2$. In particular, (4.10) is valid for

$$\sigma_1 - 1 < \sigma < \sigma_2 + 1$$
.

For these values of σ , clearly, we may replace T by t in (4.10). Also, any term that appears in (4.10), but not (2.1), is bounded, and by Theorem 3 the number of such terms is no greater than

$$N(T + \frac{1}{2}r) - N(T - \frac{1}{2}r) = O(\log t).$$

Proof of Theorem 8. We give only the beginning of the proof, for after a certain point the details are precisely the same as the corresponding theorem for $\zeta(s)$ [10, p. 191–193].

We choose T large enough so that $I'(C_{kv})$, where C_{kv} is defined below, contains none of the trivial zeros and $I'(C_{kv}) \subset D$. Also choose α_0 as in the proof of Theorem 2.

Suppose $\varphi(s)$ has no zeros in $T - \delta \leq t \leq T + \delta$, where $\delta < \frac{1}{2}$. Then $f(s) = \log \varphi(s)$ is holomorphic for $T - \delta \leq t \leq T + \delta$, where f(s) is given its principal value for $\sigma \geq \alpha_0$. Let $C_{1\nu}$, $C_{2\nu}$, $C_{3\nu}$ and $C_{4\nu}$ be four concentric circles with center $\alpha_0 + 1 - \nu \delta/4 + iT$ and radii $\delta/4$, $\delta/2$, $3\delta/4$ and δ , respectively. Here $\nu = 0, 1, 2, \dots, n$, where $n = [4(\alpha_0 - \sigma_1 + 2)/\delta] + 1$. Thus, the centers of the circles with center $\alpha_0 + 1 - n\delta/4$ lie on or to the left of $\sigma = \sigma_1 - 1$. Proceed now exactly as in [10].

Proof of Theorem 10. Let α be given as in the proof of Theorem 1. Choose T_0 and $T > T_0$ so that the lines $t = T_0$ and t = T contain no zeros of φ and so that S lies within the rectangle with vertices $r - \alpha \pm iT_0$ and $\alpha \pm iT_0$. Let R denote the rectangle with vertices $r - \alpha + iT_0$, $\alpha + iT_0$, $\alpha + iT$ and $r - \alpha + iT$. R is free of zeros of φ . Lastly, let N_0 denote the number of zeros of φ outside S but within the rectangle given by $0 < t < T_0$, $\sigma_1 < \sigma < \sigma_2$. Thus,

$$\begin{split} N_{1}(T) \, - \, N_{0} &= \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{d}{ds} \log \varphi(s) \, ds \\ &= \frac{1}{2\pi i} \left\{ \int_{r-\alpha+iT_{0}}^{\alpha+iT_{0}} + \int_{\alpha+iT_{0}}^{\alpha+iT} + \int_{r-\alpha+iT}^{r-\alpha+iT} + \int_{r-\alpha+iT}^{r-\alpha+iT_{0}} \right\} \frac{d}{ds} \log \varphi(s) \, ds \\ &= \frac{1}{2\pi i} \operatorname{Im} \left\{ I_{1} + I_{2} + I_{3} + I_{4} \right\}. \end{split}$$

We examine each integral in turn. As I_1 is independent of T, $I_1 = O(1)$. Next,

$$(4.11) I_2 = \log \varphi(s) \left| \begin{smallmatrix} \alpha + iT \\ \alpha + iT_0 \end{smallmatrix} \right|$$

$$= \log a(c) \lambda_c^{-s} \left| \begin{smallmatrix} \alpha + iT \\ \alpha + iT_0 \end{smallmatrix} \right|$$

$$+ \log \left\{ 1 + \sum_{n=c+1}^{\infty} a^{-1}(c) a(n) \left(\lambda_n / \lambda_c \right)^{-s} \right\} \left| \begin{smallmatrix} \alpha + iT \\ \alpha + iT_0 \end{smallmatrix} \right|,$$

where we take the variation in any branch of the logarithm along the straight line segment $(\alpha + iT_0, \alpha + iT)$. Let

$$f(s) = \sum_{n=c+1}^{\infty} a^{-1}(c) a(n) (\lambda_n/\lambda_c)^{-s}.$$

By (4.1), it follows that for $\sigma \geq \alpha$, $|f(s)| \leq \frac{1}{2}$. Hence, the argument of 1 + f(s) ranges over an interval of length less than π , and so the imaginary part of the second term of (4.11) is at most π . An easy calculation shows that the first term in (4.11) is $i(T_0 - T) \log \lambda_c$. Hence,

$$\operatorname{Im} I_2 = -T \log \lambda_c + O(1).$$

By a similar argument,

(4.12)
$$\operatorname{Im} \int_{\alpha - iT_0}^{\alpha - iT} \frac{d}{ds} \log \psi(s) \ ds = T \log \mu_d + O(1).$$

For the estimation of I_3 define

$$\varphi_1(s) = e^{i(\gamma + T \log \lambda_o)} \varphi(s),$$

where γ is chosen so that $a(c)e^{i\gamma} > 0$. Let q be the number of zeros of Re $\{\varphi_1(s)\}$ on $(r - \alpha + iT, \alpha + iT)$. These zeros subdivide this line segment into at most q + 1 subintervals, in each of which Re $\{\varphi_1(s)\}$ is of constant sign. On each subinterval the variation of Im $\{\log \varphi_1(s)\}$ is at most π . Since $\arg \varphi(s)$ and $\arg \varphi_1(s)$ differ only by a constant,

$$|\operatorname{Im} I_3| = |\operatorname{Im} \log \varphi(s)||_{\alpha+iT}^{r-\alpha+iT} \leq (q+1)\pi.$$

To estimate q we define

$$f(z) = \frac{1}{2} \{ \varphi_1(z + iT) + \overline{\varphi_1(\overline{z} + iT)} \},$$

and note that if $z = \sigma$ is real,

(4.13)
$$f(\sigma) = \frac{1}{2} \{ \varphi_1(\sigma + iT) + \overline{\varphi_1(\sigma + iT)} \} = \text{Re} \{ \varphi_1(\sigma + iT) \}.$$

Without loss of generality assume that

$$\rho = T - T_0 > 4(\alpha - \frac{1}{2}r).$$

If z is such that $|z - \alpha| < \rho$, then Im $(z + iT) > T - \rho = T_0$. Since $\varphi(s)$ is holomorphic for $t > T_0$, $\varphi(z + iT)$ is holomorphic within $|z - \alpha| < \rho$. It follows that $\overline{\varphi(\overline{z} + iT)}$, and hence f(z), is holomorphic within $|z - \alpha| < \rho$ as well. By (4.13), the definition of γ , and (4.1)

$$f(\alpha) > \frac{1}{2}\lambda_c^{-\alpha} |a(c)|.$$

We are thus in a position to apply Jensen's theorem. Let

$$r_0 = 4(\alpha - \frac{1}{2}r), \qquad r_1 = \frac{1}{2}r_0,$$

and n(x) the number of zeros of f within $|z - \alpha| \leq x$. Then,

(4.14)
$$n(r_1) \int_{r_1}^{r_0} \frac{dx}{x} \le \int_0^{r_0} n(x) \frac{dx}{x} \\ = \frac{1}{2\pi} \int_0^{2\pi} \log |f(r_0 e^{i\theta} + \alpha)| d\theta - \log |f(\alpha)|.$$

By Lemma 3.1,

$$\omega(s) = O(t^B), \quad \sigma \geq \alpha - r_0, \quad t \geq T_0.$$

Hence,

$$f(r_0e^{i\theta} + \alpha) = O(T^B).$$

Thus, by (4.14),

$$n(r_1) = O(\log T).$$

Now, the zeros of Re $\{\varphi_1(s)\}\$ on $(r-\alpha+iT, \alpha+iT)$ are those of f(z) on $(r-\alpha, \alpha)$. Since $(r-\alpha, \alpha)$ is contained with the circle $|z-\alpha|=r_1$,

$$q \leq n(r_1)$$
 and Im $I_3 = O(\log T)$.

Lastly, by the functional equation (1.1),

$$I_4 = \{ \log \Delta(s) - \log \Delta(r-s) - \log \psi(r-s) \} \Big|_{r-\alpha+iT_0}^{r-\alpha+iT_0}.$$

By (3.1),

$$\log \Delta(s) |_{r-\alpha+iT_0}^{r-\alpha+iT}$$

$$= \sum_{k=1}^{N} \left\{ \log \Gamma \left(\alpha_k r - \alpha_k \alpha + i \alpha_k T + \beta_k \right) - \log \Gamma \left(\alpha_k r - \alpha_k \alpha + i \alpha_k T_0 + \beta_k \right) \right\}$$

$$= \sum_{k=1}^{N} (\alpha_k r - \alpha_k \alpha + i\alpha_k T + \beta_k - \frac{1}{2}) \log (\alpha_k r - \alpha_k \alpha + i\alpha_k T + \beta_k)$$
$$- \sum_{k=1}^{N} (\alpha_k r - \alpha_k \alpha + i\alpha_k T + \beta_k) + O(1).$$

Similarly,

$$\log \Delta (r-s)|_{r-\alpha+iT_0}^{r-\alpha+iT} = \sum_{k=1}^{N} (\alpha_k \alpha - i\alpha_k T + \beta_k - \frac{1}{2}) \log (\alpha_k \alpha - i\alpha_k T + \beta_k) - \sum_{k=1}^{N} (\alpha_k \alpha - i\alpha_k T + \beta_k) + O(1).$$

Using (4.12), we have

$$I_4 = \sum_{k=1}^{N} (\alpha_k r - \alpha_k \alpha + i\alpha_k T + \beta_k - \frac{1}{2}) \log (\alpha_k r - \alpha_k \alpha + i\alpha_k T + \beta_k)$$
$$- \sum_{k=1}^{N} (\alpha_k r - i\alpha_k T + \beta_k - \frac{1}{2}) \log (\alpha_k \alpha - i\alpha_k T + \beta_k)$$
$$- 2iTA - iT \log \mu_d.$$

Now,

$$\log (\alpha_k r - \alpha_k \alpha + i\alpha_k T + \beta_k) = \log (i\alpha_k T) + O(T^{-1})$$

= $\log \alpha_k + \log T + \frac{1}{2}\pi i + O(T^{-1}),$

since $\alpha_k > 0$. A similar result holds for $\log (\alpha_k \alpha - i\alpha_k T + \beta_k)$, and so,

$$I_4 = 2iTA \log T + 2iT \sum_{k=1}^{N} \alpha_k \log \alpha_k - 2iTA - iT \log \mu_d + O(\log T).$$

Combining the values for the four integrals, we have (2.2), i=1. As the right-hand side of (2.2) is continuous in T and as any line t=T containing zeros of φ can be approximated arbitrarily closely by a line t=T' containing no zeros of φ , the aforementioned restriction on T is unnecessary.

If $\beta + i\gamma$, $\gamma < 0$, is not a zero of $\Delta^{-1}(s)$, then $\beta + i\gamma$ is a zero of $\varphi(s)$ if and only if $r - \beta - i\gamma$ is a zero of $\psi(s)$. Since (2.2), i = 1, holds for ψ as well and is symmetric in c and d, (2.1) is valid for i = 2 also.

Proof of Theorem 11. Define $\chi(s)$ as in the statement of Theorem 12. Clearly,

Also, define

$$R(s) = \Delta(s)\varphi(s).$$

From the functional equation it follows that $R(\frac{1}{2}r+it)=R(\frac{1}{2}r-it)$. Since

a(n) and β_k , $k=1, \dots, N$, are real, $R(\frac{1}{2}r+it)$ is a real-valued function of t. Next, let

$$\theta = -\frac{1}{2}\arg\chi(\frac{1}{2}r + it),$$

so that

$$\chi(\frac{1}{2}r+it)=e^{-2i\theta}.$$

Lastly, let

$$\begin{split} Z(t) &= e^{i\theta} \varphi(\frac{1}{2}r + it) \\ &= \left\{ \chi(\frac{1}{2}r + it) \right\}^{-1/2} \varphi(\frac{1}{2}r + it) \\ &= \left\{ \Delta(\frac{1}{2}r + it) / \Delta(\frac{1}{2}r - it) \right\}^{1/2} \varphi(\frac{1}{2}r + it) \\ &= R(\frac{1}{2}r + it) / |\Delta(\frac{1}{2}r + it)|. \end{split}$$

Hence, Z(t) is a real function of t, and

$$(4.16) |Z(t)| = |\varphi(\frac{1}{2}r + it)|.$$

As in Landau's proof, we shall compare the behaviors of the two integrals

$$\int_{T}^{2T} |Z(t)| dt, \qquad \int_{T}^{2T} Z(t) dt,$$

where T is chosen large enough so that $\sup_{t \in S} \{t\} < T$.

Let c be given as in the proof of Theorem 1. Define

$$\varphi_c(s) = \lambda_c^s \varphi(s).$$

Thus, by (4.16),

(4.17)
$$\int_{T}^{2T} |Z(t)| dt = \int_{T}^{2T} |\lambda_{c}^{-r/2-it} \varphi_{c}(\frac{1}{2}r + it)| dt$$
$$\geq \lambda_{c}^{-r/2} \left| \int_{T}^{2T} \varphi_{c}(\frac{1}{2}r + it) dt \right|.$$

Also,

$$i \int_{T}^{2T} \varphi_{c}(\frac{1}{2}r + it) dt = \int_{r/2+iT}^{r/2+2iT} \varphi_{c}(s) ds$$

$$= \left(\int_{r/2+iT}^{\sigma_{a}+1+iT} + \int_{\sigma_{c}+1+2iT}^{\sigma_{a}+1+2iT} + \int_{\sigma_{c}+1+2iT}^{r/2+2iT} \right) \varphi_{c}(s) ds$$

by Cauchy's theorem.

As usual, define

$$\mu(\sigma) = \inf \{ \xi : \varphi(s) = O(|t|^{\xi}) \}.$$

From (3.5) and the general theory of $\mu(\sigma)$ [11, p. 299], we find that for $\frac{1}{2}r \leq \sigma \leq \sigma_a$,

Thus,

$$i \int_{T}^{2T} \varphi_{c}(\frac{1}{2}r + it) dt = \left[s - \sum_{n=c+1}^{\infty} \frac{a(n)(\lambda_{n}/\lambda_{c})^{-s}}{\log(\lambda_{n}/\lambda_{c})} \right]_{s=\sigma_{a}+1+iT}^{s=\sigma_{a}+1+iT} + O\left(\int_{r/2}^{\sigma_{a}+1} T^{(\sigma_{a}-r/2)A+\epsilon} \right), \quad \epsilon > 0$$

$$= iT + O(T^{(\sigma_{a}-r/2)A+\epsilon}).$$

Since $(\sigma_a - \frac{1}{2}r)A < \frac{1}{2}$, we have shown by (4.17) that

$$(4.19) \qquad \int_{\pi}^{2T} |Z(t)| dt > BT.$$

Now, let C denote the rectangle with sides $\sigma = \frac{1}{2}r$, $\sigma = \sigma_a + \delta$, t = T and t = 2T, where $\delta > 0$ is chosen so small that

$$(\sigma_a + \delta - \frac{1}{2}r)A < \frac{1}{2}.$$

By Cauchy's theorem,

(4.20)
$$\int_{C} \{\chi(s)\}^{-1/2} \varphi(s) \ ds = 0.$$

We proceed to estimate the integrals along the two horizontal sides and the right side. By (3.4),

$$\Gamma(\alpha_k s + \beta_k) / \Gamma(\alpha_k \{r - s\} + \beta_k) = C_k(\alpha_k t)^{\alpha_k (2\sigma - r + 2it)} e^{-2i\alpha_k t} (1 + O(t^{-1})),$$

where C_k is a constant. Hence,

$$(4.21) \quad \left\{\chi(s)\right\}^{-1/2} = \prod_{k=1}^{N} C_k^{1/2} (\alpha_k t)^{(\alpha_k/2)(2\sigma - r + 2it)} e^{-i\alpha_k t} (1 + O(t^{-1})).$$

From (4.21) and (4.18) we have

$$\left\{\chi(s)\right\}^{-1/2}\varphi(s) = O(t^{(\alpha_a-r/2)A+\varepsilon})$$

for $\frac{1}{2}r \leq \sigma \leq \sigma_a$, and

$$\{\chi(s)\}^{-1/2}\varphi(s) = O(t^{(\sigma_a+\delta-r/2)A+\varepsilon})$$

for $\sigma_a \leq \sigma \leq \sigma_a + \delta$. The integrals along the sides t = T and t = 2T are therefore

$$O(T^{(\sigma_a+\delta-r/2)A+\varepsilon}).$$

The integral along the right-hand side is

$$i \int_{T}^{2T} \prod_{k=1}^{N} C_{k}^{1/2} (\alpha_{k} t)^{\alpha_{k} (\sigma_{a} + \delta - \tau/2 + it)} e^{-i\alpha_{k} t} \varphi(\sigma_{a} + \delta + it) (1 + O(t^{-1})) dt.$$

The contribution of the O-term is

$$O(t^{(\sigma_a+\delta-r/2)A}).$$

The other part of the integral is a constant multiple of

$$\sum_{n=1}^{\infty} a(n) \lambda_n^{-\sigma_a - \delta} \int_T^{2T} t^{(\sigma_a + \delta - r/2)A} \exp \left\{ it \left(\sum_{k=1}^N \alpha_k \log \alpha_k t - A - \log \lambda_n \right) \right\} dt.$$

We now employ Lemma 3.3 with

$$F(t) = t(\sum_{k=1}^{N} \alpha_k \log \alpha_k t - A - \log \lambda_n) \text{ and } G(t) = t^{(\sigma_a + \delta - r/2)A}.$$

Since

$$F'(t) = \sum_{k=1}^{N} \alpha_k \log \alpha_k t - \log \lambda_n$$

and F''(t) = A/t, the hypotheses of Lemma 3.3 are clearly satisfied for T large enough. Hence, the above sum is

$$O(T^{(\sigma_a+\delta-r/2)A+1/2}).$$

Hence, by (4.20) we have shown

$$\int_{r/2+iT}^{r/2+2iT} \{\chi(s)\}^{-1/2} \varphi(s) \ ds = i \int_{T}^{2T} Z(t) \ dt$$
$$= O(T^{(\sigma_a + \delta - r/2)A + 1/2}) = o(T),$$

since $(\sigma_a + \delta - \frac{1}{2}r)A < \frac{1}{2}$. Comparing this result with (4.19), we conclude that in every interval (T, 2T) for T large enough, Z(t) changes sign at least once. As the zeros of Z(t) are those of $\varphi(\frac{1}{2}r + it)$, $\varphi(s)$ has an infinite number of zeros on $\sigma = \frac{1}{2}r$.

Proof of Theorem 12. For $t \neq 0$, $\chi(s)$ is holomorphic and $\chi(s) \neq 0$. Define for $t \neq 0$,

$$h(s) = -\log |\chi(s)|.$$

In order to prove (2.3) it is sufficient to show that h(s) > 0 for $\sigma > \frac{1}{2}r$.

Using the fact that $\Delta(s)$ is real on the real axis and thus takes conjugate values at conjugate points, we have by the mean value theorem,

(4.22)
$$h(s) = \log |\Delta(\sigma + it)| - \log |\Delta(r - \sigma + it)|$$
$$= 2\left(\sigma - \frac{1}{2}r\right) \left[\frac{\partial}{\partial \sigma} \log |\Delta(\sigma + it)|\right]_{\sigma = \sigma_1},$$

where $r - \sigma < \sigma_1 < \sigma$. Now,

$$\frac{\partial}{\partial \sigma} \log |\Delta(\sigma + it)| = \operatorname{Re} \frac{d}{ds} \log \Delta(s)$$

$$= \operatorname{Re} \frac{d}{ds} \sum_{k=1}^{N} \Gamma(\alpha_k s + \beta_k).$$

Since β_k , $k = 1, \dots, N$, is real and $t \neq 0$, we have from (3.2)

 $\log \Gamma(\alpha_k s + \beta_k) = (\alpha_k s + \beta_k - \frac{1}{2}) \log (\alpha_k s + \beta_k) - (\alpha_k s + \beta_k) + \frac{1}{2} \log 2\pi$

$$+ \ \frac{1}{12(\alpha_k s \ + \ \beta_k)} - \ 2 \int_0^\infty \frac{P_3(x) \ dx}{(\alpha_k s \ + \ \beta_k \ + \ x)^3} \, .$$

Thus, by (3.3),

$$\frac{\partial}{\partial \sigma} \log |\Delta(\sigma + it)|$$

$$= \operatorname{Re} \left[\sum_{k=1}^{N} \alpha_k \left\{ \log (\alpha_k s + \beta_k) - \frac{1}{2(\alpha_k s + \beta_k)} - \frac{1}{12(\alpha_k s + \beta_k)^2} + 6 \int_0^{\infty} \frac{P_3(x) dx}{(\alpha_k s + \beta_k + x)^4} \right\} \right]$$

$$\geq \sum_{k=1}^{N} \alpha_k \left\{ \log |\alpha_k s + \beta_k| - \frac{1}{2 |\alpha_k s + \beta_k|^2} - \frac{I_k}{8} \right\},$$

where

$$I_{k} = \int_{0}^{\infty} \frac{dx}{\{(\alpha_{k} \sigma + \beta_{k} + x)^{2} + (\alpha_{k} t)^{2}\}^{2}}$$

$$\leq \int_{-\infty}^{\infty} \frac{dy}{\{y^{2} + (\alpha_{k} t)^{2}\}^{2}}$$

$$= 2 \int_{0}^{\infty} \frac{dy}{\{y^{2} + (\alpha_{k} t)^{2}\}^{2}} = \frac{\pi}{2\alpha_{k}^{3} |t|^{3}}.$$

Thus, by (4.22)-(4.24) we have shown that for $\sigma > \frac{1}{2}r$ and $s_1 = \sigma_1 + it$,

$$\frac{h(s)}{2(\sigma - \frac{1}{2}r)} > \sum_{k=1}^{N} \alpha_{k} \left\{ \log |\alpha_{k} s_{1} + \beta_{k}| - \frac{1}{2 |\alpha_{k} s_{1} + \beta_{k}|} - \frac{1}{12 |\alpha_{k} s_{1} + \beta_{k}|^{2}} - \frac{\pi}{16\alpha_{k}^{3} |t|^{3}} \right\}.$$

It is easily seen that if |t| is large enough, the right-hand side is positive, and this completes the proof.

Proofs of Corollaries 13 and 14. Corollary 13 is immediate from the functional equation (1.1).

If f has signature $(1, r, \gamma)$, then $\varphi(x) = (2\pi)^{-s} f(s)$. From the proof of Theorem 12, it is sufficient to choose |t| large enough so that

$$\log|t| - \frac{1}{2}|t| - \frac{1}{12}|t|^2 + \frac{1}{16}|t|^3 - \log 2\pi > 0.$$

If $|t| \ge 6.8$, the above is greater than

$$1.918 - 0.074 - 0.002 - 0.001 - 1.838 = 0.003 > 0.$$

The author expresses his thanks to Professor Lowell Schoenfeld for suggesting a simplification on the author's initial proof of Theorem 12.

REFERENCES

- K. CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math., vol. 76(1962). pp. 93-136.
- 2. R. D. DIXON AND LOWELL SCHOENFELD, On the size of the Riemann zeta-function at places symmetric with respect to the point ½, Duke Math. J., vol. 33 (1966), pp. 291-292.
- 3. ERICH HECKE, Über Dirichlet-Reihen mit Funktionalgleichung und ihre Nullstellen auf der Mittelgeraden, Bayer. Akad. Wiss. Math.-Natur. Kl. S.-B., vol. (1937), pp. 73-95.
- 4. H. Kober Nullstellen Epsteinscher Zetafunktionen, Proc. London Math. Soc., vol. 42(1936), pp. 1-8.
- EDMUND LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, 2nd ed., Chelsea, New York, 1953.
- 6. ----, Vorlesungen über Zahlentheorie, Zweiter Band, Chelsea, New York, 1947.
- C. G. LEKKERKER, On the zeros of a class of Dirichlet series, Dissertation, Utrecht, 1955.
- 8. H. S. A. POTTER AND E. C. TITCHMARSH, The zeros of Epstein's zeta-functions, Proc. London Math. Soc., vol. 39 (1935), pp. 372-384.
- 9. ROBERT SPIRA, An inequality for the Riemann zeta function, Duke Math. J., vol. 32 (1965), pp. 247-250.
- E. C. TITCHMARSH, The theory of functions, 2nd ed., Oxford University Press, London, 1939.
- 11. ——, The theory of the Riemann zeta-function, Oxford University Press, London, 1951.
- E. T. WHITTAKER AND G. N. WATSON, A course of modern analysis, 4th ed., Cambridge University Press, London, 1927.

University of Illinois Urbana, Illinois