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1. Introduction
Let *, , A, A and A* denote the collections of all integers, non-negative

integers, isols, regressive isols and isolic integers respectively. Let
f(xl, ..-, x) be a recursive function, and let fA denote the canonical exten-
sion of f to a mapping, from A into A* [11], [12]. A. Nerode proved in [12]
that fA mps A into A if nd only if f is lmost recursive combinatorial. In
[3], J. Brback proved that if f(x) is recursive function of one wrible,
f maps A into A if and only if f is eventually increasing. However the
author showed in [10] that the class of recursive functions of two variables
mapping A A into A is rather limited--trivial cases aside, this class con-
sists of functions eventually of the form

min if(x), g(y)) + ,o -o d(i, j)

where rain (x, y) is the minimum function, f(x) and g (y) are eventually in-
creasing recursive, and d (i, j) 0 for all but finitely many pairs (i, j). The
restrictive nature of this last result is not surprising in view of the fact that
h is not dosed under addition or multiplication. J. Barback suggested that
it is more natural to ask which recursive functions f(xl, x) of more than
one variable have the property

(.) At + A + + A, A f(A, A, ..., A) e h.

The main theorem of this paper characterizes the class of recursive functions
with the property (,) as follows" Let _< be the partial ordering of e" obtained
by setting

(x,...,x,,)<_ (yt,’",y) iff x<_y, i=l,...,n.

A function f (xt, x.) is called increasing if

(xt, ..., x) _< (y, ..., y) =f(xt, ..., x) _< f(yt, ’", yn)

and eventually increasing if there exists a number k e e such that

/(z + ,..., + )
is increasing. A function g of fewer than n variables is called proper specifi-
cation of f(xt, ..., x,) if g can be obtained from f by substitution of constants
for some of the variables xt, ..., x. of f. f is called almost increasing if $ and
every proper specification of f is eventually increasing.
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THEOREM. Letf (Xl x,, ) be recursive, f has the property (.) if and only
iff is almost increasing.

We note that for n 1 the preceding theorem reduces to the theorem in [3]
for functions of one variable. For the sake of simplicity, we shall give the
proof only for n 2; the proof for n > 2 requires no essential modification of
the techniques to be presented here.
The mapping theorem for h in [12] can be used to prove he ruh in h of

certain V sentences with recursive combinatorial Skolem functions. In the
final section of this paper we shall apply our main theorem in a similar manner
to determine the truth or falsehood in A of various sentences with recursive
Skolem functions.

2. Preliminaries

We assume that the reader is familiar with the basic concepts and results of
[1], [3], [6], [7], [10] and [14]. The following definitions and theorems concern-
ing functions of two variables are the natural analogues of the concepts and re-

sults in Section 2 of [14] and Section 4 of [1]. The theorems can be proved using
the methods of those papers, and will be stated without proof.
By a number-theoretic function of n variables we shall mean a function map-

ping c into c*. Every number-theoretic function f can be written as the dif-
ference of two combinatorial functions f+ and f-, called the positive and nega-
tive parts of f. A number-theoretic function f is called recursive if the func-
tions f* and f- are recursive. For a recursive number-theoretic function
f(xl, x), we can employ the usual canonical extension procedure to de-
fine fA, i.e., for any n-tuple of isols (xl, x),

f(x, ..., ) A+(x, ..., ) 7(x, ..., x).

Let f(x, y) be recursive and number-theoretic. For T, U e A we define

By the partial sum function of f(x, y) we mean the function

(x, u) :, E. (i, j)

(S/(z,y) 0ifx 0ory 0).

PROPOSITION 1. Let f(x, y) and g (x, y) be recursive number-theoretic func-
tions and T, U e A. Then

)f(, ) +/- (*,)(, ) 5:,)ff(, ) (, )).

TEOaEM 1. Let f(x, y) be recursive and number-theoretic. Then for all T,
U ha, (*,v) f(x, y) (S)(T, U).
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For any reeursive function f(x, y), we define

](x,y) O, ifx 0ory 0

f(x-- 1, y- 1), otherwise.

Zf(x, y) f(x -b 1, y) f(x, y),

A f(x, y) f(x, y - 1) f(x, y),

Dr(x, y) A Z](x, y),

Df+(x, y) Dr(x, y), Dr(x, y) >_ 0

0, otherwise

Dr-(x, y) -Dr(x, y), Dr(x, y) <_ 0

0, otherwise.

T.oaE 2. Let f(x, y) be recursive. Then for T, U

h (T, U) (r+.v+)Df+ (r+.v+) Dr- *(r+.v+,) Df
In particular, for n, k e ,

f (n, k) Z--0 Z-o Df+ (i, j) Z-0 Z-0 Dr- (i, j).

Throughout the remainder of this paper we shall use the notation and ter-
minology introduced in Section 2 of [14]. We shall also use the notations
j (a,/) for

{j(x,y) ]xeaandyeB}

and a for "a is separable from f by disjoint r.e. sets".

3. Proof of the main theorem for n 2

LEIIM. 1. Let f(x, y) be an increasing recursive function. Let m, p, k, be
numbers such that 0 <_ m <_ p and 0 <_ k <_ . Define

W {(i,j) (i,j)_< (p, 1) and (i,j) $ (m,/)}.

Then "(.),, Df(i, j) >_ O.

Proof.

f(p, l) :(m, k) >_ O.

LMX 2. Let A, B e h, e. Let f(x, y) be increasing and recursive. If
A - B cA,, thenf(A, B)

Proof. By Theorem 2, we need only prove that

(2.1) (+,.B+) Df+ >_ (+.+)Dr-
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Let a and/ be sets belonging to A -t- 1 and B + 1 respectively, and let a and
b be regressive functions ranging over a and f respectively. Since A B e A,
(A -{-1). (B - 1) e A. Let u be any regressive function ranging over
j (a, f). Define

+ U(,.),, ja (a b (Dr+ (i, j)

i- U(,..),, ja (a, be, (Dr- (i, j) ))

Clearly (2.1) will follow if we show the existence of a one-to-one partial re-
cursive function p (x) such that

(2.2) - c domain (p), p(i-) c + and p(-) + p(-).

We shall prove the existence of a one-to-one correspondence z - g (z) which
associates with each member z of t- a member g (z) of + in such a manner that

(2.3) given z we can effectively find g (z) and vice-versa, and

(2.4) a
This will complete the proof by Proposition 1 of [6].
The description of the correspondence z -. g (z) requires the following series

of definitions.
Let ql, q2 and r be regressing functions of a,, b and u, respectively. Let
be any finite subset of j (a, ). Define

Let ’1 {a(),a(2), a()} and {b),... b(o} wherei(1)
< i(s) and j(1) < j(2) < < j(t).

Define
P() {j(a,, b) i < i(s) and j < j(t)},

R ( r (j (a b) a e and bei’ and

B () P (R ()), B (’) (J S (i’).

We note that i" B (i’) and that B () B+1 () for i _> 1. It is clear
that given " we can effectively find B (’) for any i >_ 1. Thus B (’) is an r.e.
subset of the isolated product set j (a. ). It follows immediately that given
a finite set i" we can find B() by generating the sequence of sets B (),
B (i’), until a repetition appears. Furthermore, the definition of P yields
the existence of a pair (a, b) e B (’) such that

(2.5) B( {j (a, b (i, j) <_ (,

We now define sequences of sets IS} and {W} as follows:

So B({j(ao, b0)}),

S+ B(S u {j (a, b)} )
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where j (a, b) us and (y)[u t Sn],

W0 S0, W,+ S.+- S.,

ln {(i, j) ]j(a,, b) e

Clearly given any member of Wn we can use the given regressing functions
to list the sets S0, ..., S. and thus obtain W0, W, ..., W., W0, "",

We note that by (2.5) and the definition of W.+, for each n e there exist
numbers m, p, k, such that (m, k) _< (p, l) and

ln+l {(i,j) (i,j)_< (p, 1) and (i,j) $ (re, k)}.

Hence by Lemma 2, for n > 0,

(2.6) (.),n Df+ (i, j) (,..),n Dr- (i, j) >_ O.

For n 0, the left-hand expression in (2.6) is merely a member of the range
of the recursive if (x, y). Hence (2.6) holds for all n e e.
Wenow define the correspondence z .- g (z). Let z e -. Let n be the unique

number such that j (kl (z), ks (z)) e W. Define

" (J(,),,, j (a b , (Dr+ (i, j)

" (J(,.), j (a, b , (Df- (i, j) )

Let c < c < < c, and d < d < < d be finite sequences which array
in increasing order all elements of the sets and , respectively. By (2.6),
s >_ t. Pair c with d, i 1, t. Since z , z d for some/c, 1 _</

_
t.

Thus z is paired with c. Set g(z) c. (Note that g (z) e +, as required.)
That g has properties (2.3) and (2.4) is a consequence of the following ob-

servations. Let y e + (J - be given. Let j (/c (y), ](y)) e W.. Then we
can find all members of Wn, In, and , and list all pairs (z, g (z)), z e ,.
Examination of this list suffices to determine whether or not y e g (-). Fur-
thermore if y e - (y e g (-)), examination of the list suffices to determine the
value of g (y) (g- (y)).

LEMA 3. Let A, B An . If A.B A, and h (x, y) is a recursive func-
tion such that h (x, y) >_ 0 for x, y , then. h (x, y)

Proof. Let a e A and f e B. Let an and bn be regressive functions with
ranges a and respectively. Let p (x) be a regressing function for an and
q (x) a regressing function for bn. Let p*(x) and q* (x) be partial recursive
functions such that p* (an) n and q* (bn) n for n e . Let un be a regres-
sive function ranging over j (a, f). Define 5n k (u,) and n (un). Then
j(a, ) {j(an, $,) ne el.

Define

" (J:-0 ja (Sn, Sn, [h (p* (5n), q* ($.))])
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Then e. h (x, y). We array the elements of in the following fashion:

ja (, o 0), "", j (5o, $o, h (p* (ao), q* ($0)) 1

j(a,,, ,,, O) ,j(a,,, ,, h(p*(a,,), q*(5.)) 1)

ja (a.+, $.+, 0), ..., j (.+, $.+, h (p* (5.+), q* ($.+)) 1

It can easily be shown that we can "regress" through this array by proceed-
ing from right to left in each row, and from the (n + 1) row to the n.
THEORE 3. Let A, B A , and let f (x, y) be an increasing recursive

function. Then
A +Behf(A,B) eh.

Proof. Observe that the function

h (x, y) f(x, y) + $=0 "-0 Dr- (i, j)

is a recursive function with the property that Dh (x, y) > 0 for all (x, y) e.
Extending the defining equation of h to A, we obtain

hx (A, B) fx (A, B) + (a+x,,+x)Dr--(x, y).

By Lemma 2, f (A, B) A, and by Lemma 3 (a+x.+x) Dr-(x y) e A and
h2t (A, B) e A.
Hence h (A, B) _< h (A, B), and f (A, B) A.

COROLLAIY. Let f(x, y) be recursive and almost increasing. Then

(.) A + B e A fx(A, B) e A.

Proof. Let A and B be regressive isols such that A + B e A. Let k be a
number such that f(z + k, y + k) is increasing. We distinguish two cases.

Case 1. EitherA or B is finite. Suppose A is finite. Define g (y) f(A, y)
for y e e. Then g (B) fx (A, B). Since g is a proper specification of f, g is
eventually increasing. Hence by Theorem 4 of [3], f (A,B) e A. The proof
is completely similar if B is finite.

Case 2. A and B are both infinite isols. Let g (x, y) f(x + k, y + k).
Then fx (A, B) g (A k, B k). Since g (x, y) is recursive and increas-
ing, Theorem 3 yields A + B e A..

Notation. We shall write (x, y) < (z, w) if (x, y) _< (z, w) and
(x, y) # (z, w).

LEMMA 4. Letf(x, y) be a recursivefunction which is not eventually increasing.
Then there exist infinite regressive isols A and B such that A + B A and
f(A, B) e A* A.



Proof. Sincef (x, y) is not eventually increasing, we can effectively generate
a strictly increasing sequence

(n, m, s,, t) i O, 1, ...}
of four-tuples such that for i e ,

(nt, mr) < (st, tt) < (nt+x, mr+l), f(nt, mr) > f(st, t,),
(2.7)

lim_, n limt. ms o.

We note that each of the functions n, ms, s and t is recursive and increas-
ing. We define recursive functions a and b as follows"

ao no, bo mo

bl to- mo

b m.- t_x

b+ t m.

’2k+lm =o b, t Z.-o b.

For T e A, we define A. r a and B. . bi. Since

A.+B. . (a+b),A,+Brh forTeA.

For i e e, define

W {(x,y) (x,y)_< (st,tt) and (x,y) $ (n,m)},

So {(x, y) (x, y) _< (no, too)},

S+x {(x,y) (x,y) <_ (n+x,m+l) and (x,y) $ (s,t).

We note that the sequence of sets So, Wo, Sx, Wx, is an infinite sequence of
mutually disjoint sets whose union is e, and that for i e e,

So u Wo u u W_ S, {(x, y) (x, y) <_ (ni,
(2.9)

&uWou uuW, {(x,y) (x,y) <_ (si, tt)}

We define a recursive function g (x) mapping e to e* by

g(2k) (,.),a Dr(i, j), g(2k + 1) (c),w Dr(i, j).

By (2.8) and (2.9),

(2.10)

Thus for k e e,
(2.11) =o g(i) f(=o a,, =o
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By (2.10) and (2.7), for ] e e,

g (2/ + 1 f(s, t) f(n, m) < O.

Thus g assumes negative values infinitely often. Extending (2.11) to
we obtain for T e

*r+x g(i) fA(r+l a, r+l b) f(Ar+l, Br+).

It follows from statement (30) in the proof of Theorem 4 of [3] that there exists
a regressive isol T + 1 such that r*+x g (i) e A* h. For such an isol T 1,

f, (A r+l, Br+) e A* A,

while Ar+ + Br+ e A.
COROLLARY. Iff (X, y) is a recursive function which is not eventually increas-

ing, there exist recursive functions a,, and b,, and an isol T e AR such that

f(r an, rb)eA* A.

THEOREM 4. Let f(x, y) be a recursive function, f has the property

A +BeAf(A,B) eA

if and only if f is almost increasing.

Proof. We have already shown that the second condition implies the first.
Suppose that f is not almost increasing. If f is not eventually increasing, f
does not have the property (.) by Lemma 4. If there is a number k such that
the proper specification f(x, k) is not eventually increasing, by Theorem 4 of
[3] there exists a regressive isol T such that f (T, k) A. Hence f does not
have the property (.). The case in which some specification f (/c, y) is not
eventually increasing is handled similarly.

4. Applications
Myhill and Nerode have shown that if (xx, ..., x) is a quantifier-free

Horn formula built up from equations between almost combinatorial recursive
functions of xx, ..., x and (xl, ..., x,) is true for all natural numbers, then
(x, ..., x) is true for all isols x, ..., x [11], [12]. Using this result
and the fact that any recursive function can be expressed as the difference of
two recursive combinatorial functions, one can easily prove the following
proposition.

PROPOSITION 2. Let (x, x,) be a quantifier free Horn formula built
up from equations between almost increasing recursive functions of x, ...,
If (x x, is true for all natural numbers, then. ?I (x, x,, is true for
all isols xl x,, such that x + x + x,, e A.

COROLLARY. Let (x x, y) be a quantifier free Horn formula built up
from equations between almost increasing recursive functions of x, ..., x,, y.
If (y) (x x, y) is true for all natural numbers xl x, and has an
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almost increasing recursive Skolem function f (xl, x), then (y
x,, y) is true for all isols x ..., x,, such that x -b x2 -b -b x,,

Proof. Immediate from Proposition 2 and the fact that the class of almost
increasing functions is closed under composition. We leave verification of the
latter fact to the reader.

Let pr(n) denote the primitive recursive function which enumerates the
prime numbers in increasing order. J. C. E. Dekker proved in [8] that
Xr() X (mod pr (n)) for X e A, n e e. J. Barback has shown in [2] that the
class of all prime regressive isols has cardinality c and properly contains the
class {prA (T) T e h,/. Hence it is natural to ask if the above congruence
holds if pr (n) is replaced by an infinite regressive prime isol. The following
corollary describes a class of regressive isols for which the congruence is
satisfied.

COROL.ARY. Let A and B be regressive isols such that A -b B hR. Let
P prA (B). Then A" A (rood P).

Proof. Consider the formula

(3w)[(x -b 1)r() w.pr(n) -b (x -b 1)].

This sentence is satisfied by all x and n in e and has the recursive increasing
Skolem function

W(x, n) (x-b 1)"*(") (x-[- 1)
pr(n)

By the previous corollary I is satisfied by all A, B e AR such that A -t- B
This completes the proof in case A 0; if A 0, the congruence is clearly
satisfied.

J. Barback has shown in [2] that there exist A, B e AR such that

min (A, B) $ A -b B,
but that the restriction A -b B e AR is sufficient to guarantee that
min (A, B) _< A - B. The following proposition shows that this restriction
is not sufficient to guarantee that min (A, B)

_
max (A, B).

PRoPosio 3. There exist isols A, B such that

A-bBAR and minA (A,B) Smax (A,B).

Proof. Let g (x, y) max (x, y) -" min (x, y). Then the identity

(**) min (A, B) -b g (A, B) max (A, B)

holds in A* for A, B A. However g (x, y) is not eventually increasing. Let
A, B AR be such that

A -b B e It and gA (A, B lt* h.
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Since A - B A, both minA (A, B) and maxA (A, B) are regressive. By the
identity (**), minA (A, B) $ maxA (A, B).

By the corollary to Lemma 4, Proposition 3 may be strengthened as follows.

PROPOSITION 4. There exist recursive functions a, and b and a regressive
isol T such that

minA (r a,, b) $ maxA (r a,, r b,).
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