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This paper is an extension of the results of [8] to the exceptional Lie groups
G and F4. In [8] we discussed the following situation. Suppose G is a com-
pact connected Lie group and H is a subgroup of maximal rank. We let
R (G) and R (H) denote the complex representation rings of G and H respec-
tively [1], [6]. We can think of R (G) as a subring of R (H) [6] making R (H)
an R (G) module.
An extension of the Weyl character formula yields a duality homomorphism,

F R (H) --, Hom(a) (R (H), R (G)),

and this was shown in [8] to be an isomorphism for a large number of cases
involving the classical groups.
Among the corollaries of this theorem is a new proof of the conjecture by

Atiyah-Hirzebruch [2] that R (H) -- K (G/H) is onto. We are also able
to derive an explicit free basis for generating R (H) over R (G). This in turn
yields an explicit basis for the free abelian group K (G/H) [8, 9].
For those more familiar with equivariant K-theory we know that R (H) ---Ka(G/H), R (G)’ Ka(point) [7]. The theorem can then be thought of as

a Poincare duality result for this cohomology theory.

1. Let G be a compact connected Lie group and H a subgroup of maximal
rank. That is H contains a maximal torus, T, of the group G. We can form
the complex representation ring of G, denoted R (G) [1], [6]. As a group R (G)
is the free abelian group on the set of isomorphism classes of irreducible com-
plex representations of G, with the ring structure induced by the tensor product
of representations. Restriction of representations makes R (G) in a natural
way a subring of R (H), and R (H) a subring of R (T) [6]. We also think of
each ring as a module over its subrings.

If T S X S (n times) then R (T) Z[x, x,, x, x’]
the polynomial ring over the integers in n indeterminates and their inverses
[1]. To each group G, H is associated a group of automorphisms of T (hence
of R (T)) called the Weyl group, denoted W (G), W (H) respectively. A ma-
jor theorem in the representation theory of Lie groups asserts that R (G) is
the fixed subring of R (T) under the action of W(G) [1].

It is well known [1] that each element of the Weyl group can be given a sign,
(- 1 ) =i= 1, for e W (G). An alternating operator, A, can then be defined
for all x eR(T) by A (x) w<o) (-1)(x) [1], [8].
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The irreducible representations of T are known as weights. To each group
G, H is associated a subset of weights called the roots of the group. With some
choice of "orientation" a subset of roots called the positive roots can be singled
out [1]. If G is simply connected then the product of positive roots (a mono-
mial) raised to the one half power is a well defined weight denoted t (G) [1],
[8]. Here we are translating the usual additive notation of [1] into multiplica-
tire notation, t (G) is usually referred to as "one half the sum of the positive
roots" (see [8] for correspondence).

These notions can be extended to the case where rl (G) has no two torsion
but we will only need the simply connected case for this paper (see [8]).

Using a generalization of the Weyl character formula discussed in [4] we
can define an R (G) module map f" R (H) --* R (G) [8, Proposition 3]. If G
and H are simply connected then f(x) is defined as A ( (H).x)/A (J3 (G)) for
x e R (H). For the case H T we let f (T) 1 and we get the usual Weyl
character formula.
f induces a duality homomorphism F" R(H) -- Hom(a)(R (H), R(G)) by

F (x)(y) f(x.y), x, y e R (H). We can also associate to F a bilinear form

F" R(H) X R(H) -- R(G)defined by/P (x, y) f (x.y). In [8] we showed that F was an isomorphism
for the case G a classical group and H a suitable subgroup of maximal rank.
In this paper we will extend this result to the cases G G., H SU (3) and
G F4, H Spin (9). Let us first recall a number of lemmas and corollaries
from [8].

LEMMA 1.
a(x) O.

If x, a weight, is left fixed by any element of the Weyl group then

Proof. See [1, 6.12].

COROLLARY 1. (i) Suppose S,, <_ W (G) where S,, denotes the symmetric
group on {xl, ..., x,,}. Then if x II=l x eR(T) and m ms, i # j,
then A (x) O.

(ii) Suppose W (G contains the group generated by S,, and the maps x- x7,
i 1, ...,n. Then

A(x) O, x II, _lX lm, Impi.

In either case we say x is symmetric in some (i, j ).

LEMMA 2. Suppose ra,} ,-x, {b’}r=x are 2 sets of elements from R (H), where
N W(G) I/I W (H) [, and suppose that the determinant of the matrix ((E (a,
bi))) is a unit of R (G). Then R (H) is a free module over R (G) of rank N,

a N rfreely generated by either }= or {b.}=l. Furthermore F is then an isomor-
phism,

F" R (H) -- Hom(a) (R (H), R (a)).

Proof. See [8], 2.
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Remark. If the hypothesis of Lemma 2 are fulfilled we call F strongly non-
singular (often s.n.s.). We will show that F is an isomorphism by showing
that is s.n.s, in each case.

LEMA 3 (Inductive Lemma). If both

F" R(T) X R(T)-->R(H) and F" R(H) X R(H)-->R(G)

are s.n.s, then so is R (T) X R (T) ---> R (G).

Proof. See [8, 3].

In [2] it was conjectured that " R (H) --+ K (G/H) is onto for suitable
H _< G (see [2] for details). This conjecture was proved there for a number of
cases including those discussed in this paper. The results here will yield an-
other proof and will in fact give a specific set of generators for the free abelian
group K (G/H).

COROLLARY 2. If R (H) X R (H) -- R (G) is strongly non-singular then

a" R (H -- K (G/H)

is onto. Furthermore a (a .. ({ a (b }- provides a basis for the free abelian
group K (G/H).

Proof. See [8, 9].

2. Let G2 be the simply connected compact Lie group representing the local
structure G.. G2 contains SU (3) as a subgroup of maximal rank [3]. Let T_. Z[x.4-1 4-1be a maximal torus for SU (3) and G2, R (T) x2 ]o The positive roots
of G2 can be chosen to be [3]

The last three represent a choice of positive roots for the maximal subgroup
U(3) [3]. It follows tt (Gu) x x2 nd (U(3)) x w2.

It is well known [I] that to each root there corresponds an element of the
Weyl group, usually referred to as "reflection in the plane perpendicular to the
root" (see [i] where an explicit formulu is given to deterne the action of ts
element). For example, to h roo Xl o G2 there corresponds 1 W (G2)
sending Xl x d leaving everything else fixed. Silrly for xu.
The Weyl group of SU (3) acts on R (T) as the group of permutations on the

-i -i [1]. The index of W (SU(3)) in W (G2) isset {x, x2, x}, where x x x
2 [5], nd I is representative for the non-tri1 left coseC.

If we let

-Ix-1 -1 -1p xWXzWX and p2 x + +x.x2

then R (SU (3)) Z[pl, psi, the polynoal ring on 2 indeternates [i].
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THEORE 1. F R (SU (3)) -- Hom(a,) (R (SU (3)), R (G)) is an iso-
morphism.

Proof. If we let be the induced bilinear form then we will show that is
s.n.s. Let {a} {1, p2} and {b.} {p, 1}. The result will follow if

(a,b) +1, i---j.
0, i<j.

This in turn will follow if

(1) A((SU(3))) 0and
(2) A (p.(SU(3)) A (f(G)).

--I --I(SU (3)) Xl x. which under the action of the map sending Xl X2 -- Xl X2
followed by the map xl xa x-lx- is left fixed. Lemma 1 then implies
that A (x x) 0.
A ( (SU (3)). p2) A (xl z) + A (z) -t- A (x x). The first two sum-

mands are zero by Lemma 1 and the last is A (f (G)).

COROLLARY. R (SU (3)) is freely generated over R (Gs) by the set 1,
(See Lemma 2.

Note. This corollary together with [8, 4], provides a free basis for R (T)
as an R (G) module.

COROLLARY. a R (SU (3)) -- K(G/SU (3)) is onto and K (G2/SU (3
is a free abelian group with a (1), a (p2)} providing a free basis.

3. Let F4 be the simply connected compact Lie group representing the local
structure F4. F contains Spin (9) as a subgroup of maximal rank. Let H
Spin (9) for the rest of this section, and let T be a maximal torus for F and H.
In order to get a reasonable model for the action of W (H) on R (T) we must
use the method of [6] and view

R(T) = Z[x, xl, 112 112 1/2 1/2
X X2 X 4 J.

With this description W (H) acts on R (T) as the group generated by S, act-
ing on {xl, x}, together with the maps sending x - x1, i 1, .... 4
[6].
The positive roots of F can be chosen to be [5]

xlI2 :l:lS 4-112 q-ll$/x,lulx, x:llul x2 xa x4 , 1_<i<j_<4.

The first two sets represents a choice for the positive roots of H [5]. Accord-
ingly

1112 5]2 8]2 1/2 7/2 5]2 8/2 1/2(F) x z and (H) z x .
112 --112 --1/2 --1/2Let , e W (F4) be the element corresponding to the root Xl x2 xa x

An elementary calculation using the formula in [1] yields the following action
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for - (x) x x x x
l/2,e/2,ea/2,e4/2(x) 1 8 where 1, --1 for j i, i 2,3,4.

In ts calculation we are using the forma in [1] with (x, x) . Let
us choose as a representative for a non-trivial element of W(F)/W(H).

If W (H) W(F) is the element permuting [x, xT then

Since a (x) x x xa x for any a W (H), represents a second
non-trivial 4ement of W(F)/W(H). Being that W(F)I/ W(H) 3
[2], [, ] together with W (H) describes complet4y the action of W (F)
on R(T).
R (H) Zips, p, m, ] where p are the ith elementary symmetric functions

x- x7, 11 (e.g. p x + + x + x-on the set {x, ..., x, ...,
x 1) and A is the "Spinor representation"

[6].

OEM 2. F R (Spin (9)) Home(r,) (R (Spin (9)), R (F)) is an iso-
morphism.

Proof. Let represent the induced bilinear form. We will show that is
s.n.s. If we let {a} 1, A, A} and {b} A, A, 1} then we claim that

F(a,b) +1’ i=j.
O,

The claim 1 follow provided we can show"

(1) A(H)) 0,
(2) A((H).a) 0,
(3) A((H).a) +((f)).

Recall that (H) x x xa x ( (H)) x x xa wch is left fixed
by . Lemma 1 therefore implies that A ( (H)) 0.

(H) A is sum of monoals of the form xxxmx’ where the m are
non-negative tegers g4. If any m 0 then the monoal is left fixed by. If m m, i j, then it is left fixed by the element permuting x and
x. In either case the ternating sum of these terms is ero by Lemma 1.
It follows that A ( (H). A) A (x x] x x). (x x x] x) x[ x xa which
is left fixed by . Therefore A ( (H). A) 0.

In R (H) we have the identity A p W pa W p W p W 1 [6]. To con-
clude the proof we will show

A (g)p,) 0, i 3, and A (H).pa) +A ((F)).
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An analogous argument to the one used for t (H). A shows that
9/2 5/2 8/2I12\A((H).)=Azx z2 z .

All other summands are zero (e.g. most are symmetric in some (i, j) (see
xg/2x/2X8/2xl/2Corollary1). ,fixes implyingA(t(H)pl) 0.

p. contains pl - 3 as a summand. The compliment of pl -t- 3 in p. is the
sum ’<. xxJ,e, e :i=l. Once more all termsbut one are triviallyin the
kernel of A and we get

9/2 7/2 8/2 1/2A ((H).p2) A Xl x2 x x4 ).
9/2 7/2 8/2 1/2

XXl x2 x x x2 x which is left fixed by proving that A ( (H).p)
0.
It follows from the previous remarks that we can drop all the summnds of

p which are either integers or summands of p2 W p. The complement con-
sists of

If we check t (H). x we will see that all but one term is either symmetric in
some (i, j) or is in the orbit of a monomial previously shown to have alternat-
ing sum zero (e.g. (H) Xl x-x x x2 x x wchis in the orbit of
9/2 5/2 $/2 1/2x x2 x x ). The exception is (H).XlZX x z2 x x. Under
4 ts monol is mpped to (F) implying that A ((H).p)
+A ( (F4)).

where e 1 and C is a term made up of monomials appearing as summands
in p2 W pl. A monotonous repetition of the previous arguments shows that

A ( (H)q) A[ (H) (x.x2.x.x - Xl.X.x x- - x.x2.x)]
912 7/2 5/2 3/2 912xT/2x12-112 9/2 7/2 5/2 1/2=A x2 z z -t- -i-z1 2 z ).

The last two terms are images of each other under the action of 4 ((-1)’
-1 and therefore cancel in the alternating sum.

9/2 7/2 12 312
X X,. X X, )= X X

which is left fixed by .
the theorem.

Therefore A ( (H).p4) 0 completing the proof of

COROLLARy. R (Spin (9)) is a free module over R (F) with {1, A, A2} as a
set offree generators. (Using the results of [8, 8], we can get a basis for R (T)
over R (F).)

COROLLARY.
a" R (Spin (9)) --+ g (f4/Spin (9))

is onto and K (F4/Spin (9)) is a free abelian group of rank 3 freely generated by
the set {a(1), a(A), a(A)}.



ALGEBRAIC STRUCTURE OF /-THEORY 515

BIBLIOGRAPHY

1. J. F. ADAMS, Lectures on Lie groups, W. A. Benjamin, N. Y., 1969.
2. M. F. ATIYAH AND F. HIRZEBRUCH, Vector bundles and homogeneous spaces, Proc. of

Symposia in Pure Mathematics, ol. 3, A.M.S., (1961) pp. 7-38.
3. A. BOREL AND J. SIEBENTHAL, Sur los souR-groupeR fermds connexes de rang maximum

des grouper de Lie clos., C.R. Acad. Sci. Paris, vol. 226 (1948), pp. 1662-1664.
4. R. BOTT, "The index theorem for homogeneous diff. operators" in Differential and

combinatorial topology, edited by S. S. Cairnes, Princeton, 1965.
5. N. BOURBAEI, Grouper et algebres de Lie, Chapter 6, Hermann, Paris.
6. J. MILNOR, The representation rings of some classical groups, Notes for Mathematics,

no. 402, Princeton Univezsity, 1963.
7. G. SEGAL, Equivariant K-Theory, Inst. Hautes Etudes Sci., vol. 34, 1968, pp. 129-151.
8. J. SHAPIRO, A duality theorem for the representation ring of a compact connected Lie

group, Illinois J. Math., vol. 18 (1974), pp. 79-106.

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY
HAIFA, ISRAEL

WASHINGTON UNIVERSITY
ST. LOUIS, MISSOURI


