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1. Introduction

As in [2], we consider finite-dimensional graded Lie algebras over a field F
of characteristic 0. The grading is by integers mod 2 and enters into the defining
identities as follows. Let Lo and L1 be the homogeneous components of the
2-graded Lie algebra L, let x e L, y e L, z e L. Then Ix, y] lies in L+t,

and

[x, [y, z]] [Ix, y], z] + (-1)’[y, Ix, z]].

We call such a Lie algebra semisimple if all its finite-dimensional 2-graded
modules are semisimple, i.e., have the property that every homogeneous sub-
module has a homogeneous module complement.

It has been made apparent in [-2] that the requirement that a 2-graded Lie
algebra be semisimple in this representation-theoretical sense is a very severe
restriction, ruling out all the examples that come to mind first, excepting, of
course, the ordinary semisimple Lie algebras L with L (0). The main result
we obtain here is the complete determination of all semisimple 2-graded Lie
algebras over an algebraically closed field F of characteristic 0. It turns out that
the sole example given in [2] is the first member of an infinite sequence of semi-
simple, oddly generated and simple 2-graded Lie algebras L(n), which are ob-
tained in a natural way from the ordinary simple Lie algebras of type C,. This
is the symplectic sequence given in Section 4 below. In the algebraically closed
case, every semisimple 2-graded Lie algebra is a direct sum of members of this
sequence and ordinary semisimple Lie algebras. In view ofthis result, the general
theory given in Sections 2 and 3 below essentially completes its life cycle right
here.
From the viewpoint of classical representation theory of Lie algebras, the

feature singling out the type C, as the only possibility in the above is that it is
the only type in which the extremal (highest) roots are divisible by 2 in the group
of weights. This is seen quite clearly in the proof of Proposition 3.2.

It should be emphasized that almost all questions concerning simple, not
necessarily semisimple, oddly generated 2-graded Lie algebras are still open.
We merely exhibit two interesting new sequences of examples in Section 5.
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2. A semisimplicity criterion

Let F be a field of characteristic 0, and let R Ro + R1 be a 2-graded
F-algebra. Let A and B be 2-graded R-modules, and let HomF (A, B) denote
the F-space of all F-linear maps from A to B. The 2-gradings of A and B define
a 2-grading of HomF (A, B), where Homv (A, B)0 consists of the degree pre-
serving maps (i.e., of the morphisms of the category of 2-graded F-spaces), while

HomF (A, B)I consists of the F-linear maps sending Ao into B and Ax into Bo.
Suppose that S So is an F-subalgebra of Ro. We denote by Homs (A, B)

the homogeneous subspace of HomF (A, B) consisting of the elements f such
thatf(s’a) s .f(a) for every s in S and every a in A.

Finally, we define the homogeneous F-subspace HomR (A, B) ofHomv (A, B)
as follows. The component HomR (A, B), consists of the elements f of
HomF (A, B) such that

f(r a) (- 1)Pr f(a)

for all elements a of A and all elements r of Ro. Clearly, HornR (A, B) c

Horns (A, B), and the morphisms of the category of 2-graded R-modules are
the elements of HOmR (A, B)0.
The 2-graded R-module B may be viewed naturally as a 2-graded S-module.

If K is any 2-graded S-module, we have the functor Homs (K, ) from the
category of 2-graded R-modules to the category of 2-graded F-spaces. On the
other hand, we consider the 2-graded R-module R (R)s K and the functor
HomR (R (R)s K, ). As in the usual ungraded case, these two functors are
naturally equivalent. The isomorphism Horns (K, B) HomR (R (R)s K, B)
is as follows. Iff belongs to Homs (K, B), then the corresponding element f’
of HomR (R (R)s K, B), is characterized byf’(r (R) k) (- 1)r .f(k) for every
k in K and every r in Ro. The inverse map is obtained in the evident way from
the canonical map K R (R)s K.
Now let us consider an exact sequence

(0)- U- V W(0)

in the category of 2-graded R-modules. Assume that this sequence is split when
viewed as an exact sequence in the category of 2-graded S-modules. Then the
induced sequence

(0)- Homs (K, U)-, Homs (K, V) Homs (K, W) (0)

in the category of 2-graded F-spaces is exact. Because of the above natural
equivalence of functors, this implies that the sequence

(0) Homg (R (R)s K, U) Homg (R (R)s K, V) Homg (R (R)s K, W) --. (0)

is exact.
Now let L be a 2-graded Lic algebra over F. Let R bc the universal enveloping

algebra q/(L), and let S be the universal enveloping algebra q/(Lo). As usual, we
identify 2-graded L-modules with 2-graded q/(L)-modules. Let A and B be
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2-graded L-modules. Then Home (A, B) has a 2-graded L-module structure,
as follows. For x in Lp and f in HomF (A, B)n, the transform x.f in
Home (A, B)n+p is given by

(x f)(a) x f(a) (- 1)"Pf(x. a).

If y is an element of L, one must verify that

x’(y "f) (-- 1)’y" (x "f) Ix, y] "f
We leave this verification to the reader. It is clear from the definitions that
HomR(A,B) coincides with the L-annihilated part Home(A,B)L of
Home (A, B), and that Homs (A, B) HomF (A, B)L.
We regard F as a trivial L-module, with L. F (0), choosing the 2-grading

such that F Fo. As in [2-], we let (R)o indicate tensoring with respect to
S q/(Lo). Now we are fully prepared for the following semisimplicity cri-
terion.

THEOREM 2.1. Let L be afinite-dimensional 2-graded Lie algebra over thefieM
F of characteristic O. Then L is semisimple if and only if the following two con-
ditions are satisfied. (1) Lo is semisimple. (2) There is an element Uo in
(q/(L)o (R)o F) whose canonical image in F is not O.

Proof Condition (2) is evidently equivalent to the condition that the exact
sequence

(0) LII(L) (R)o F ql(L) (R)o r--. F (0)

coming from the trivial q/(L)-module structure of F be split as a sequence in the
category of 2-graded L-modules. This makes it evident that condition (2) is
necessary. We know from Theorem 4.3 of [-2] that condition (1) is necessary.
Now suppose that conditions (1) and (2) are satisfied. Let (0) A B

C (0) be an exact sequence of finite-dimensional 2-graded L-modules. It is
clear that our definition of HomF (A, B) as a 2-graded L-module makes
HomF (C, ) a functor from the category of 2-graded L-modules to itself.
Since F is a field, this functor is exact. Therefore, applying HOmF (C, ) to
our above sequence, we obtain the following exact sequence in the category of
2-graded L-modules

(0) Home (C, A) Home (C, B) HomF (C, C) (0).

Since Lo is semisimple, this sequence is split as a sequence of Lo-modules. In
other words, it is split as a sequence in the category of 2-graded S-modules.
From our introductory discussion in this section, we know that therefore the
sequence obtained by applying the functor HOmR (R (R)o F, ) is exact. Since
condition (2) is satisfied, we may identify the trivial L-module F with a direct
2-graded R-module summand of R (R)o F. This implies that the functor
Homn (F, ) has the same exactness property as the functor HOmR (R (R)o F, ).
Clearly, for every 2-graded L-module U, we have Homg (F, U) U’. Hence,
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applying the functor HOmR (F, ) to our above sequence, we find that the
sequence

(0) Home (C, A)L Home (C, B)t Home (C, C)c (0)

is exact. In particular, the map Home (C, B)c Home (C, C)c is surjective.
Let Idenote identity map C C. This is evidently an element of Home (C, C)o,
and therefore is the image of an elementfof Home (C, B)oc. Thus,fis a morph-
ism of 2-graded L-modules C B whose composite with the given morphism
B C is the identity map C C. The existence of such a morphismfmeans
precisely that the given sequence (0) --, A ---, B C (0) is split as a sequence
of 2-graded L-modules. We have shown that conditions (1) and (2) imply that L
is semisimple, so that Theorem 2.1 is now established.

The trivial part of Theorem 2.1, namely, the necessity of condition (2) gives the
following very useful necessary condition for semisimplicity.

PROPOSITION 2.2. Let L be a semisimple 2-graded Lie algebra over thefieM F,
and let a be a nonzero element of L1. Then [a, a] O.

Proof Suppose that 0 - al L1 and [al, a] 0. Choose elements
a2,... a in L1 so that (al, a,) is an F-basis of L1. Then and the mono-
mials ai,’"aiq with il <-" < iq constitute a free right q/(Lo)-basis of q/(L)
(cf. [2, Section 2]). Let u be an element of q/(L) (R)o F whose canonical image in
F is 1. Then u is the canonical image of an element v of q/(L) that has the form

v=l+x+ay

where x is a linear combination of basis elements ai, aiq with < i, and y is
such a linear combination plus an element of F. Since [al, a] 0, we have

aa 0 in q/(L), whence av al + ax. This is a nonzero F-linear com-
bination of elements of our q/(Lo)-basis of ’(L), whence a’u O. Thus,
condition (2) of Theorem 2.1 is not satisfied, contradicting the assumption that
L is semisimple. This proves Proposition 2.2.

3. Implications of simplicity

PROPOSITION 3.1. Suppose that L is a semisimple 2-graded F-Lie algebra
having no homogeneous ideals other than (0) and L. Then L is simple (or (0))
as an Lo-module and Lo is simple (or (0)).

Proof By [2, Theorem 4.3], Lo is semisimple as an ordinary Lie algebra,
and [Lo, L] L1. We assume that L1 - (0), because otherwise there is
nothing to prove. Then we have also Lo - (0). Now L1 + [Lt, L] is clearly
a nonzero homogeneous ideal of L, whence [L, L] Lo.

Let U be any nonzero ideal of Lo, and put A L. First, we show that
A (0). Clearly, A is an Lo-submodule of La, so that L is a direct Lo-module
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sumA + M, with[U,M] M. We have

[A, M] [A, [U, M]] [U, [A, M]] = U

whence [[A, M], A] (0). On the other hand, JIM, M], A1 (0), because
it is contained in both A and M. Since

Lo ILl, L,] IN, A] + [M, M] + [A, M]
it follows that

A [Lo, A] [[A, A], A]
Now [[A, A], M] (0), because it is contained in both M and A. Hence we

have

[A, M] [[A, A], [A, M]] c [A, A]
and it is now clear that [A, A] + A is a homogeneous ideal of L. If this coin-
cided with L, we would get the contradiction U [Lo, U] [[A, A], U]
(0). Therefore, we must have A (0), i.e., L (0).
Now let S be any nonzero simple Lo-submodule of L1. Make a direct Lo-

module decomposition L1 S + T. As above, [IS, S], T]---(0). By
Proposition 2.2, IS, S] - (0). By the above, with U IS, S], we have T (0)
so that La S. Thus, we have shown that L is simple as an Lo-module.

In showing that Lo is simple, let us first deal with the case where F is alge-
braically closed. Suppose that Lo is the direct sum X / Y of two nonzero ideals
X and Y. Since L is simple as an Lo-module, with L]" (0) L]’, and F is
algebraically closed, it follows from standard basic theory of semisimple F-
algebra modules that L1 is a tensor product module A (R) B, where Y. A
(0) Ax and X-B (0) B Y. By decomposing A and B into weight spaces
with respect to Cartan subalgebras of X and Y, respectively, we see that there
are nonzero elements a in A, b in B, x in X, y in Y, and , /in F, such that
x.a aandy.b fib. Letubetheelementa(R)bofLt. By Proposition
2.2, we have [u,u] - 0. On the other hand, [x,[u,u]] 2[u,u]X,
whence [u, u] is a nonzero element of Y. Similarly, operating with y, we see
that [u, u] is a nonzero element of Y. This contradicts the assumption X c Y
(0). Therefore, Lo is simple.
Now let us consider the general case. Assume that Lo X / Y, as above.

Let T be an algebraically closed field containing F. Since Lo (R)v T is semi-
simple, it therefore follows from Theorem 2.1 that L (R)v T is semisimple
as a 2-graded Lie algebra over T. Clearly, (L (R)v T)o is the direct sum
of the two nonzero ideals X (R)v T and Y (F To By the above, the simple
components of L (R)v T have the simple components of (L (R)v T)o as their
degree 0 parts. Therefore, L (R)v T is a direct 2-graded Lie algebra sum U + V,
where Uo X (R)F Tand Vo Y (R)v T. If both U and V are (0)then L
(0). Therefore, we may suppose that U1 - (0). Now we have IVo, U1] (0),
whence (L (R)v T) ’ - (0). Clearly, this implies that L - (0), which contra-
dicts what we have found in proving the first part of our proposition. The proof
of Proposition 3.1 is now complete.
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PROPOSITION 3.2. Ifthe basefield F is algebraically closed, then the simple Lie
algebra Lo of Proposition 3.1 is of the symplectic type C, (n 1, 2,... ).

Proof Let/ denote the highest weight of the simple L0-module L1, and let
u be a nonzero element belonging to the weight subspace (L1)u of L1. By Prop-
osition 2.2, [u, u] is a nonzero element of Lo. Clearly, it belongs to the root
subspace (Lo)2u of Lo. Since I-L1, L1] Lo, it is clear that 2/t is therefore the
largest root of Lo. Thus, a necessary condition for Lo is that its largest root be
divisible by 2 in the group of weights, for any choice of a Cartan subalgebra and
ordering of the roots.
The following facts are easily collected from the tables given at the end of [ ].

In all of the exceptional types G2, F4, E6, ET, Es, in B, for n > 2, and in D, for
n > 3, the largest root is listed as one of the fundamental weights. In A, for
n > 1, the largest root is the sum of the first and the last fundamental weights.

Since the fundamental weights constitute a free basis of the group of weights,
all these types are thus ruled out. This leaves only C, for n 1, 2,... (note
that A BI C, B2 Cz).

4. The symplectic sequence

The standard representations of the ordinary simple Lie algebras of type C,
give rise to an infinite sequence of semisimple (and simple) 2-graded Lie algebras
L(n) such that L(n)o is the ordinary simple Lie algebra of type C,. Let us recall
the standard representation of C,.

Let V be an F-space of dimension 2n (n 1, 2,...). Choose an F-basis
(al,..., a,, b,..., b,) of V, and let 7z be the skew symmetric nondegenerate
bilinear form on V V such that rc(ai, aj) 0 rc(bi, bj) for all and j, while
n(a, bj) is equal to if j and equal to 0 otherwise. Let Lo be the Lie algebra
of all those linear endomorphisms of V which annihilate re, i.e., the elements of

Lo are the linear endomorphisms e such that rife(u), v) + re(u, e(v)) 0 for all
elements u and v of V. Then Lo is a simple Lie algebra of type C,, and V is the
standard simple Lo-module. We define L1 to be the Lo-module V. Thus, for
x in Lo and v in V, the Lie product Ix, v] is defined as x(v).
Now let u and v be elements of V. We must define ru, v] as an element of Lo.

The definition is actually obtained in the usual way, using the isomorphism
between V and its dual coming from re. Explicitly, we define [u, v] to be the
linear endomorphism of V given by

[u, v](w) (v, w)u + (u, w)v.

A direct check shows that [u, v-I indeed belongs to Lo (i.e., annihilates z).
Since [u, v] Iv, u-I, there is an F-linear map q: S2(La) - Lo, where S2(L1)
denotes the homogeneous component of degree 2 of the symmetric algebra built
over L, such that rl(uv) [u, v] for all elements u and v of L. A part of the
Jacobi identity for 2-graded Lie algebras says that r/is a homomorphism of Lo-
modules. This is verified directly, as follows. Let x be an element of Lo. Then,
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in S2(Lx), we have x.(uv) x(u)v + ux(v). Hence, with w in V,

r(x.(uv))w) n(v, w)x(u) + n(x(u), w)v + n(x(v), w)u + n(u, w)x(v)

x(n(v, w)u + n(u, w)) + n(x(v), w)u + n(x(u), w)

x[u, ](w))- (, xw))u- (u, x(w))

x([.. ](w)) [.. ](x(w))
Ix, [., ]](w)
Ix, (.)](w).

Thus we have, indeed, rl(x’(uv)) Ix, rl(uv)].
The remaining part of the Jacobi identity says that, for u, v and w in L1, we

should have

[(u). w] + [(w). u] + [(wu). v] o
(cf. [2, Section 4]). This is seen immediately from the definitions, using that n is
skew symmetric. Now we have established that L is a 2-graded Lie algebra.
Since r/ is a nonzero Lo-module homomorphism and since Lo is simple as an
Lo-module, r/is surjective. The dimensions of S2(LI) and Lo are both equal to
n(2n + 1). Therefore, q is actually an isomorphism.
An ideal of L is an Lo-submodule of L. Since the Lo-module L is the direct

sum of the two nonisomorphic simple L0-modules Lo and L1, an ideal must
therefore be one of (0), L, Lo, L1. Clearly, Lo and L are not ideals of L. There-
fore, L is simple, in the sense that its only ideals (homogeneous or not) are (0) and
L. As we know from [2, Section 5], this does not imply that L is semisimple (in
our representation-theoretical sense).
We shall now use the criterion of Theorem 2.1 in order to prove that L is semi-

simple. It suffices to exhibit an element Uo, as in condition (2) of Theorem 2.1.
Working in //(L), put t-- abi ll(L)o. Let Uo be the canonical image in
g(L) (R)o F of the element

(1 t,)(3- tz)"’(2n- t,)

of ’(L)o. Since the canonical image of Uo in F is not zero (being the product of
the odd integers from to 2n 1), it remains only to show that Uo is annihilated
by every element of L. In order to see this, we examine some commutation
relations in ’(L), as follows.

First, let us note that if u, v and w are elements of L then, in ’(L), we have
uv + vu [u, v], etc., whence

uw- w [., ]w- [u, w].
In particular,

uty tyu [u, ay]by ay[u, by].
We have [u, ay]by [[u, ay], by] + by[u, ay]. Hence we have

uty tju + u + n(u, bj)ay + by[u, ay] ay[u, by].
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Now let be an index other than j. Then this gives

and
aitj tjai + ai + bj[ai, aj-] aj[ai, bj]

bitj tjbi + h zt- bj[bi, aj] -aj[bi, bj].

Multiplying the second relation by ai from the left and then substituting for the
resulting aitj the right-hand side of the last equation but one, we obtain

titj tjti + ti d- bj[ai, aj]b aj[ai, bj]bi q- ti d- aibj[b i, aj] aiaj[bi, bj]
Next, we note that

[ai, aj]bi aj + bi[ai, aj] and [ai, bj]bi bj + bi[ai, bj].
Hence we have

bj[ai, aj]bi aj[ai, bj]bi bja + bjbi[ai, aj] tj ajbi[ai, bj]
and

titj tjti + 2(ti- tj) + dij
where dij lies in ql(L)Lo. We shall not need the precise expression for dij (as
obtained from the above), but only the following fact. Let Vk be the F-subspace
Fak + Fbk of L1. Let ]-Vi, Vj] be the F-subspace of Lo spanned by the elements
[u, v] with u in Vi and v in Vj. Then dij lies in [a, b] + q/(L)[Vi, Vf].

It follows immediately from this last result that, for every q in F, and in par-
ticular for every integer q, we have

(q- ti)(q + 2 tj) (q- tj)(q + 2- ti) [a, bj] + //(L)[Vi, Vii.
Now observe that if neither norj is equal to k then, in q/(L), every element of

IV,, V] commutes with every element of Vk. It follows from this and the last
result that, if a is any permutation of (1,..., n), the image in ’(L) (R) o F of

(1 t(l)’" (2n t(,))
coincides with Uo.

Since ILl, L1] Lo, it suffices to prove that Uo is annihilated by every element
of Lx. Therefore, it suffices to show that a. Uo 0 bi’uo for every i.
Because of the above symmetry with respect to permutations of the indices, it is
clear that it suffices to prove that Uo is annihilated by a and b. It is easy to
verify directly that both al(1 t) and bl(1 t) lie in ’(L)[V1, V]. Since
the elements of [Vx, V1] commute with the elements of every Vk with k > 1, it
follows immediately that

VI(1 t).-. (2n t,) c //(L)[V, V1] c ll(L)Lo,

whence Va "Uo (0). This completes the proof that L is semisimple.
We note that the case n is the unique lowest dimensional odd (i.e.,

generated by Lx) semisimple 2-graded Lie algebra, whose simple modules have
been determined explicitly in [2, Section 6-].
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THEOREM 4.1. Let F be an algebraically closed field of characteristic O, and
let L be afinite-dimensional 2-graded Lie algebra over F. Then L is semisimple if
and only if it is a direct sum of 2-graded Lie algebras each of which is either a
member of the symplectic sequence or an ordinary simple Lie algebra.

Proof All that remains to be shown is that if L is as in Proposition 3.2 then
it is a member of the symplectic sequence (the sufficiency of our condition is clear
from Theorem 4.1 of [2]). Let L(n) be the member of the symplectic sequence
such that L(n)o Lo. The proof of Proposition 3.2 has shown that, as an
Lo-module, L1 is determined up to isomorphisms by Lo. Therefore, we may
identify L1 with L(n)l. Let r/, and q denote the Lo-module homomorphisms
S2(L) Lo of L(n) and L, respectively. Since each of these is an isomorphism
and since L0 is simple, we must have r/ cq,, where c is a nonzero element of F.
Choose an element d in F such that d2 c. Then the map L L(n) that coin-
cides with the identity map on Lo and with the scalar multiplication by d on L1
is clearly an isomorphism of 2-graded Lie algebras. This establishes Theorem
4.1.

5. Other simple 2-graded Lie algebras

Let us call a 2-graded Lie algebra L simple if its only homogeneous ideals are
(0) and L. The classification of these is probably quite difficult. The most
natural family of such 2-graded Lie algebras has been briefly discussed in ]-2,
Section 5]. The fact that they are not semisimple is now seen immediately from
Proposition 2.2.
We shall describe two sequences of simple 2-graded Lie algebras that arise in

an interesting way from the classical type A,. Let n be a positive integer, and
let V be an (n + l)-dimensional vector space over the field F of characteristic 0.
Let Lo be the simple Lie algebra of all linear endomorphisms of trace 0 of V.
Let S2(V) and EZ(v) denote the homogeneous components of degree 2 of the
symmetric and exterior, respectively, algebras built on V. We regard these as

Lo-modules in the natural way. Let indicate dual space (and Lo-module), and
let LI be the direct sum of the Lo-modules S2(V) and E2(V). Define the linear
map r/: S2(L) Lo, indicated also by writing q(uv) I-u, v], as follows:

[S2(V), S2(V)] (0) [Ez(V), EZ(v)]
Next, let f be an element of E2(V), and let a, b, x be elements of V. Let ab
denote the canonical image of a (R) b in S2(V), and let a x and b x denote the
canonical images of a (R) x and b (R) x in EZ(v). Then the bracketing with fis
defined so that

lab, f](x) f(a x)b + f(b x)a If, ab](x).
It is easy to verify that the map r/so defined is indeed an Lo-module homo-

morphism S2(L) Lo. Since Lo is simple, it follows from the evident fact that
r/ 4:0 that r/is surjective. In order to verify that we have now the structure of
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an odd 2-graded Lie algebra, it suffices to show that, for all elements u, v, w in
L1, one has

[[., ], w] + [[, w], u] + [[w, u], ] 0.

This verification is somewhat lengthy, but automatic. The fact that L is simple
is easily established, using that Lo is simple and that S2(V) and E2(V) are simple
Lo-modules.
The other sequence of simple 2-graded Lie algebras is obtained from the same

V and Lo, but with L1 the direct sum of S2(V) and E2(V). As above, only the
mixed brackets are different from 0, and the critical part of the definition of r/
is as follows. Let 9 be an element of S2(V), and let a, b, x be elements of V.
Then

I-g, a b](x) 9(ax)b 9(bx)a [a b, 9](x).
The required verifications are very similar, in the two cases.
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