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Introduction

Let R denote a commutative ring with identity and let R[[X]] denote the
ring of formal power series over R in an indeterminate X. If 4 is an ideal of R,
then two naturally associated ideals of R[[X]] are (1) AR[[X]], the ideal of
R[[X]] generated by 4, and (2) A[[X]], the set of power series of R[[X]]
with coefficients all in 4. It is clear that AR[[X]] is contained in A[[X]] and
that if 4 is a finitely generated ideal, then equality holds. In general, however,
AR[[XT]] may not be equal to A[[X]], and it is noted in [19, p. 386] that the
equality AR[[X]] = A[[X]] holds precisely if the ideal A4 satisfies the following
condition:

(*) If B is a countably generated ideal contained in A, then there exists a
finitely generated ideal containing B and contained in A.

We shall say that A4 is a (x)-ideal if the preceding condition is satisfied. It is
clear that finitely generated ideals are (x)-ideals and that a countably generated
(#)-ideal is finitely generated. An example in [19, p. 386, footnote 2] shows,
however, that a (*)-ideal need not be finitely generated. If A4 is a (x)-ideal, then
it can be shown that A4 satisfies the following condition (see Proposition 1.1).

(k%) If A, € A, < -+ is an ascending sequence of ideals of R such that
Ui, 4; = A4, then A = A, for some i.

If A satisfies (), then we call 4 a (**)-ideal. It is easy to see that R satisfies
the ascending chain condition on ideals (that is, R is Noetherian) if and only if
every ideal of R is a (x)-ideal if and only if every ideal of R is a (**)-ideal (see
Proposition 1.2).

In analogy with a theorem of I. S. Cohen [10, Theorem 2] to the effect that
R is Noetherian if each prime ideal of R is finitely generated, Arnold in [4,
p- 20] asked if R is Noetherian, provided that each prime ideal is a (x)-ideal.
Theorem 2.3 shows that the answer to Arnold’s question is affirmative. We
prove in Example 2.4 that the corresponding question for (x*)-ideals has a
negative answer—that is, there exist non-Noetherian rings in which each prime
ideal is a (##)-ideal. Thus, in particular, there exist (**)-ideals that are not
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(¥)-ideals. In order to examine the possibility of a local version of our result
on (*)-ideals being finitely generated, we examine in Section 3 (x)- and (x*)-ideals
of a ring with a linearly ordered ideal system and show, for example, that a
prime (*)-ideal may be the radical of a finitely generated ideal and yet not be
finitely generated.

In order to facilitate the proofs of our main results concerning (x)- and
(*x)-ideals, it is useful to define the (*)- and (x*)-concepts for modules; this we
do in Section 1, where several preliminary results are stated as well.

The concluding section of the paper, Section 4, is primarily concerned with
the problem of determining what rings R have the property that each (sx)-
module over R is finitely generated. Our main results, Theorems 4.2 and 4.10,
show that Noetherian rings and finite-dimensional valuation rings have the
property.

All rings considered in this paper are assumed to be commutative and to
contain an identity element; this is true even in our remarks in the introduction
to Section 3, where a number of the sources cited consider noncommutative
rings as well. All modules are assumed to be unitary, and if R is a subring of
the ring S, then we assume that R and S have the same identity element.

1. Preliminaries

Let M be a module over the ring R. Extending the definitions of the Introduc-
tion, we say that M is a (¥)-module if each countably generated submodule of
M is contained in a finitely generated submodule of M; similarly, M is a
(*x)-module if M cannot be expressed as the union of a countably infinite strictly
ascending sequence M; < M, < -+ of submodules of M. Our first result is
that the second of these notions is implied by the other.

PROPOSITION 1.1. A4 (¥)-module is a (xx)-module.

Proof. If M is not a (xx)-module, then let {M;};2,; be a strictly ascending
sequence of submodules of M such that M = | )2, M;. Choose m;e M;,{ —
M; for each i. The countably generated submodule N = ({m;}2,) of M is
contained in no M, but each finitely generated submodule of M is contained in
some M,. Therefore N is not contained in a finitely generated submodule of
M, and M is not a (x)-module.

It is clear that a countably generated (x*)-module is finitely generated. This
observation immediately implies that the conditions (%), (*%), and Noetherian
are globally equivalent.

PROPOSITION 1.2.  The following conditions are equivalent for an R-module M.

(1) Each submodule of M is a (x)-module.
(2) Each submodule of M is a (xx)-module.
(3) M is Noetherian.
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Since, for R Noetherian, finite generation of M is equivalent to the condition
that M is Noetherian, the next result follows from Proposition 1.2.

COROLLARY 1.3. Let M be an R-module, where R is a Noetherian ring.

(1) M is a (x)-module if and only if M is finitely generated, in which case each
submodule of M is also a (x)-module.

(2) Each submodule of M is a (xx)-module if and only if M is finitely generated.

One of the main results of Section 4 is the analogue of (1) of Corollary 1.3
for the (x*)-condition (Theorem 4.2)—that is, a (**)-module over a Noetherian
ring is finitely generated; the proof is considerably more complicated for the
(*x)-condition.

We record in the next result some basic properties of the (x)- and (*x)-con-
ditions with respect to exact sequences and quotient ring formation. The proof
of Proposition 1.4 is routine and will be omitted.

PROPOSITION 1.4, Let M be an R-module, let N be a submodule of M, and
let S be a multiplicative system in R.

(1) If M is a (x)-module, then so is M|N; the analogous statement for (#x)-
modules is also valid.

(2) If N is finitely generated and if M|N is a (x)-module, then M is a (x)-
module.

(3) If N and M|N are (xx)-modules, then so is M. Thus if M is the direct sum
of a finite family {M}‘_, of submodules, then M is a (xx)-module if and only if
each M, is a (xx)-module.

(4) Conditions (x) and (%x) are inherited by the Rg-module Mg from the
R-module M.

Additional questions arise from the statement of Proposition 1.4, and we
have considered some of these questions. But a detailed investigation of the
conditions (x) and (x*) for modules is largely irrelevant to our two primary
questions of concern, as indicated in the Introduction:

(1) If each prime ideal of R is a (¥)-ideal, is R Noetherian?
(2) What rings R are such that each (¥)-module (or (xx)-module) over R is
finitely generated?

We turn our attention to the first of these questions in the next section.

2. R is Noetherian if each prime ideal of R is a (*)-ideal

In Theorem 2.3 we establish the result that is the title of this section; we

subsequently prove in Example 2.4 that the analogous statement for (xx)-ideals
is false. The proof of Theorem 2.3 uses two lemmas.

LEMMA 2.1. Assume that A and B are ideals of R, that B is a (x)-ideal, and
that B is contained in rad A. Then B" = A for some positive integer n.
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Proof. Suppose that B" & A for each positive integer n. Then there exist
elements b,,, ..., b,, € B such that the product b, - b,, is not in A. Let B’
be the ideal of R generated by all the elements b;;. Then B’ is a countably gen-
erated ideal of R contained in B and no power of B’ is contained in A. But B
is a (x)-ideal, so there exists a finitely generated ideal C such that B’ < C < B;
and C finitely generated with C < rad A implies that some power of C, say
C", is contained in A. Hence (B')" = C" < A, a contradiction.

LEMMA 2.2. Assume that B is a (x)-ideal of the ring R and that (x)-modules
over the ring R|B are finitely generated. If there exists a countably generated
ideal A contained in B such that B < rad A, then B is finitely generated.

Proof. Since B is a (x)-ideal, we may assume that the ideal A4 is actually
finitely generated. By Lemma 2.1, the ideal B" is contained in 4 for some
positive integer n. Also, B/B? is a (¥)-module over R/B, and hence is finitely
generated. Therefore there exists a finitely generated ideal C of R such that
B = B? + C, from which it follows that B = B* + C for each positive integer
k. In particular, B=B"+ C< 4 + C< B, and B= A4 + C is finitely
generated.

THEOREM 2.3. If each prime ideal of R is a (x)-ideal, then R is Noetherian.

Proof. The proof is conveniently divided into two parts, the first part being
to show that each prime ideal of R is the radical of a finitely generated ideal.
This is a condition equivalent to R satisfying the ascending chain condition on
radical ideals (that is, to R having Noetherian spectrum) [36, Corollary 2.4].
Here by a radical ideal we mean an ideal that is equal to its radical. A proof of
this result can be obtained from a careful reading of Arnold’s proof of Theorem 1
of [3]; we give here a self-contained proof for the sake of completeness. Suppose
that in R there exists an infinite strictly ascending sequence 4; < 4, < -
of radical ideals. We show that this implies the existence of a prime ideal of R
that is not a (x)-ideal. Let 4 = (J{2, 4, and choose a; € 4 — A, for each i.
If« = 32, a;X" and if k is a positive integer, then the coefficient of X*" in
o¥, for each i > k, is a%; consequently, o is an element of A[[X]] such that no
power of a is in AR[[X]] = (J;2, 4,[[X]]. Hence there exists a prime ideal
Q of R[[X]] such that AR[[X]] = Q, but A[[X]] &€ Q. Let P= QO n R
Then P is a prime ideal of R with 4 = P, so A[[X]] < P[[X]]. Since
PR[[X]] = Q, we conclude that PR[[X]] # P[[X]] and P is not a (x)-ideal.
We have thus shown that each prime ideal of R is the radical of a finitely
generated ideal.

Assume that R is not Noetherian. Among the prime ideals of R that are not
finitely generated we may choose a prime P maximal with this property. Then
R/P is a Noetherian ring since prime ideals of R/P are finitely generated.
Hence (x)-modules over R/P are finitely generated, and since P is the radical of
a finitely generated ideal, Lemma 2.2 implies that P is finitely generated. This
contradiction completes the proof of Theorem 2.3.
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We remind the reader that Arnold’s phrasing of the question of whether R
is Noetherian if each prime ideal of R is a (x)-ideal was the following: If
PR[[X]] = P[[X]] for each prime ideal P of R, is R Noetherian? In view of
this, the presence of power series in the proof of Theorem 2.3 may seem more
natural than it otherwise would on the surface.

We next present an example of a ring R, that is not Noetherian (in fact, R,

does not have Noetherian spectrum), although each prime ideal of R, is a
(xx)-ideal.

Example 2.4. Let k be a field and let N be an infinite set. Let R, = k¥
denote the ring of all functions from N to k, with addition and multiplication
defined coordinatewise.®> For example, for f, g € R,, (f* g)(n) is defined to be

f(n) - g(n) for eachn € N. Since N is infinite, it is clear that R, is not Noetherian.
For any f € R, let

A(f) = {neN|f(n) # 0}

be the support of f. Note that f e gR, if and only if /(f) = A'(g). Itis well
known and easily seen that every finitely generated ideal of R, is principal.
Indeed, (f, g) = (h) if and only if /°(h) = A (f) U #(g). It follows that if B
is an ideal of R,, if fe B, and if g ¢ B, then & ¢ B for any h such that A4"(h)
contains A°(g) — A(f). Let 4, < A, < --- be a countably infinite strictly
ascending sequence of ideals of R,;. We wish to show that 4 = (J2, 4; is
not prime. There exist elements f; € 4;,, — A; for each positive integer i,
and we may choose f; with this property so that also f; € f;R, for j < i. Thus
N (fj) € A (f) for j < i. For notational convenience we write 0 = f, and
define functions g and 4 as follows: g restricted to A(f5,) — A (f2.-1) agrees
with f5,,n = 1,2, ... ; g restricted to /' (f3,—1) — A/ (fop-2)is0,n =1,2,...;
hrestricted to /' (f3,) — A (fon-1)is0,n = 1,2, ... ; hrestricted to / (S5, 1) —
N (fan—) agrees with f5,_, n = 1,2,.... We define both g and 4 to be zero
at each element of N — (|J2, #(f)). By our construction gh = 0 € 4,
while g ¢ A4,, and s ¢ A,,_, for each n. Thus, neither g nor 4 is in 4; hence
A is not prime. We conclude that every prime ideal of R, is a (x«)-ideal. Since
R, is not Noetherian, Theorem 2.3 implies there exist in R, prime ideals that
are not (*)-ideals, and hence examples of (xx)-ideals that are not (*)-ideals.

Rings such as the ring R, = k" in Example 2.4 belong to a well-known class
of rings called absolutely flat rings (or von Neumann regular rings). Such rings
are characterized by the property that localization at any prime ideal yields a
field. We remark that an absolutely flat ring need not have the property that
its prime ideals are (#*)-ideals, for there exist countable non-Noetherian ab-
solutely flat rings; such a ring has a prime ideal P that is countably generated

3 In the terminology of [7, Definition 9, p. 131}, R, is the product of the family {k,},en of
rings, where k, = k for each «; with the same notation, the terminology of [15, Exercise 13,
p. 23] for R, is the complete direct sum of the family {k,},en.
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but not finitely generated, and such a P is not a (x%)-ideal. (In Example 2.4,
if the set N is countable, then the k-subalgebra of R, generated by the identity
element of R;, together with the set of all functions f such that A°(f) is finite,
provides an example of a countable non-Noetherian absolutely flat ring.)

If each prime ideal of the ring R is a (¥*)-ideal, then clearly R satisfies the
ascending chain condition for prime ideals; on the other hand, Example 2.4
shows that R need not have Noetherian spectrum.* In this connection we pose
two questions.

(Q1) If R has Noetherian spectrum and if each prime ideal of R is a (xx)-ideal,
is R Noetherian?

(Q2) If P and A are ideals of R such that P is a prime (xx)-ideal and P <
rad A4, does A contain a power of P?

It is clear that questions (Ql) and (Q2) are related; in fact (Q1l) has an
affirmative answer if the answer to (Q2) is affirmative. To see this we need to
know that (#x)-modules over a Noetherian ring are finitely generated (Theorem
4.2). An affirmative answer to (Q2) implies that Lemma 2.2 generalizes to the
case where (*) is replaced throughout by (+*) and B is assumed to be prime;
using this generalized version of Lemma 2.2 and Theorem 4.2, an examination
of the proof of Theorem 2.3 then yields an affirmative answer to (Q1). A case
of (Q1) of particular interest is that in which R is a one-dimensional quasi-local
domain; we recast the special case in slightly different phraseology.

Q1)  Assume that D is a one-dimensional quasi-local domain with maximal
ideal M. If M is a (xx)-ideal, is M finitely generated?

3. The case of a chained ring

As an illustrative example, we consider in this section (x)-ideals and (xx)-ideals
of rings in the class € of rings in which the ideals are linearly ordered. Since
such rings have arisen fairly frequently in the recent literature (the subsequent
discussion will confirm this), and since we were aware of certain conflicts in the
terminology applied to elements of €, it became a point of interest to us to
determine as accurately as possible what the situation in this regard is.
Kaplansky in [21, p. 479] and [22, p. 35] calls the elements of € valuation rings,
and other recent papers [41, p. 1277], [32, p. 232], [40, p. 890], [39, p. 405]
have used this terminology, citing [21, p. 479] as a reference. This use of the
term valuation ring conflicts with the meaning of the term (Bewertungsring, in
German) introduced by Krull [24, pp. 164-5] (see also [25, Section 40]) to
mean an integral domain in the class € (for integral domains in ¥, Kaplansky
uses the term valuation domain in [22, p. 35]). For commutative rings, Krull’s

“If R satisfies the ascending chain condition for prime ideals, then R has Noetherian

spectrum if and only if each ideal of R has only finitely many minimal prime ideals [34, Séitze
15 and 16].
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definition has been the traditional meaning of the term valuation ring; on the
other hand, Kaplansky does not restrict to commutative rings in his definition
in [21, p. 479], and Schilling [37, p. 298] had previously used the term to
include certain noncommutative rings (see also [38, p. 9]). Citing Skornjakov
[42], Clark and Drake in [8, pp. 148-9] and Clark and Liang in [9, p. 445]
call the elements of € chain rings®; chained ring is the terminology of Gilmer
in [15, Exercise 8, p. 184]. Finally, Warfield refers to the elements of € as
generalized valuation rings in [46, p. 167] and as serial rings in [47, p. 167].5
The class € * consisting of elements of & that are principal ideal rings has
also been considered in several contexts during the last sixty years, again with
no uniformity in terminology. The integral domains in €* are, of course, the
fields and discrete valuation rings’ of rank 1. Working chronologically, and
considering only rings in €* with zero divisors, Frénkel used the term einfach
zerlegbar Ring for such an element of €* in [12, p. 172]; Krull used Ring von
spezillen Typ in [26, pp. 16-17], spezieller zerlegbarer Ring in [28, p. 15] and
in [27, p. 186], then switched to primdrer zerlegbarer Ring in [25, Section 30];
Koéthe’s term in [23, pp. 33, 39] is primdrer einreihiger Ring, while Snapper, in
a paper based largely on [27], used the term completely primary PIR (PIR is an
abbreviation for principal ideal ring) in [45, Section 2]; to Zariski and Samuel
[48, p. 245] an element of € * is a special PIR,® and to Ayoub it is a homogeneous
ring of type p in [5, p. 249] and a primary homogeneous p-ring in [6, p. 383].°
In tracking down the information above we ran across a few papers in which
modules M with a linearly ordered family of submodules are considered. For
the reader’s benefit, the MR reviewer of Skornjakov’s article [44] on this topic
uses the term chained module for M (see MR 39, No. 1500), while the Zbl.
reviewer’s translation of Skornjakov’s term is chainlike module (see Zbl.,
Volume 174, p. 331).!° Following Warfield (who considers modules over

5 We do not have access to [42], but the Mathematical Reviews reviewer of [42] uses chained
ring, rather than chain ring, in the review. We find no review of [42] in Zentralblatt fiir Math-
ematik, but for the closely related paper [43] of Skornjakov, both the review in MR 34, no. 190
and in Zbl., Volume 199, p. 77 use the term chained ring for an element of ¢. Skornjakov
considers noncommutative rings in both [42] and [43], as do Clark and Drake in [8]; all rings
considered by Clark and Liang in [9] are assumed to be commutative.

¢ Precisely, Warfield in [47] defines a (possibly noncommutative ring) E to be a serial ring
if each left ideal and each right ideal of E is a finite direct sum of submodules each having a
linearly ordered system of submodules.

7 Even in the terminology of [22], where a valuation ring need not be an integral domain,
the term discrete valuation ring means a one-dimensional principal ideal domain in the class
% —see page 67 of [22].

8 This term for the elements of ¥* has probably been used more frequently than any other;
however, we will not attempt to document this statement.

9 Ayoub considers only finite rings in [5], but in [6] infinite rings are also considered.

10 Fach of these reviews is written in English, while the paper [44] is in Russian; there is an
inference from the two reviews of [44] that Skornjakov would use the term semichained module
(in English), or halbkettig Modul (in German), for a module that is a finite direct sum of sub-
modules, each with a linearly ordered family of submodules. It must be apparent to the reader
by now that none of the authors reads Russian.
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(possibly) noncommutative rings in [47]), Lewis and Shores in [40, p. 889] call
a module like M a serial module; they indicate that Albu and Nastasescu
consider such modules in [1], which is the preprint form of [2]. Albu and
Nastasescu use no special term in [2] for a module with a linearly ordered
family of submodules.

In view of the above, or perhaps because Krull remains a mathematical idol
of the present authors, we choose to call elements of € chained rings, and we
use the term valuation ring as Krull used it—to mean an integral domain in the
class €. Given the choice of the term chained ring for elements of €, consis-
tency dictates our choice of the term chained module for a module with a
linearly ordered family of submodules.

The proof of the first result of the section is straightforward and will be
omitted.

PROPOSITION 3.1. Let M be a chained module over a ring R. Then M is a

(*)-module if and only if M is a (xx)-module if and only if M is either cyclic or
not countably generated.

PROPOSITION 3.2. Let R be a chained ring and let P be a prime ideal of R
that is not principal. Then P is a (x)-ideal if and only if either (1) the set of prime
ideals of R properly contained in P, ordered by inclusion, is nonempty and has
no countable cofinal subset, or (2) PR is principal and the set of prime ideals of
R properly containing P, ordered under reverse containment, has no countable
cofinal subset.

There are two points in the proof of Proposition 3.2 at which we need to
know that a containment relation of the form uvR < vR is proper; this fact
follows in each case from a basic lemma.

LEmMMA 3.3.  Assume that u and v are nonunits of the chained ring R and that
v is nonzero. Then uvR < vR.

Proof of Lemma 3.3. The proof uses only the fact that u is in the Jacobson
radical of R. Thus, if v is in wvR, then v = ruv for some r in R, whence
v(l1 — ru) = 0 and v = 0 since 1 — ru is a unit of R. This contradiction
establishes the lemma.

Proof of Proposition 3.2. Assume that (1) is satisfied. If {x;};2, is a count-
able subset of P, then the ideal

Bk = (xl, xZ,...,xk)

is principal for each k, and hence B, < P. Let P, = rad B,. We observe that
P is not the radical of a principal ideal xR; otherwise the set {Q}, where Q is
the (unique) prime ideal of R maximal with respect to not containing x, is a
countable cofinal family of the primes of R properly contained in P. Therefore
P, < P for each k, and (1) implies that ((J2, P) < P. In particular,



656 JIMMY T. ARNOLD, ROBERT GILMER, AND WILLIAM HEINZER

({x;}¥) < P and P is not countably generated. Therefore P is a (x)-ideal by
Proposition 3.1, and (1) implies that P is a ()-ideal.

If P satisfies (2), then since P is not principal, P is nonzero and we can choose
a nonzero element x € P such that xR, = PRp. To show that P is not countably
generated it will suffice to show that if {y;}72, is a countable subset of P such
that xR < y;R for each i, then (y,, y,,...) is properly contained in P. Since
xR < y;R, there exists a; € R with x = a;y,. We note that a; ¢ P, for xRp =
y;Rp implies there exists s; € R — P with s;y, € xR, and a; € P would imply,
since the ideals of R are linearly ordered, that a; = s;#; with r; € P. Thus we
would have xR = a;y;R = s;r;y;R < r;xR, while Lemma 3.3 implies that the
inclusion r,xR < xR is strict. Hence a; ¢ P for each i. We prove, using (2),
that P < (¥ a;R). Thus, let Q; be the prime of R maximal with respect to
not containing @;. Then P = Q; < a;R and the inclusion P = @, is strict, for
if not, then {rad a;R} is a countable cofinal family of the set of primes properly
containing P, ordered under reverse containment. Thus P < Q; for each i,
and (2) implies that () Q, properly contains P; in particular P < (|7 a;R
and we can choose s € ([\{ a;R) — P. Then s* ¢ P so x € s?R, say x = s2y.
Since P is prime, y € P. Moreover, y is not in the ideal (y,, y,,...), for
y € y;R would imply xR = s?’yR < syR < a;y;R = xR, which would say that
the ideal xR is properly contained in itself. We conclude that (2) also implies
that P is a (x)-ideal.

Conversely, if P is a (x)-ideal, then PR, is a (x)-ideal of Rp. Hence if P does
not satisfy (1), then an argument similar to that used in the first paragraph of
the proof shows that PR, is the radical of a countably generated ideal of R,.
Lemma 2.2 then implies that PR, is principal, say PRp = xRp, where x is
nonzero. If P does not satisfy (2), then there exists a countable subset {s;}2
of R — Psuchthat (P s;R = P. We show that this implies that P is countably
generated. But this leads to the contradiction that P is principal since P is
assumed to be a (x)-ideal. Since the ideals of R are linearly ordered x € s;R for
each i, say x = s;x;; and since P is prime, x; € P for each i. We claim that
P=(x;,x,...). If ye Pand y ¢ x;R for all i, then y ¢ xR so x = yr with
r a nonunit of R. Moreover, xR, = yRp implies as above that r ¢ P. Hence
r? ¢ Pand s; € r*R for some i. This yields xR = s;x;R < r’yR < ryR = xR,
a contradiction. This completes the proof of Proposition 3.2.

To construct an example where (2) of Proposition 3.2 is satisfied, one can
begin with a valuation ring ¥ as in [14, p. 1139], where (0) cannot be expressed
as a countable intersection of nonzero principal ideals. Let K denote the
quotient field of ¥ and construct a rank one discrete valuation ring of the form
W = K + M, where M is the maximal ideal of W (for example, take W =
K[[X]]). Then R = V + M is a valuation ring and M is a prime (x)-ideal of
R satisfying Condition (2) of Proposition 3.2 [16, Theorem A, p. 560].

One can also in this way readily obtain an example of a valuation ring R in
which every prime (x)-ideal is finitely generated, but in which there exist
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(x)-ideals that are not finitely generated: for V and K as above, construct a
rank one valuation ring W = K + M such that the maximal ideal M of W is
not principal. Using Proposition 3.2, we see that (0) and the maximal ideal of
R are the only prime ideals of R that are ()-ideals (in the construction in [14],
if P is a nonzero prime of V, then the set of prime ideals of V containing P is
countable; moreover, the maximal ideal of V is principal), and each of these
ideals is finitely generated. On the other hand, if x is a nonzero element of M,
then xW, regarded as an ideal of R, is a nonfinitely generated (x)-ideal; this is
true because W, regarded as an R-module, is a nonfinitely generated (x)-module,
which in turn can be seen from the fact that W/M ~ K is a nonfinitely gen-
erated (*)-module over R/M =~ V. That K is not finitely generated as a
V-module is clear. Moreover, since V is a valuation ring with quotient field K,
the V-submodules of K are linearly ordered; K is not countably generated as a
V-module by the construction of V, and hence K is a (¥)-module over V by
Proposition 3.1. It can be shown that each ideal of V is countably generated,
and hence V provides an example of a ring in which (x)- and (xx)-ideals are
finitely generated, but over which there exists a (x)-module that is not finitely
generated.

4. (xx)-modules over a Noetherian ring are finitely generated

We have already observed (Corollary 1.3) that a (x)-module over a Noetherian
ring is finitely generated. The main result of this section, Theorem 4.2, asserts
that the-analogous statement for (¥*)-modules is also valid. This theorem was
used in observing that question (Q1) of Section 2 has an affirmative answer if
the answer to question (Q2) is affirmative.

Results of Section 3 show that (xx)-modules (or (x)-modules) need not be
finitely generated, and hence, after proving Theorem 4.2, we consider in more
detail the class & of rings R such that each (xx)-module over R is finitely
generated; our main results along these lines are contained in Theorems 4.7
and 4.10. Actually, there are three other classes of rings that naturally arise at
this point: the class &, of rings over which each (x)-module is finitely generated
and the classes & ,, #; of rings over which each (xx)-ideal, or (x)-ideal, is
finitely generated. Theinclusionrelations# < ¥, <€ FandF < F, < F;
are obvious, and we observe later in the section that for N countable, the ring
R, = k" of Example 2.4 is in #; — % ,. We do not deal in depth with each of
these classes, however, and most of the considerations of the section concern
the class #. Theorem 4.2 will follow fairly easily from our first result of the
section, Proposition 4.1.

PrOPOSITION 4.1. Let M be a module over the ring R such that M is not
finitely generated and let {m;}>, be a subset of M such thatm;,, ¢ Rm; + -+ +
Rmy; for each positive integer i. Then there exists a strictly ascending sequence
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M, < M, <--- of submodules of M such that

(1) my e M., — M, for each i,

(2) if N = Uy M, then M|N is a torsion module,
and

(3) for each m in M — N, the ideal N:(m) = {xe R| xme N} is not
finitely generated.

Proof. Let A, = Rm; + -+ + Rm, for each positive integer k. Induc-
tively, we choose a collection {H,};-, of submodules of M as follows. Let
H, = (0). Having chosen H,, ..., H,_,, we let &, = {H | H is a submodule
of M, H._, <« Hand H+ A, < H + A,y < H + Ay, <--+}. The set
&, is partially ordered with respect to inclusion and is nonempty since
H,_ie%. Let 7 = {N,},.o be a chain of elements of &, and set N =
Uica N, If there exists an integer i > Osuchthat N + A4y = N + Ayyiyq,
then my ;. = n + b;,; for some ne N and b;,; € Ax,;. But ne N, for
some LeA sO my,;.q €N, + Ay It follows that N, + A,.; = N, +
Aiyi+1, contrary to the fact that N, € &,. We conclude that N € &,. This
shows that &, is inductive, so by Zorn’s Lemma &, contains a maximal element
H,. By choice of H, we have H, + A, < H, + Ay, S Hyyq + Agyq SO it
follows that H, + 4, < H, + A, < --- is a countably infinite strictly ascend-
ing sequence of submodules of M. Let M, = H, + A, for each k; we show that
Conditions (1), (2), and (3) are satisfied for the sequence {M,}.

The strict inclusion H, + A, < H, + Ay, implies that m, ,, isin M., —
M, for each k. If m e M — N, then in particular, m ¢ H,, so by choice of H,,
we have H; + Rm + A; = H; + Rm + A,;., for some positive integer i;
this implies that we can write m;,, as h; + rm + c; for some h, € H,, r € R,
and c; € 4;. Then

rm=myq —h —c,e H + Aiy S Myyy,

and rm is nonzero (hence r # 0) because m;,, is not in M;, while A, + ¢, is
in M;. This proves that M/N is a torsion module. To prove (3), we use a proof
by contradiction. Thus, assume that me M — N and that N: (m) = (b, ..., b))
is finitely generated. There exists a smallest positive integer k such thatb;m, . . .,
bme M,. Since m ¢ H,, we have

H, + Rm + Ay = Hy + Rm + Ay 44

for some integer i > 0, so we can write m,, ;. = A + rm + ¢, for some
h,e H,reR,and ¢;,; € A,,;. Then

rme Hy + Ayyivt S Misivss

soreN:(m). Ifr = s;by + -+ + s,b,, where s;,..., 5, € R, then

Mysivr = e + (16 + - + s,b)m + ¢y
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This contradicts the fact that M, ,; = H,,; + Ay4+; is properly contained in

Hg,; + Agyir.. Therefore N: (m) is not finitely generated, and the proof of
Proposition 4.1 is complete.

THEOREM 4.2. A (xx)-module over a Noetherian ring is finitely generated.

Proof. Assume that M is a module over a Noetherian ring and that M is
not finitely generated. Choose a sequence {m;}{ of elements of M such that
my., ¢ Rmy + --- + Rmy for each k, and choose a strictly ascending sequence
{M;}¥ of submodules of M satisfying conditions (1)-(3) of Proposition 4.1.
Because R is Noetherian, (3) implies that M = N = (Ji2, M,;. Therefore M is
finitely generated.

One of the first test cases of Theorem 4.2 that we considered was that of
abelian groups. Paul Hill pointed out to us that in that case Theorem 4.2
follows from a result of Kulikov [30], [31, p. 175], [13, Corollary 18.4] to the
effect that each abelian group G is the union of an ascending sequence
Gy € G, < - of subgroups, where each G; is a direct sum of cyclic groups.

In connection with Theorem 4.2, Paul Eakin asked if a nonfinitely generated
module over a Noetherian ring will always have as a homomorphic image a
module that is countably generated but not finitely generated. Ed Enochs,
using results of Matlis on injective envelopes of simple modules over Noetherian
rings, answered Eakin’s question in the affirmative. This yields, of course,
another proof that (xx)-modules over a Noetherian ring are finitely generated.

We proceed to show that certain classes of non-Noetherian rings also have
the property described in Theorem 4.2.

LEMMA 4.3.  Assume that A is an ideal of the ring R such that A = \Ji2, A;,

where A, = A, < - is an ascending sequence of nilpotent ideals of R. If R|A
is in the class &, then so is R.

Proof. Let M be a (+x)-module over R. Since R/A is in &, it follows that
M|AM is finitely generated, so there exists a finitely generated submodule B
of M such that M = B + AM. The equality 4 = |J7 4; implies that
AM = \J¥ A;M, and hence M = |J? (B + A;M). Since M is a (**)-module,
it follows that M = B + A;M for some i. Then for each positive integer k,
M = B + A%M, and since A; is nilpotent, it follows that M = B.

COROLLARY 4.4. Assume that R is a 0-dimensional quasi-local ring with
maximal ideal M.

(1) If M is nilpotent, then R e & .
(2) If R is a chained ring, then R e F.

Proof. (1) is obvious from Lemma 4.3, and (2) follows from the same result
since M = (Ji%; M;, where M, is the ideal of R generated by {x € R | x* = 0};
that each M, is nilpotent (in fact, M¥ = (0)) depends upon the assumption
that R is a chained ring.
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The converse of Lemma 4.3 is valid with no restrictions on the ideal—that is,
the homomorphic image of an element of & is in &.

Either (1) or (2) of Corollary 4.4 is sufficient to show that the class # contains
rings that are not Noetherian. For example, if K is a field, then K[{X;}{2,]/
({X:X;}) is a non-Noetherian ring satisfying the hypotheses of Corollary 4.4
and (1), while ¥/B, for V a rank one nondiscrete valuation ring and B an ideal
of V that is not prime, is a non-Noetherian ring satisfying the hypotheses of
Corollary 4.4 and (2). In Theorem 4.10 we extend (2) of Corollary 4.4 to the
case of a chained ring of arbitrary finite dimension.

In [17], Gilmer considers two types of rings, which he calls W-rings and
W*-rings. We next show that each W*-ring is in & ; the definitions are as
follows. The ring R is a W-ring if each ideal of R is uniquely expressible as a
finite irredundant intersection of primary ideals belonging to distinct prime
ideals, and a W*-ring is a W-ring in which each primary ideal contains a power
of its radical.!! The terms W-domain and W*-domain mean an integral domain
that is a W-ring or W*-ring, respectively. Each W-ring is a finite direct sum of
one-dimensional W-domains and zero-dimensional quasi-local rings, and con-
versely; moreover, the sum is a W*-ring if and only if each of the summands is
a W*.ring. An integral domain D is a W-domain if and only if dim D < 1
and each nonzero element of D belongs to only finitely many maximal ideals
of D; to obtain a characterization of W*-domains one merely tacks on the
extra condition in the definition. For references to these results, see [35] and
[17]. In the next result we use the notation Ann (x) to denote the annihilator
of the element x of an R-module M—that is, Ann (x) = {re R | rx = 0}.

PROPOSITION 4.5. Assume that N is a torsion module over a one-dimensional
W-domain D. Let {P,},., be the set of maximal ideals of D, and for each
o€ A, let N, be the submodule of N consisting of 0, together with all nonzero x
such that P, is the radical of the annihilator of x. Then N is the direct sum
of its family {N,}, 4 of submodules.

Proof. 1t is routine to prove that each N, is a submodule of N. If y is a
nonzero element of N, then Ann () is a finite intersection ()i, Q, of primary
ideals, where P,, = rad Q;. If k = 1, thenclearly y € 3, 4 N,, and if k > 1,
then we note that A4; + -+ + 4, = D, where A; = (};; Qs since 4, + -+* +
A, is contained in no maximal ideal of D. Thusif 1 = a, + -+ + &, where

11 Krull in [29, p. 1] called a ring R a Laskersch Ring if each ideal of R is a finite intersection
of primary ideals of R (the designation was for E. Lasker, who in [33] proved that a polynomial
ring in finitely many indeterminates over a field has this property); for the same concept,
Evans in [11, p. 507] and Gilmer in [15, Exercise 5, p. 455] use the term Laskerian ring, while
Heinzer and Ohm use Lasker ring in [20, p. 74]. The distinguishing feature of W-rings among
such rings is the uniqueness of the primary decomposition (assuming irredundance and distinct
belonging prime ideals). A ring in which each ideal is a finite intersection of primary ideals
and in which each primary ideal contains a power of its radical is called strongly Laskerian in
[15, Exercise 5, p. 455].
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a;€ A;, theny = a;y + -+ + a,y; moreover, Q,a;y < Ann (y) -y = (0) so
that a;y € N,,. It follows that N = }° N, in either case. To prove that the
sum Y. N, is direct, it suffices to prove that N,, n (NV,, + -+ + N, ) = (0) for
each finite subset {o;};_, of 4. Thus, if n,, = >i_ n,,, where n,, € N,, then
Ann (n,,) and Ann (n,,) N - n Ann (n,,) annihilate n,,, and these two ideals
generate D. Hence n,, = 0 and N is the direct sum of the family {N,}, as
asserted.

LEMMA 4.6.  Assume that M is a (xx)-module over the domain J and that F is
a free submodule of M such that dM < F for some nonzero element d of J. Then
F is finitely generated.

Proof. If F were not finitely generated, then F could be expressed as
G®Jx, ®Jx, @ -, where G is a free submodule of F and {x;};2, is a
countably infinite free subset of F. Let

Fi=G@Jx1@"'@in

for each i, and let M; = {x e M | dx € F;};. Each M, is a submodule of M,
M, s M, <, and M = {J? M, (since F = (JT F). Since M is a (xx)-
module, M = M, for some k. Therefore F= M n F = M, F, but
M, n F = F; since {x;}7 is free. This contradicts the fact that F; is properly
contained in F, and hence F is finitely generated, as asserted.

THEOREM 4.7. A (xx)-module over a W¥*-ring is finitely generated.

Proof. Let R be a W*-ring, and express R as the direct sum of a family
{R;}7_, U {D;}{_, of zero-dimensional quasi-local W*-rings R; and one-
dimensional W*-domains D;. It is straightforward to show that a finite direct
sum of rings S, is in the class & if and only if each S, is in & ; hence we consider
the cases where R = R; or R = D,.

That each R; is in & follows from (1) of Corollary 4.4; we prove directly
that each D = D;isin &#. Let M be a (xx)-module over D. There exists a free
submodule F of M such that N = M/F is a torsion D-module; also, N is a
(##)-module. Let {P,},., be the set of maximal ideals of D, and let N, be
defined as in Proposition 4.5. Since N is the direct sum of the family {N,},. 4
and since N is a (**)-module, only finitely many elements o of 4 are such that
N, # (0); let {«;}i—, be the subset of 4 consisting of such elements «. Each
N,, is a (*+)-module over D. For a fixed i and for a positive integer j, we let

T;; = {y € N,, | PJ, is contained in Ann (y)};

each T}; is a submodule of N,,, T;; < T;, < -+, and since each primary ideal
of D contains a power of its radical, N,, = |J7%, T;;. We conclude that for
each i, there exists a positive integer k; such that N, = Ty —that is, P¥
annihilates N,,. Therefore ()j-, P} annihilatess N = N,, + - + N,,. Choose
a nonzero element d in ()} P¥. Then dM < F, and Lemma 4.6 implies that F
is finitely generated. Now M/dM is a (s«x)-module over the zero-dimensional
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W*-ring D/dD, and hence by a case of Theorem 4.7 already proved, M/dM is
finitely generated. Because F and M/F ~ (M|dM)/(F|/dM) are finitely gen-
erated, we conclude that M is finitely generated. This completes the proof of
Theorem 4.7.

Our final considerations of this section show that each finite-dimensional
chained ring is in F. In Lemma 4.9, we use the term pseudo-radical of R 10
mean the intersection of the set of nonzero prime ideals of the ring R: scc
[18, p. 275], [15, Exercise 3, p. 58].

LeMMA 4.8. Let A be a finitely generated ideal of the ring R. If M is a
(**)-module over R, then AM is a (xx)-module over R.

Proof. Let C; = C, < - be a sequence of submodules of AM such that
AM = P C,. Ifweset B, = {me M| Am < C;},then B, < B, < -+ isa
chain of submodules of M. Suppose that 4 = (a,,..., a,) and let me M.
Then for each i, 1 < i < k, there exists C;, such that ame C,,. If t =
max {A,..., 4}, then 4m = C,—that is, m e B,, Thus M = |J] B;. Since
M is a (#x)-module, M = B, for some n. Therefore, AM = AB, = C,, so
AM = C,.

LeEMMA 4.9. Let A be an ideal contained in the pseudo-radical of R, and
assume that A is countably generated. If R|/A is in &, then so is R.

Proof. If R is not an integral domain, then each element of A4 is nilpotent
and the result follows from Lemma 4.3. Thus, we assume that R is an integral
domain. By the case in which R is not a domain, it then follows that if 4, is a
nonzero ideal of R contained in 4, then either 4, = 4 or A, is not prime, and
in either case, R/4, is in F.

Assume that R is not in & and let M be a (xx)-module that is not finitely
generated. Choose a nonzero element y in 4. Then M/yM is a (*+)-module
over R/yR, and hence is finitely generated as a (R/yR)-module and as an
R-module. Thus, there exists a finitely generated submodule B of M such that
M = B + yM. lItis also the case that M = B + y"M for each positive integer
n. Since M is not finitely generated, it follows that y"M is contained in no
finitely generated submodule of M. Thus, we choose {m;}? = M such that

y*'m; ¢ Rym; + -+ + Ry'm; for each i.
By Proposition 4.1, there exists an infinite strictly ascending sequence M,; <
M, < - of submodules of M such that
y*im;,, e M;., — M, foreachi

and such that M/N is a torsion module, where N = (J? M,. Since M is a
(*x)-module, M # N—that is, M/N # (0). For each positive integer i, set
Vi={meM|ymeN}. Itisclear that V; = V, < --- is a chain of sub-
modules of M and we note that M = {J? V;. For if me M, then B =



COUNTABILITY CONDITIONS IN A COMMUTATIVE RING 663

{xe R|xme N} # (0) since M/N is a torsion module. But then since y is in
the pseudo-radical of R, y" € B for some n—that is, y"m € N and m € V, as we
wished to prove. Since M is a (xx)-module, it follows that M = V, for some
n—that is, "M < N. Therefore y"M = y"M n N = |J7 ("M n M)). By
Lemma 4.8, y"M is a (xx)-module, so y"M = y"M n M, for some integer ¢;
in other words, y"M < M,. If we set s = max {n, t}, then y**'m,, € y’M <
Y"M < M, = M,, contradicting the fact that y**'m,,, ¢ M,. It follows that
M is finitely generated and that R is in &#.

THEOREM 4.10. Assume that R is a finite-dimensional chained ring. Then R
isin #.

Proof. We use induction on the dimension of R, the result being true for
R of dimension 0 by (2) of Corollary 4.4. If the result is true for chained rings
of dimension less than k, where k is positive, and if R is a k-dimensional chained
ring, then let P, < P; < *-- < P, be the chain of proper prime ideals of R.
Choose y € P, — P,. The ideal yR/P, of the valuation ring R/P, is contained
in the pseudo-radical of R/P, and is countably generated. Since (R/P,)/
(YR/P,) ~ R/yR is in & by the induction hypothesis, Lemma 4.9 implies that
R/P, is in #. As in Corollary 4.4, we have P, = Ji%, M,, where M, is the

ideal of R generated by {x € R | x* = 0}, and M} = (0). Hence R is in # by
Lemma 4.3.

Recall that we have observed in Section 3 that there exist valuation rings
with (*x)-ideals that are not finitely generated. In those examples the valuation
rings have uncountably many prime ideals. It is not known to us if valuation
rings with countably many prime ideals necessarily belong to &.

We return briefly to our comments in the introduction to this section con-
cerning the classes #, #,, &#,, and & ;. As mentioned at the end of Section 3,
there exists a valuation ring ¥ such that (x)- and (x*)-ideals of V are finitely
generated, but such that the quotient field K of V is a nonfinitely generated
(¥)-module. This example shows that the inclusions # < %, and ¥, < ¥,
are proper. If R, is the ring of Example 2.4, then an argument concerning
supports of functions shows that (x)-ideals of R are finitely generated if and only
if the set N is countable. Hence, for N countably infinite, R, is in the class &,
but not in the class & ,. Thus the inclusion &, < %, is proper. We have not
been able to determine whether the inclusion # < &, is proper—that is,
whether there exists a ring R such that (x)-modules over R are finitely generated,
but such that there exists a (#*)-module over R that is not finitely generated.
If R, is the ring of Example 2.4, with k the field of real numbers and N the set
of positive integers, then Roger Wiegand pointed out to us that the existence
of P-points in BN — N, where N is the Stone-Cech compactification of N,
implies that R, is not in the class #,. Assuming the continuum hypothesis, it
is known that SN — N contains P-points [W. Rudin, Homogeneity problems
in the theory of Cech compactifications, Duke Math. J., 23 (1956), 409-419] or
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[L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand,
Princeton, 1960, p. 100], and thus R, is not in &, modulo the continuum
hypothesis.
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