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1. Introduction

In Part I of this paper, a discharging procedure is defined which yields the
unavoidability (in planar triangulations) of a set q/ of configurations of ring
size fourteen or less. In this part, q/ is presented (as Table q/ consisting of
Figures 1-63) together with a discussion ofthe reducibility proofs of its members.
When the term reducible is used above it is used in the following formal

sense. Every configuration in q/has the property that it is not only C- or D-
reducible in the sense of [16], [27] (references are to the bibliography of Part I),
but also if it is arbitrarily immersed in a planar map (i.e., not necessarily "prop-
erly embedded") then that planar map cannot be a minimal five chromatic
map. A rather detailed study of such "immersion reducibility" is included in
this paper.

Every configuration in q/of ring size eleven or greater has been checked by
our computer programs, with one exception.2 For the reducibility of con-
figurations of smaller ring size we rely on the tables in [2]. We do not claim to
have been first to reduce all of these configurations. In particular we under-
stand that F. Allaire has made a complete list of reducible eleven-rings and that
H. Heesch has a large list of reducible configurations which has not been pub-
lished. Furthermore, since we did not apply splicing arguments, there are C-
reducible configurations, some of which appear in [25] and [1], for which we
were not able to find reducers. But, since it meant only a small enlargement of
our set q/we preferred to include in q/only such configurations as we could
verify with our programs. 2 (See the note at the bottom of page 490.)
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It is clear that our set q/is not nearly best possible in the sense of being the
shortest list of smallest configurations which might yield a proof of the con-
jecture (see also Section 5 of Part I). One might shorten the list by using splicing
techniques for finding reducers for some configurations we were not able to
reduce by our programs or by admitting a few fifteen-ring configurations to
avoid a much larger number of smaller configurations, or by taking a few more
steps in the discharging discussion to avoid certain configurations, or by choos-
ing different sub-configurations of some of the configurations yielded by the
discharging procedure. We chose not to do this because there seems neither to
be a shortening which would significantly change the complexity of the proof
nor a natural place to stop attempting such "simplifications." However, in
working out the microfiche supplement to Part I of this paper we have found
that 352 configurations may be omitted from q/ so that the remaining set
of 1482 configurations is still unavoidable. The 352 configurations in og
are listed in the microfiche supplement (see back cover).
The reducibility computations took place simultaneously with the final

development of the procedure described in Part I, enabling us to modify the
procedure where necessary to circumvent reduction failures. (Here, the term
reduction failure will mean a configuration which was not reduced by our
programs within the computer time allotted. We know that a significant number
of configurations which we call reduction failures are actually C-reducible.)

2. The computer programs

D-reduction was done dynamically (see [2]) in the sense that once a coloration
was proved good, its goodness was immediately available for use in the testing
of other colorations. The programs for D-reduction are extensions and modi-
fications of those in [20].
While the task of D-reduction is rather straightforward, C-reduction presents

certain choices. When dealing with a good-sized configuration it is virtually
impossible to try all possible reducers. In general it seems reasonable to make a
limited effort to find C-reducers and, if necessary, accept a certain number of
configurations as reduction failures which, with some more effort, could be
shown reducible. While, in retrospect, our choices are probably not best pos-
sible, especially in light of the theory of splicing, they did easily C-reduce a large
number of configurations.
For each ring size, eleven through fourteen, we tried a "best guess" reducer,

then exhausted a certain class of potential reducers. If either no reducer was
found in this manner or if, in the case of fourteen-rings, our time limit (90
minutes on an IBM 370-158 or 30 minutes on a 370-168) was exceeded, the con-

Allaire if he could reduce it. His elegant splicing argument provided a reducer for the C-
reduction. We later discovered that this configuration eliminated at least eight configurations
from . While we realized that Allaire’s methods could greatly reduce the size of ’, we felt
it unreasonable to ask him about all of the other configurations which were of interest to us.
We certainly appreciate his help in this instance, however.
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figuration was called a reduction failure. There was one class of exceptions to
this procedure. For eleven-rings, the programs developed for 1-203 enabled us
to test all reducers of up to four interior vertices.
We will illustrate the reducer-choosing algorithms in the case of twelve-rings.

First, the best guess reducer was chosen as follows. For each pair of ring posi-
tions, the number of good colorations (from D-reduction) which gave both the
same color was tabulated. The reducer was formed by choosing the largest
possible number of high-ranking compatible identifications, choosing identifica-
tions in order of rank of the pairs in the number of such agreements (discarding
identifications which caused conflicts with previously chosen identifications).
The second class of potential reducers was chosen as follows. First, all non-

conflicting triples of identifications, each member of which identified vertices
at distance two on the ring, were tried. If none of these reduced the configura-
tion, the twenty with the smallest number of bad colorations were further pro-
cessed. First, note that three such identifications convert a twelve-ring into a
six-ring. Thus, we may consider reducers for this six-ring along with the three
identifications to form a reducer for the twelve-ring. This was done to the twenty
best triples using each six-ring reducer without interior vertices (see [16-1) with
each six-ring reducer in every possible position. Eleven-, thirteen-, and fourteen-
rings were similarly treated.
The computer programs were greatly influenced by the facilities available.

We had access to IBM computers (a 360-75 at Urbana-Champaign, a 370-158
at the University’s Chicago Circle Campus, and later a 370-168 of the Uni;eer-

sity of Illinois administrative data processing unit). For this reason the pro-
grams were written in IBM assembler language to attempt to maximize efficiency.
When we inquired, the operations staff suggested that we use less computer
time at the expense of larger amounts of core storage. Therefore, to save steps
we chose to use large tables. The core storage requirements were as follows: for
twelve-rings, 220,000 bytes; for thirteen-rings, 600,000 bytes; for fourteen-rings,
1,700,000 bytes.
Samples of reduction time for D-reducible configurations using four passes

were roughly as follows. Eleven-rings took about 40 seconds on the 360-75;
twelve-rings took about one minute on the 370-158; thirteen-rings took about
15 minutes on the 360-75 (slow core) and about 5 minutes on the 370-158;
fourteen-rings required about 25 minutes on the 370-158 or 6 minutes on the
370-168. In general, the C-reduction, if it were to succeed, would succeed rather
quickly so that a majority of the time was usually spent on D-reduction. Reduc-
tion failures, however, often took a great many passes in D-reduction and extra
time attempting C-reduction and hence often took between four and eight times
as long as the D-reductions mentioned above.

3. Immersion reducibility

The unavoidability of q/ in planar triangulations, as established in Part I,
means that every planar triangulation A (without vertices of degree smaller than
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five) contains at least one member, say C, of q/as an image of an immersion
f: C --. A which respects the degree-specifications. (For definitions see Section
2 of Part I.) It is not sufficient to show that every configuration C in q/is C-
or D-reducible since C might be immersed in a planar triangulation A in such
a way as to make untrue some of the hypotheses of independence which are basic
to C- and D-reducibility. Thus we must discuss such immersion reducibility in
some detail.
A configuration is sometimes thought of as an n-ring plus its interior, but we

shall use the following terminology. We use the term confitturation (as we did
in Part I) for the vertices interior to the ring and the edges joining pairs of such
vertices and the triangles bounded by the 3-circuits which are formed by these
edges. For every vertex 1/ of a configuration C a specification of its degree,
deg (I/), is given; in particular, we assume from now on that in every instant
deg (1/) is specified to be precisely one of the numbers 5,..., 11. (All con-
figurations in q/ have this property; in the drawings we indicate the degree-
specifications by coding according to the left column of Figure in Part I.)
Now every configuration C can be extended to a rintTed confitTuration , see
Figure A, so that C is a triangulation of a disk (in the plane) in which every
vertex of C is an interior vertex and every triangle is incident to at least one
vertex of C; in particular, each vertex V of C is incident to precisely as many
edges of C" as is specified for deg (V). Note that C is uniquely (up to isomorph-
ism) determined by C. We call the boundary circuit R of I’ the ring of and
also the tint7 ofC and we denote the number of vertices in R by n. (Every vertex
of C is either a ring vertex or a vertex of C.) The edges between C and R (dashed
in Figure A) are called the lefts of C. A ringed configuration C is said to be
properly imbedded in a triangulation A if the images of any pair of vertices are
adjacent in A only if the vertices are adjacent in C.
The definitions of C- and D-reducibility guarantee that configurations which

satisfy them cannot have their ringed configurations properly imbedded in
minimal five-chromatic planar triangulations. However our argument concerns
immersions rather than imbeddings and we must establish that no member of
q/can be immersed in a minimal five-chromatic planar triangulation.

In order to formulate our theorem on immersion-reducibility we need several
definitions. Let C be a configuration (with fully specified vertex degrees), let ’be the corresponding ringed configuration, and let R be the ring. Suppose that
V is a vertex of R which has precisely k neighbors in C and that k > 3. This
means that precisely k 2 neighbors of V lie on "1-1egger outer sectors of C"
and that V has precisely k + 2 neighbors in C. For example in Figure A, the
configuration C is 21-34 from our set q/; the "legs" are drawn as dashed lines,
and for the vertex V we have k 5. (k-values greater than five do not occur in
any configuration of q/.) Now we may derive a configuration C’ from C by
"adding" vertex V to C and giving it the degree-specification d (d > 5). The
ring size n’ of C’ will be smaller than the ring size n of C if (and only if) d <
k + 2. In this case we call C’ an n-decreased extension of C; in order to make
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this concept transitive we call any n-decreased extension of C’ also an n-
decreased extension of C. Obviously the total number of n-decreased extensions
of C is finite. In our example Figure A, three n-decreased extensions C(’I), C(’2),
C(’3) of C are obtained by adding V with d 7, 6, or 5, respectively. In [26]
Stromquist considers extensions with d >_ k + 2 and calls them r-extensions
where r d (k + 2); i.e., C(’1) in Figure A is a 0-extension of C. Generaliz-
ing this terminology we should call C(’2) a (-1)-extension and C(’3) a (-2)-
extension.

P A p

p
Cin

Agre A

(-1)-extension C’()
of C in C’(2

(-2)-extension C)
of C in C-)

Now let f: C - A be a simplicial immersion. Certainly, f can be extended
to a simplicial and dimension-preserving mapping f: A of the ringed con-
figuration C; (for definition see Section 2 of Part I). However, f need not be
an immersion since it may fail to be locally one-to-one in the neighborhood of
some ring vertices. For instance the image f(C) of C in Figure A may be
(isomorphic to) one of the ringed configurations ((2) or ((3), in case the
ring vertex V is mapped to a vertex of degree six or five in A; then in the image,
the edges V4 and VB of C would be identified to each other or to legs from V to
C. We say that the immersionf causes an interior overlap if the restriction off
to the interior of C is not one-to-one, i.e., iff maps some two different triangles
of C to the same triangle of A. Suppose that C is C-reducible and that S is a
reducer. Then f is called compatible with S if any two vertices of R which are
identified by S are mapped into nonadjacent vertices of A and any two vertices
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of R which are joined by a diagonal of S are mapped into nonidentical vertices
of A. Then we have the following.

LEMMA I. Let f: C A be an immersion of a configuration C into a planar
triangulation A which does not cause an interior overlap. Suppose that C is D-
reducible, or that C is C-reducible and has a reducer S which is compatible with f.
Then A cannot be minimalfive-chromatic.

Proof. Let R be the ring of C, C the ringed configuration, and f: C - A the
extension off to C. We make the following observations.

(i) Every coloration b’ off(R) has a unique pre-image coloration b of R (so
that f carries $ into 4’).

(ii) If the pre-image b of 4’ extends to a coloration of C" then f carries
into a coloration $’ which extends 4)’ over f().

(iii) Now let ’ be a coloration off(R) which extends over A f(C). If n
is a partition of the four colors into two pairs and K’ is the corresponding
Kempe chain disposition in A -f(C) then there exists an (abstract) Kempe
chain disposition K in the exterior of C", corresponding to n and the pre-image

of $’, so that K is the pre-image of K’ in the following sense. (iii)(a) If V’ is
a vertex of f(R) then all pre-images of V’ are joined by Kempe chains of K;
(iii)(b) if two vertices off(R) are joined by a Kempe chain of K’ then their pre-
images are joined by a chain of K.

(iv) If a coloration $ of R is obtained from b by a Kempe interchange
according to n and K (as considered in (iii)) then is carried byf into a colora-
tion $’ off(R) which can be obtained from b’ by a Kempe interchange (accord-
ing to and K) in A f(C).

(v) If a coloration t’ off(R) is bad in the sense that it cannot be converted
by iterated Kempe interchanges in A -f(C) into any coloration which also
extends over f(C), then, by (i),..., (iv), the pre-image of b’ is also a bad
coloration and in particular, C is not D-reducible.

This implies the lemma in the case that C is D-reducible. If C is not D-
reducible then, by hypothesis, the reducer S is incompatible with all bad colora-
tions on R, and thus the image of S underf is, by (v), incompatible with all bad
colorations of f(R). This implies the lemma in the case that C is not D-
reducible.

COROLLARY. If C is D-reducible and if C’ is a O- or (- 1)-extension of C then
C’ is also D-reducible.

Proof We consider the ringed configurations C and C’ and the "natural"
immersion f: C C’ and its extension f: " C". Then f does not cause an
interior overlap and we conclude as in the proof of the lemma above (where,
in (iii), K’ means an abstract Kempe chain disposition in the exterior off(C)).
Note that for 0-extensions the corollary follows also from much stronger
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theorems of Stromquist (the 2-extension theorem and the gradient theorem in
[263).

Remark. It is conceivable (although unlikely) that there exists a configuration
C and a 0- or (-1)-extension C’ of C so that C is C-reducible but C’ is not.
The fact that C’ "contains" C cannot be used for concluding reducibility of C’
since C is not properly imbedded in C’. It might be that all possible reducers
of C are incompatible with the immersion f: C C’.
Now we consider a simple edge path P in a ringed configuration which

joins two different vertices .4 and B of the ring R; (for examples see Figures B

I-path fro A o B

ro

and C). We say that Pfulfills a bend condition if there is a vertex V in C which
is not on P but is adjacent to (at least) three consecutive vertices on P. (The path
marked in Figure B fulfills a bend condition, but the path marked in Figure C

D-ph but no 1-path
fro A to B

Figare C

does not.) A path P in C is called an I-path if it joins two vertices .4 and B of R
and if it has the following properties.

(I. 1) The length of P (i.e., the number of edges on P) is at most five.
(I.2) If the length of P is five then P fulfills a bend condition.
(I.3) The distance of .4 and B on R is at least four.
(I.4) P does not contain any vertices of R besides .4 and B.
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A path P in is called a D-path if it joins two vertices A and B of R and if it
has the following properties.

(D.1) The length of P is at most six.
(D.2) If the length of P is six then P fulfills a bend condition.
(D.3) The distance of A and B on R is at least five.
(D.4) P does not contain any vertices of R besides A and B.

Now assume that C is C-reducible and that S is a reducer of C. Then S is
called fine if it has the following properties.

(F.1) If two vertices A and B of the ring R are identified by S and if the
distance of A and B on R is at least four then there exists an I-path from A to
BinC.

(F.2) If two vertices A and B of R are joined by a diagonal of S and if the
distance of A and B on R is at least five then there exists a D-path from A to
BinC.

Now we have the following.

THEOREM. Let C be a configuration which contains precisely m vertices and is

of tiny size n so that n <_ 14 and n + m <_ 28, and let C1), C(p) be all n-
decreased extensions of C. Suppose that each one of C, C1),..., C(’p) is D-
reducible or is C-reducible with a fine reducer. Then C cannot be immersed into
a minimalfive-chromatic planar trianyulation.

Proof Letf: C - A be an immersion of C into a planar triangulation A and
let f: C" A be the extension off to the ringed configuration t with ring R.
We have to prove that A cannot be minimal five-chromatic.

(1) If n _< 5 then the proof is easy since then the imagef(R) of R contains a
reducible ring by Birkhoff [10] or A contains at most 29 vertices.

(2) From now on we assume that n > 5 and we assume by induction that
the theorem is proved for all ring-sizes smaller than n.

(3) Iff is not an immersion thenf fails to be one-to-one in the neighborhood
of some vertex, say V, ofR (compare Figure A). Then A contains an n-decreased
extension C’ of C which is obtained by adding V to C. Thus A cannot be min-
imal five-chromatic by induction hypothesis (2).

(4) From now on we assume that f is an immersion. Then in particular, f
cannot identify any two vertices whose distance in C is smaller than three.

(5) Iff identifies two vertices A and B of R which are at distance three or
four on R then a path Q from A to B on R maps onto a 3- or 4-circuit Q’ in A.
If there is any vertex of A on that side of Q’ which is opposite to f(C) then Q’
is a reducible ring by Birkhoff [10] and thus A is not minimal five-chromatic.
If there is no vertex of A on that side of Q’ then A contains an n-decreased
extension C’ of C (since at least one of the vertices between A and B on Q can
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be added to C as a 2-1egger) and we conclude again by induction that A is not
minimal five-chromatic.

(6) From now on we assume that f does not identify any two vertices of R
which are at distance less than five on R.

(7) If f causes an interior overlap then we claim that the following holds
(compare Figure D).

1,4, = 10

and P’ are marked q and q’ are marked

Figure D

(7.1) f(t) is an annulus the boundary of which consists of two disjoint
5-cirCuits P’ and Q’ in f(R); moreover, n 14.

Proof of claim (7.1). 3 ’ is a triangulated disk; let be the number of tri-
angles in (it follows from Euler’s formulathat 2m + n 2 but we shall
not use this fact). IfD is a triangulated disk which contains precisely triangles
and if > then at least one of the triangles, which we denote by T, fulfills one
of the two following conditions (see Figure E).

T
i
of Type in D

i

T
i
of Type 2 in D

i

Figure E

We want to thank George Francis for supplying us with a much shorter version of the
main part of this proof which, however, uses more advanced topological concepts.
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T is of Type (in D) if precisely one of its edges, say E, is an interior edge
of D and its two other edges, say G and H, are boundary edges of D.
T is of Type 2 (in D) if precisely two of its edges, say E and F, are interior

edges ofD and its third edge, say Gi, is a boundary edge of D so that the vertex
V which is incident to E and F is an interior vertex of D.

If T is of Type then removal of T E from D (i.e., removal of the in-
teriors of T, G, and H and of the vertex, say Wi, which is incident to G and
Hi) yields a triangulated disk D_ 1. If Ti is of Type 2 then removal of the
interiors of T and of Gi, yields a triangulated disk D_ 1. We say that D can
be obtained from D_ by an expansion of Type or 2, respectively, according
to whether T is of Type or 2 in D. Consequently we may build up C in
steps by a sequence D1, D2,. Dt C of triangulated disks so that D1 is one
triangle and D is an expansion of Di_ (for 2,..., t).
We consider the sequence f(Ol), f(D2),..., f(Dt) f(C) of images of the

disks D under the immersion f-. Certainly, f D1 is an imbedding. Let u be
the smallest index so thatf D, is not an imbedding; then we have the situation
of Figure F, i.e., D, is an expansion of Type of D,_ 1, and the image W ’, of the

the outer region is Ku

Figure F

vertex W, coincides with the image of a boundary vertex of D,_ 1. (In Figures
E, F, G, H a curved boundary arc is drawn instead of a polygonal arc of arbi-
trary length; images underf are indicated by a prime; a thin line parallel to the
boundary of D_ or D indicates how the interior of D_ or D is mapped
underf.) In particular, the exterior off(D,) consists oftwo disjoint open regions
which we denote by J, and K, (see Figure F). The boundaries of J, and K, are
circuits which we denote by P and Q, respectively; there are corresponding
arcs P, and Q, in the boundary of D, the interiors of which are mapped one-to-
one into P,’, and Q; (the end points of Pu and Q, are mapped to W).
Now we conclude by induction (see Figure G) that for each u, u + 1,...,

t, there are arcs Pi and Q (with disjoint interiors) in the boundary ofD so that



EVERY PLANAR MAP IS FOUR COLORABLE" PART II 501

Ai Ai- Ai Ai- Ai Ai- Ai Ai-

() (o) ()

Ai- Ai Ai- Ai- Ai-

Co) (’) (r) ()

Figure . Ji in Ji-

the interiors of Pi and Qi are mapped one-to-one into circuits P’i and Q’ and so
that the end points of P are mapped to a vertex ‘4 in P and the end points of
Q are mapped to a vertex B in Q’ (Ai and B may be distinct or may be the
same vertex of A). In particular, P’ is the boundary of an open region Ji and Q’i
is the boundary of an open region K so that Ji

_
J_ - - J, and K

_
K_I -"" - K,. For if T’ is disjoint from Ji_ (from Ki-1) then we may
choose J Ji_ and .4i .4 i_ (K K_ and Bi Bi_ 1); if the interior
of T’i lies in Ji then we have one of the cases (a),..., (h) indicated in Figure G.
If Ti is of Type and W’i is in Ji- (cases (a) and (b)) or if Ti is of Type 2 (cases
(c) and (d)) then we choose Ji Ji-1 T’i and .4i .4i_ 1; if Ti is of Type
and W’i is in the boundary P_ of Ji- (cases (e), (h)) then at least one of
the connected components of Ji-1 T’ can be chosen for Ji and W’i for .4 i.

Now we consider the last member of the sequence, (i.e., Di D, )
and we omit the indices. Then, by hypothesis (6), each one of the arcs P and Q
in R has length at least five. Moreover, it is not possible that the end points of
P are identical with the end points of Q for otherwise f() would be homeo-
morphic to D (see Figure F) and f would not cause an interior overlap. Thus
R (P w Q) is not empty; on the other hand, R (P u Q) contains (the
interiors of) at most four edges (since by hypothesis, n _< 14). Thus, again by
hypothesis (6), the images .4 and B of the end points of P and of Q must be
distinct. Now it is not possible that R (P w Q) contains (the interiors of)
fewer than four edges for otherwise one of the cases (), (fl), () indicated in
Figure H would apply. If R (P w Q) contains only two edges (case ()) then
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B B B

in each case, the outer region is K

() (8)
(no interior overlap)

Figure H

these map to the same edge E (since A does not contain any 2-circuits) and no
interior overlap is possible. If R (P w Q) contains precisely three edges
(cases (fl) and (7)) then these map to the boundary of a triangle T so that one
side, say E, of T joins 4 and B (since A does not contain any 3-circuits other
than boundaries of triangles); but then no interior overlap is possible for other-
wise one of the two pre-images of E (under f) would have to be a diagonal in C-"
(but a ringed configuration cannot contain any diagonal edges).
Thus the only remaining case is that R (P w Q) contains precisely four

edges and that each of P and Q contains precisely five edges and n 14. This
proves our claim (7.1).

(7.2) By (7.1), A cannot be minimal five-chromatic since at least one of the
two 5-circuits P’, Q’ is reducible or A contains at most 30 vertices.

(8) From now on we assume thatf does not cause an interior overlap.
(9) If C is D-reducible then it follows directly from Lemma I that A cannot

be minimal five-chromatic.
(10) From now on we assume that C is not D-reducible but is C-reducible

and has a fine reducer S.
(11) Iff maps two vertices A and B of R which are of distance two or three

on R to vertices A’ and B’ which are joined by an edge E’ of A then there is a
path Q from A to B on R so that f(Q) w E’ is a 3- or 4-circuit Q’ in A. Then
we can conclude (as in (5)) that Q’ is a reducible circuit in A or that A contains
an n-decreased extension C’ of C and is not minimal five-chromatic by induction
hypothesis (2).

(12) From now on we assume that f does not map any two vertices of R
which are of distance two or three on R to adjacent vertices of A.

(13) Iff is not compatible with S then we can conclude that A contains a
circuit Q’ of length at most six which is the image of an/-path in C plus an edge
of A which joins its end points, or which is the image of a D-path with identified
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end points. On either side of Q’ there are at least three distinct vertices of A
which belong to f(R). Now we distinguish three cases.

(13.1) If the length of Q’ is less than six then Q’ is reducible by Birkhoff [10]
and A is not minimal five-chromatic.

(13.2) If on some side of Q’ there are precisely three vertices of A then these
are the images of three consecutive vertices, say U, V, W, of R. U, V, W form
a 5-5-5 triangle (since otherwise the length of Q’ would be greater than six.)
But this means that an edge of A joins U and W which contradicts (12) and
thus this case is ruled out.

(13.3) If on either side of Q’ there are at least four vertices of A and if the
length of Q’ is six, then Q’ fulfills a bend condition and is therefore reducible
by Arthur Bernhart [6] and A is not minimal five-chromatic.

(14) Finally we assume that f is compatible with S. But then Lemma 1
implies that A cannot be minimal five-chromatic. This finishes the proof of the
theorem. []

Now it is not difficult to verify that all configurations of our set fulfill the
hypotheses of the theorem. For the D-reducible members of the D-reducibility
of all 0- and (- 1)-extensions follows immediately from the Corollary to Lemma
I and we have to individually check only the very few cases in which a (-2)-
extension is possible. For those configurations which are not D-reducible we
have to check the 0- and (-1)-extensions also. But in most cases these exten-
sions contain, properly embedded, other configurations of which are of smaller
ring size. We also have to check the fineness of the reducers. But most of the
configurations are so small that every reducer is fine. (See the supplement.)

4. The unavoidable set z of reducible configurations

The members of are displayed in Table which consists of Figures 1-63.
The order was chosen in an attempt to aid the reader in finding configurations
and to display similar configurations in the same part of the table. While it is
easiest to understand the ordering of the table by just glancing through it, a few
remarks seem in order.
The table is organized into primary parts determined by the number of major

vertices of each degree in the configuration. For example, the configurations
in Figure 1 have no major vertices, while those in Figure 16 have a pair of VT’s.
Except in the case of rather small such classes, for example configurations with
two vertices of degree 9 (see Figure 45), classes span a consecutive sequence of
full figures. Within such classes the ordering is more arbitrary and not wholly
consistent. Similar looking configurations are usually on the same page, for
example all of the configurations in Figure 23 have a V7 adjacent to a Va with a
single V5 below and adjacent to both and a V6 above and adjacent to both.
Occasionally a configuration cannot fit into the appropriate figure and will
usually then be found within two pages of its natural position, towards the
bottom of the figure.
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The attempt to obtain a reasonable visual display has caused some figures to
have fewer than the 35 possible entries. In addition, when a redundancy was
discovered in the final examination of the table the redundant configuration
was deleted without the potentially error-introducing procedure of moving up
the remaining configurations.

Section (fl) of the microfiche supplement provides more information on
the C-reducible (but not D-reducible) configurations of Table q/. Above each
diagram in the supplement is a pair f-p which give the figure number and
position in the figure of the configuration which is discussed. The order of the
supplement is the same as that of the table except that certain configurations
were added after the figures in the supplement were drawn. This is indicated
by a heavy carat in the figure. For example, the carat between 5-32 and 6-13
indicates that a configuration has been added at the end of the table which
should fit in this position (the configuration is 5-35).

Since almost all of our C-reducers consist of diagonals and identifications,
the diagram is drawn as follows. First, the configuration of Table 0g is copied.
The n-ring (which is not shown) can easily be drawn by the reader using the
information given by the degrees of the boundary vertices of the configuration.
The vertices on the n-ring are numbered from through n in clockwise order.
All edges leading from the configuration to vertex on the n-ring are added to
the figure as dashed lines. This enables the reader to appropriately number all
of the vertices on the ring. Below the figure all identifications and diagonals are
listed. For example, Configuration 2-28 has identifications which identify
vertices 3 and 5, and vertices 7, 9, and 11, and diagonals connecting vertices
and 6, vertices 2 and 6, and vertices 6 and 10. Further m (the number of vertices)
and n (the ring size) are supplied (in the case of 2-28, m 8, n 12). The last
number (6655 in Configuration 2-28) gives the number of bad colorations after
the algorithm for testing D-reducibility has been applied.
The following numbers shed some additional light on q/. Of the 1834 con-

figurations in , 7 are of ring size eight or less; 8 are of ring size nine; 35 are of
ring size ten; 89 are of ring size eleven; 334 are of ring size twelve; 701 are of
ring size thirteen; and 660 are of ring size fourteen. There are 504 configurations
in q/which are C-reducible but not D-reducible. For more details see Section (5)
of the microfiche supplement.

There are 13 C-reducible configurations of ring size less than eleven which
are not included in the supplement. These are considered in the tables in [2].
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