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COHOMOLOGY OF FIBER SPACES IS REPRESENTABLE

BY

ROBERT J. PIACENZA

Introduction

In recent years interest in cohomology theories defined on a category of
fiber spaces has increased. See for example [5], [17], and [22]. It is the
purpose of this paper to show that such theories are representable by a
suitable fl-spectrum.

Sections I, II, and III are devoted to proving a fibered version of E.
Brown’s representability theorem as formulated in [7] and [13]. In Section
IV we give axioms for a cohomology theory over B general enough to
include sheaf cohomology, prestack cohomology, and group bundle
cohomology. The main difference from other axiom systems as found in [5]
or [11] is our weakening of the homotopy axiom. In Section V we define the
notions of reduced cohomology theories and l’l-spectra over B. In this
section we review Mielke’s work on group bundle cohomology and conclude
with the representability theorem mentioned before.
The category theory language we use is that of [20]. All spaces considered

are of the homotopy type of a C.W. complex or pair and the base space B of
the text is assumed to be Hausdorff. We do this since our main result
depends on the fundamental theorems of J. H. C. Whitehead. That the
various construction in the text do not take us outside the category of
C.W.-spaces is a consequence of results found in [19].

Proofs have been omitted (for example 2.3) where they are just fibered
versions of standard homotopy theory arguments.

Finally I wish to mention that as this paper was being prepared for
publication I learned of the parallel work of Rolf Sch6n in [25]. Thus, the
main result of Section V are independent achievements of Sch6n and myself
by slightly different methods.

I. Preliminaries

Throughout this paper we let B be a fixed connected space.
We let B stand for the category of fiber spaces of B defined as follows.

An object ct of SB is a triple ct (X, A, p) where A is a closed subspace
of X and p is a map from X to B. A morphism/: a --* /of B is a map
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f: X --X such that:

(1) f(A,,)
_
A.

(2) p pf.

Composition of morphisms is defined by functional composition. We also let

a’=(X,p) and a"=(A,,plA).

If a SB and Y is a space we may form the object /= ct Y by setting
a =(X Y, A Y, PPl) where pl is projection on the first factor. We
define a fiber homotopy H to be a morphism H’a I "V where I is the
unit interval. This gives an obvious meaning to fiber homotopy of maps and
defines an equivalence relation on morphisms of SB in the usual way. If f is
a map we let If] denote its fiber homotopy equivalence class.
There is a full subcategory of SB called the category of ex-spaces of B.

This category is determined by a SB that satisfy:

(1) card (p (b) A) 1 for each b B.
(2) The map s: B--X defined by s,(b)=x where x is the unique

element determined by (1) is continuous.

The category of ex-spaces of B is denoted B. Clearly ps 1B for each
ctB and we call the triple a =(X, p, s) an ex-space of B following
James in [16].

It is dear that many of the usual notions of homotopy theory of pairs of
spaces or pointed spaces make sense in SB or B. We shall adopt the
language of ordinary homotopy theory mutatis mutandis for SB and CB.
However, to avoid confusion we prefix by "ex-" the word or phrase
denoting a construction to be performed in B. For example we use
ex-coproduct to denote the coproduct construction in B. Furthermore, we
use the word "ordinary" to indicate that the notion lives in the category of
pairs of spaces. For example, "ordinary cofibration" denotes an inclusion
having the homotopy extension property and "cofibration" denotes an
inclusion in SB having the fiber homotopy extension property.

Finally, we let C,I,B (CB) be the full subcategory of B (B) determined
by those a with a" ct’ a cofibration. The usual arguments give us the
following.

1.1. PROPOSITION. The category CB is closed under the formation of
(1) arbitrary coproducts,
(2) mapping cylinders,
(3) mapping torus,
(4) finite products,
(5) infinite telescope (see [27])

Clearly 1.1 holds for the category B.
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II. Pair fibrations

An object a SB is a pair fibration if p has the covering homotopy
property for pairs of spaces. We let F,B be the full subcategory of SB
determined by the pair fibrations and we set FCSB FSB 71CSB. An object
of FCSB is called a fiber-cofibration following Heller in [14]. We shall adopt
a similar notation for the ex-space categories, i.e., we have the category

The usual properties of fibrations hold for pair fibrations. See [10] and
[12]. In particular we have the following.

2.1. PROPOSITION. Let f: a 3 be a map in FSB. The following are
equivalent:

(1) f is an ordinary homotopy equivalence.
(2) f is a fiber homotopy equivalence.
(3) f restricted to each fiber of a is an ordinary homotopy equivalence.

2.2. PROPOSITION. Let a FCSB and f" a"--- /= (X, p) be a map. If

g

is a pushout then g is a fiber cofibration.
Proof. See [14].
Using 1.1 and 2.2 we may verify:

2.3. PoPosrro. The category FCSB is closed under the formation of.
(1) arbitrary coproducts,
(2) mapping cylinders,
(3) mapping torus,
(4) nite products,
(5) infinite telescopes.

Clearly 2.3 holds for the category FCB.
The next proposition is part of the folklore of homotopy theory but we

have supplied the proof since it is not available in the literature to my
knowledge.

2.4. LEMMA. If a e F,B and ffI is a lifting of H

(X, A) (X,

(X, A) x I---- (B, B)

then H is unique up to fiber hornotopy over H.

Pro@ Just as in [26 Corollary 11, page 101].
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2.5. PROPOSITION. If f: a---> [3 is a closed inclusion in ,B and ordinary
deformation retract then / FB implies ]:*[/3, /]-- [a, /] is a bijection where
[ ] denotes fiber homotopy classes of maps.

Proof. By hypothesis there is an ordinary retraction g" (Xa, Aa)-
(X, An) and an ordinary homotopy S" fg lx,with So fg, $1 lx and
gf lx.. We construct the proof in tee steps:

Step (1). Define an ordina homotopy H: (Xa, A) x I (BB) by H
pS. We then have Ho pg and H pa. For h’a define h" D by
setting where is a lifting of H as shown below:

hg

(X,A)x0- (,A)

(Xo, Aa)xI , (B, B).

Now by 2.4 is unique up to fiber homotopy.

Step (2). Suppose h, h: a and T is a fiber homotopy with To h
and T he. Define ordina homotopies

R" (Xe, A)xI(,) and H"(X,A)xII(B,B)
by R (x, t)= T(g(x), t) and H’(x, t, t’)= H(x, t’) thus H’(x, t, O)= H(x, O)=
pg(x) pR(x, t). Let D’ be a lifting of H’ as shown below:

(X, A) x I x O (, A)

Defining D(x, t)= D’(x, t, 1) we have D(x, O)= D’(x, O, 1)= , D(x, 1)=
D’(x, 1, 1)= h and pD(x, t)= pD’(x, t, 1)= H(x, 1)= p, i.e., D is a fiber
homotopy from to h.

Step (3). Suppose h" and let h hr. Define an ordinary homotopy

by T(x, t)= hS(x, t). Then T is a lifting of H since

p,r(x, t) phS(x, t) pS(x, t) H(x, t) and T(x, 0) Hfg(x) hg(x).

Now T(x, 1)= and thus, by step (1), is fiber homotopic to . e above
steps have accomplished the construction of a set function f-" [,]
[, ] which is inverse to f*.

2.6. CooA. If f: is an ordina homompy equivalence in B
and e FB then f*" [, ] [, ] is a bi]ection.
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If a SB we let & F,B be the path fibration of a as described in [26].
Clearly is a functor SB-- F,[,B and there is a natural transformation
t" a - & which is an ordinary homotopy equivalence.

2.7. PROPOSITION. If a ,[,B and A
_
X, is an ordinary cofibration then

& FC,LB.

Proof. By Lemma 3.2 of [3], A
_
X is an ordinary cofibration and thus

by Lmma 2.2 of [4], x FCSB.
If a is an ex-spac with s(B)_X an ordinary cofibration w lt c/b th

x-space formed by collapsing A to a sction, i.e., w hav a quotient map
q- & - ci. From our previous rsults it follows that a FCB and qt"
is an ordinary homotopy equivalence.

Let b B b a fixed point in B and defin / (S, ., p) whr (S, .) is
the pointed n-sphr and p(S)={b}. We lt r b the x-space formed
from / by collapsing A to a sction. By our previous rsults

2.8. PROPOSITION. Let f’a---> [3 be a map in FB and suppose
have connected fibers. If f," [cr, c] ---> [r,/3] is a bijection for all n > 0 then f
is a fiber homotopy equivalence.

Proof. We first observe that if F B then, by 2.6,

r() E/, ]--E; ]-E, ]
where q.b is the pointed fiber of q- over b. The result now follows by the
Vghitehead theorem (in view of our blanket hypothesis) and 2.1.

As we see from the above result the cr play the role of n-spheres in the
category F,B.

III. Ex-spaces and homotopy functors

We let c be ,the fiber homotopy category determined by those ct FC,B
with connected fibers and qgo the full subcategory of c determined by the
o’n, n>0.

Referring the reader to 13] for terminology we have:

3.1. PROPOSITION.
Brown.

The pair (qg, qgo) is a homotopy category in the sense

Proof. That co is a small Whitehead subcategory is 2.8. The other
conditions follow from 2.3.

We thus obtain the following theorem as in [13]"

3.2. THEOIM. Each homotopy functor on (qg, o) is representable.
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We may extend the above result in the following way. A contravariant
functor from some category of ex-spaces to sets satisfies the strong
homotopy axiom if it sends each ordinary homotopy equivalence to an
isomorphism. Let be the full subcategory of the fiber homotopy category
of B determined by those a for which there is an ordinary homotopy
equivalence f: ct /3 with/3 .

3.3. COROLLARY. If H is a contravariant functor from to sets satisfying
the strong homotopy axiom and having its restriction to qg isomorphic to a
homotopy functor then H is representable on .

Proof. This follows easily from 3.2 and 2.6.

IV. Cohomology theories

A cohomology theory over B is a graded contravariant functor K {Kq},
q Z, with domain +B and range the category of abelian groups satisfying
the following axioms"

A1. For each a SB there is a functorial long exact sequence of the pair

(X,, p,,,)(A,, Po, A).

A2. If [, g: a-- / are fiber homotopic then ]’*= g*.
A3. If e’er-- / is an exision then e* is an isomorphism.
A4. K sends each coproduct to a product (wedge axiom).

We let T(B) be the category of theories over B with natural transforma-
tions of theories as morphisms.
A theory satisfies the strong homotopy axiom if it sends each ordinary

homotopy equivalence over B to an isomorphism. We let T’(b) denote the
full sub-category of T(B) determined by the strong homotopy axiom.
There is a functor M: T(B)---> T(B) and natural transformation

l" M- 1T(B) defined as follows: M(K)(a) K(&), M(K)(f) K(f)
and l K(t) where t: a-- & is the natural inclusion of a into its
path fibration. A routine verification yields:

4.1. PROPOSITION. T’(B) is a coreflective subcategory of T(B) with M the
coreflector. (See [20] for this terminology.)

We mention two examples of theories.

4.2. Example. Sheaf cohomology. Fixing a sheaf of abelian groups on B
yields a theory over B by pulling back this sheaf and computing cohomology
by injective resolutions. That one obtains a theory in this way is a consequ-
ence of results found in [6].

4.3. Example. Prestack cohomology. The references for this example
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are [8], [9], and [18]. Let Sin be the singular complex functor. We may view
Sin as a functor from $B to pairs of simplicial sets over Sin(B) that
preserves the fiber homotopy relation. If G is a fixed prestack of abelian
groups on Sin (B) we may define a theory K e T(B) by setting K(et; G)=
H(Sin (et); G) where the right side is the prestack cohomology defined in the
references. That we obtain a theory is a consequence of results found in the
references.
We conclude this section with a remark on the results of Dold in [11]. In

this paper Dold treats only theories satisfying the strong homotopy axiom
and so his results do not apply to theories such as 2.2 and 2.3. However, by
using the functor M or what amounts to the same thing restricting the
theories to F,B we obtain analogues of all of Dold’s results provided we
restrict their scope to FSB. In particular one obtains a weak form of
uniqueness for cohomology of local systems provided we modify the dimen-
sion axiom to the vanishing of the cohomology of the object / where
b-- B e SB is the inclusion of a point in B.

V. Reduced theories and spectra

In dealing with reduced theories we find it convenient to restrict our
attention to the category C’,B, i.e. the full subcategory of SB determined by
s" B X is an ordinary cofibration. A reduced cohomology theory over B
is a graded contravariant functor K from C’,B to the category of abelian
groups satisfying the following axioms:

R1. If f and g are ex-homotopic then f*= g*.
R2. For each sequence

et --) /--) con (f)

where con (f) is the ex-mapping cone of f the sequence o groups

f* i*K(con (f)) K(/) K(et)

is exact.
R3. There is a natural isomorphism for all q and et called suspension:

Eq Kq (et)-- Kq+l(Set

where Set is the fiberwise suspension of et.

R4. K sends each ex-coproduct to a product (wedge axiom).

A reduced theory satisfies the strong homotopy axiom if it sends each
ordinary homotopy equivalence to an isomorphism. Given a cohomology
theory satisfying the strong homotopy axiom one can construct from it a
reduced theory satisfying the strong homotopy axiom. Clearly one can also
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prove a version of 4.1 for reduced theories. We leave this for the reader.
We now turn to the notion of an O-spectrum over B.
An I-spectrum X ={X,, t,} in B is a sequence of ex-homotopy equival-

ences
t. Xn LX,+

where L is the vertical loop space functor defined on B.
An O-spectrum X gives rise in the usual manner (see [15]) to a reduced

cohomology theory. Furthermore, if the spectrum X has each X, F,B then
the corresponding reduced theory satisfies the strong homotopy axiom. This
follows from 2.6.
We now give an important example of a reduced theory.

5.1. Example. Group bundle cohomology. The references for this ex-
ample are [21], [22], and [23]. Let , be an abelian compactly generated
NDR group bundle over B. For example, every numerable locally trivial
compactly generated group bundle is such a /provided the identity of G,
the fiber, is a nondegenerate basepoint. This follows from the fact that every
numerable LNDR group bundle is NDR. (See [10, example 3.7]). Now by
results of Mielke there is an -spectrum X {X,, t,} with each X, n > 0 a
compactly generated abelian group bundle such that X, classifies the functor
H"(a, pl(/)) for n >0 where p(/) is the sheaf of germs of continuous
sections of the group bundle pX(/). Here we assume a =(X, , p,) is a
paracompact K-space. This O-spectrum defines a reduced theory that we
call group bundle cohomology with coefficients in /. Furthermore, if / is
locally trivial the X,’s in the representing spectrum are locally trivial by
Mielke’s construction and thus the corresponding theory satisfies the strong
homotopy axiom.
We note some consequences of Mielke’s results.

5.2. PROPOSITION. If f: X-- Y is an ordinary homotopy equivalence of
paracompact K-spaces and is a locally trivial sheaf of abelian groups on Y
then

f*: H"(Y;) H"(X; f-())
is an isomorphism for all n.

The above result generalizes Theorem 1, page 601 of [24].
5.3. COROLLARY. If f: X---> Y is an ordinary homotopy equivalence of

compact spaces and

li__,.m i

where is a direct system of locally trivial sheaves on Y then

f*" H’(Y; 5) ---> H" (X; f-()) !i._..m H"(X; f-())

is an isomorphism for all n.
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Proof. By 5.2, f*" Hn(Y;)H"(X; f-l(/)) is an isomorphism for all. The result follows from Corollary 14.5 of [6].

We now turn to the main result of this paper.

5.4. TEORM. If K is a reduced cohomology theory then there is an
-spectrum

X={x,, tn} with x, FCB for all n

that represents K on FCB.
Proof. This follows from 3.2 in the usual way. See [15] or [27].

5.5. COROLLARY. I K is a reduced cohomology theory satisfying the
strong homotopy axiom then them is an O-spectrum X={X,, t,} with Xn
FCB that represents K on C’B.

Proof. By 5.4 there is an l-spectrum X ={X,, t,} that represents K on
FCB i.e., there are isomorphism, natural in a, K"(ct)--- [ct, X,] for all n and
a FCB. If/3 C’B then by 2.7 and the subsequent comment there is an
ordinary homotopy equivalence qta’[3-- [3 with/3 FCB. That X repres-
ents K on C’B now follows from the strong homotopy axiom and 2.6.
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