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COMPLEMENT THEOREMS BEYOND THE
TRIVIAL RANGE

BY

I. IVANgI, R. B. SHER AND G. A. VENEMA

1. Introduction

By a well known theorem of Chapman [2], if X and Y are Z-sets in the
Hilbert cube Q, then X and Y have the same shape (abbreviated Sh (X)=
Sh (Y)) if and only if Q X is homeomorphic with Q Y. In recent years there
has been a great deal of interest in finite-dimensional analogues of this result,
the principal aim being to find conditions on compacta X, Y E" such that
Sh (X) Sh (Y) if and only if E" X - E" Y. Thus far all results along this
line have required either that the dimensions or fundamental dimensions of X
and Y lie at most in the trivial (In/Z] 1) range with respect to n [3], [7], [8],
[11], [17], [20] or that Sh (X) and Sh (Y) have particularly nice representatives,
such as spheres, manifolds, or finite complexes [4], [11], [12], [13], [15], [21]. It is
our purpose to present here a theorem in (fundamental) codimension four. We
are able to go beneath the trivial range in ambient dimension by assuming
appropriate connectivity conditions on the embedded compacta; these condi-
tions allow us to replace general position arguments which suffice in the trivial
range by ones using engulfing. Our main result is as follows.

THEOREM A. Let X and Y be r-shape connected continua in E" offundamental
dimension at most k and satisfying ILC, where

n _> max (2k + 2- r, k + 3, 5).

Then Sh (x) Sh (r)implies E" X - E" Y. The converse holds ifn > k + 4.
Nowak [14] has shown that if X is a finite dimensional approximatively

1-connected compactum and i(X)= 0 for i> k, then Fd(X)< k. This fact
along with Theorem A yields the following.

THEOREM B. Let X and Y be r-shape connected continua in E" satisfying ILC
and such that IY-Ii(X)= 0 IY-Ii(r) for i> k, where

n > max (2k + 2- r, k + 3, 5)
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and r )_ 1. Then Sh (X) Sh (Y)implies E" X E Y. The converse holds if
n)_k/4.

In Section 5 we show that it is possible to weaken the hypotheses of Theorem
A slightly, replacing connectivity in dimension r with pointed r-movability.

THEOREM C. Let X and Y be (r- 1)-shape connected, pointed r-movable
continua in E offundamental dimension at most k and satisfyinff ILC, where
n _) max (2k / 2- r, k/3, 5). Then Sh (X)-Sh(Y) implies E"-X-
E Y. The converse holds if n )_ k / 4 and X and Y are 1-shape connected.

Remark. It follows from [6, Theorem 4] that an (r- 1)-shape connected
continuum X is pointed r-movable if and only if X has the shape of some
locally (r- 1)-connected continuum.
The codimension 4 hypothesis of Theorem C is not needed in case X and Y

have polyhedral shape. We obtain the following which generalizes results in
[11] and [12].

THEOREM D. Let X and Y be continua in E" satisfyin9 ILC and each havin9
the shape of an r-connected finite complex of dimension at most k, where
n > max (2k + 1 r, k + 3, 5). Then Sh (X) Sh (Y)implies E" X - E" Y.
The converse holds if r >_ 1.
Theorem A is an immediate consequence of Theorem 3 and Theorem 5,

using Theorems 1 and 2 to see that Theorem 3 applies. These results are
obtained in Sections 2, 3, and 4. In Section 5 we consider movable continua,
and modify the work of Section 3 to obtain Theorem C. Section 6 consists of
some brief remarks concerning Borsuk’s theory of positions [1].
We use either the fundamental sequence approach or the ANR-sequence

approach to shape theory, as convenience dictates. Our notations are those
commonly used in shape theory as found, for example, in [1] or [5].

2. The inessential loops condition and neighborhoods of compacta

If X is a compactum in the manifold M, then X is said to satisfy the inessen-
tial loops condition, 1LC, if for each neighborhood U of X in M there exists a
neighborhood V of X in U such that each loop in V- X which is null-
homotopic in V is also nullhomotopic in U X. Thefundamental dimension of
the compactum X, Fd(X), is

min {dim Y: Sh (X)= Sh (Y), Y a compactum}.
For our purpose the following relationship between these notions, which is
stated as Theorem 4.1 of [22], will be of primary importance.

THEOREU 1. Suppose X is a compactum in the interior ofa PL n-manifold M",
n >_ 5, and Fd(X) <_ k < n 3. Then X satisfies ILC if and only if X has arbi-
trarily close compact PL manifold neiohborhoods with k-dimensional spines.
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IfX is a compactum we say that X is approximatively k-connected, k > 1, if the
homotopy pro-group pro-zrk(X, x) is trivial for all x X. It is well known that
if X M ANR, then X is approximatively k-connected if and only if for each
neighborhood U of X in M there exists a neighborhood V of X in U such that
any map of the k-sphere Sk into V is nullhomotopic in U. If X is approxima-
tively k-connected for 1 _< k _< r, we say that X is r-shape connected. If
X ANR, and r > 0, we say that X is r-connected if X is connected and
nk(X --0 for 1 < k _< r.
Our first result concerns the problem of finding neighborhoods of a compac-

tum X having connectivity matching the shape connectivity of X.

THEOREM 2. Suppose X int M" is an r-shape connected compactum in the
PL n-manifold M having arbitrarily close compact PL manifold neighborhoods
with k-dimensional spines, where k + 3 < n and n >_ 5. Then X has arbitrarily
close compact PL manifold neighborhoods having r-connected components with
k-dimensional spines.

Proof Let U be a neighborhood of X in M". We shall find a compact PL
manifold neighborhood V of X such that V U, each component of V is
r-connected, and V has a k-dimensional spine. We may assume r > 1.

First assume r > k and, since the case k 0 is trivial, k > 1. Let U be a
neighborhood of X, and let U1 be a neighborhood of X such that U U and
U1 is a compact PL manifold having k-dimensional spine. Let V1 be a neigh-
borhood of X such that V1 = U1 and every connected r-dimensional polyhe-
dron in V is inessential in U 1. Let V2 be a neighborhood ofX such that V2 V1
and V2 is a compact PL manifold having k-dimensional spine. Then each
component of V2 is inessential in U and each loop in V2 X is nullhomotopic
in U1 X. By the lemma of [16], there exists a neighborhood V ofX such that
V U and each component of V is a PL n-cell.
Now assume r < k. Fix j, 1 < j < r, and assume inductively that there exists a

compact PL manifold neighborhood Vj ofX such that Vj = U, each component
of V is (j 1)-connected, and V has k-dimensional spine. Let V’ be a compact
PL manifold neighborhood of X such that V’ int V, V’ has k-dimensional
spine K, and each connected polyhedron in V’ of dimension j is inessential in

V. We assume henceforth that V is connected; otherwise we apply the follow-
ing construction to each component of V.

Let L K w vK) vK, where vK is the cone on K with vertex v and Kt) is
the j-skeleton of K. By our assumptions, the inclusion of K into int V can be
extended to a PL general position mapf: L int V. IfS(f)denotes the singu-
lar set off, then

dimS(f)<(j+ 1)+k-n<j-2.

Since j<r<k<n-3, dimS(f)<n-5. Note further that since V is
(j- 1)-connected and L is j-connected, f is (j- 1)-connected. Theorem 4.3 of
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[19] then applies, and yields a k-dimensional polyhedron P cint V such that
f(L) c P and the composition L --.f(L) c P is a simple homotopy equivalence.
Let N c int V be a regular neighborhood of P. Then N contains a regular
neighborhood N’ of K. Let h: V- V be a PL homeomorphism such that
h(N’) V’. Then V+ a= h(N) U is a compact j-connected PL manifold
neighborhood of X having k-dimensional spine. Continuing the induction we
obtain V+ V.

3. Continua in E" having the same shape

We now state a lemma which will be used to maintain an inductive argument
in the proof of Theorem 3. It is similar to Lemma 4.1 of [7] and Lemma 4 of
[201.

LEMMA 1. Let X and Y be continua in E" such that X has arbitrarily close
compact PL manifold neighborhoods with k-dimensional spines and Y has arbi-
trarily close open (2k + 2- n)-connected neifhborhoods, where k <_ n- 3. Let
f {f, X, Y} and f {f’i, Y, X) be fundamental sequences in E" such that
ff - idx in E". Let Uo be an open (2k + 2 n)-connected neighborhood of X,
and h: E" --} E" be a PL homeomorphism such that Y c h(Uo) and such that there
exists a neifhborhood Wo of Y with h- Wo - f’i Wo in Uofor almost all i. Then
for every neighborhood Vo of Y, there exist an open (2k + 2- n)-connected
neighborhood V of Y lyin9 in Vo c h(Uo), a PL homeomorphism q: E" --. E, and
a neighborhood U ofX such that

(1)
(2)
(3)

qlE"--Uo=hlE"--Uo,
q(X) V, and
q u _.fl u in gfor almost all i.

Proof There exists neighborhoods V Vo h(Uo) of Y and Ua U0 ofX
and a positive integer N such that if i> N, then h-a[V_f’i[V in Uo,

ji[Ua -fNIUa in V, andf’i f/IUa - idvl in Uo. By hypothesis we may assume
V to be open and (2k + 2 n)-connected and U to be a compact PL manifold
having k-dimensional spine L. Let f: L V be a PL map such thatf-fN[L in
V and such that f and h lL are in general position.
Note that h- af

_
f’N f- f’N fN[ L - ida. in Uo, and so fh- a[ h(L)

_
idhtl in

h(Uo). Let G" h(L)x I---, h(Uo) be a PL general position map such that
G(x, O)= x and G(x, 1)= fh-(x) for all x h(L). We may assume, by Zee-
man’s Piping Lemma (Lemma 48 in Chapter 7 of [23]), that there exists a poly-
hedron J h(L) x I such that S(G) J, dim J < 2k + 2 n < n- 4, and

h(L) x I , J w (h(L) x {1}).

By our connectivity conditions, the pair (h(Uo), V)is (2k + 2- n)-connected,
and so we may apply Stalling’s Engulfing Theorem [18] to obtain a
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homeomorphism

r: E" --* E"

such that r is fixed on G(h(L) {1}) (E h(Uo))and r(V) G(J). Using the
fact that S(G) J, we see that

G(h(L) x I) x, G(J w (h(L)x {1})).
Since we may engulf along the track of this collapse, we may assume

r(V) G(h(L) x I).
Now, let

h: E" E"

be a homeomorphism such that ha is fixed on L w (E" Uo) and

hh,(U,) r(V),
and let q r-lhh: E" - E".

(1’) If x E" Uo, q(x)= r-’hh,(x)= h(x), so (1) is satified.
(2’) q(U,)= r-’(hh,(U,)) r-’(r(V))= V, so (2)is satisfied.
(3’) LetF:L xl-Vbedefinedby

F(x, t)= r-’G(h(x), t), x L, e l.

Then, if x e L,

F(x, O)= r-G(h(x), O)= r-(h(x))= r-h(h(x))= q(x)

and

F(x, 1)= r-G(h(x), 1)= G(h(x), 1)=fh-(h(x))=fix).
ThusqlL

_
fin V, and so, ifi > N, qlL

_
flL in g. The fact that q( U,) V, as

shown in (2’), along with the fact that L is a strong deformation retract of U
shows that if/> N, then ql u -fl u in V, and so (3) holds.
We are now prepared to state and prove the main result of this section.

THEOREM 3. Suppose X and Y are continua in E such that X and Y each have
arbitrarily close compact PL manifold neighborhoods with k-dimensional spines
and arbitrarily close open (2k + 2-n)-connected neighborhoods, where
k <_ n 3. Then Sh (X)= Sh (Y)implies E"- X E- Y.

Proof. Suppose that Sh (X)= Sh (Y). Then an easy modification of the
proof of Lemma 4.2 of [7] shows that E" X E Y, where our Lemma 1 is
used in place of Lemma 4.1 of [7]. We need only note that in our case we may
keep the induction going by replacing the sets W1, S 2, S 3, used in that proof
by appropriately chosen (2k + 2- n)-connected open sets.
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We remark that because of linking phenomena we must assume X and Y
connected in Theorem 3. This is the case even if X and Y have polyhedral
shape. As an example, let X and Y each consist of the disjoint sum of two
piecewise linear copies of S3 in S7, with linking occurring for X but not Y.
Then E"-X E"- Y.

4. Continua in E" having homeomorphic complements

We begin this section with a result which generalizes Theorem 1’ of [12].
(Our "niceness of embeddings" condition is ILC. However, for 1-shape con-
nected compacta in E" of fundamental dimension at most n 3, ILC is equiva-
lent to the formally stronger cellularity criterion [13] or the condition that the
embedding be globally 1 ALG (Definition in [15]).)

THEOREM 4. Let X and Y be 1-shape connected continua in E" offundamental
dimension at most k and satisfyin9 ILC, where k <_ n 3. Then

E,+ X
_
E"+1- y

implies Sh (X)= Sh (Y).

Proof If n < 2 the statement is vacuous, while if n 4 the result follows
from Theorem 1 of [20]. In case n 3, the result follows from standard
techniques, see [22] for example. We may thus assume n > 5.
By Theorems 1 and 2 there exists a sequence {Mi}= of compact connected

PL n-manifolds in E" such that X ("]=1 M and, for j--1, 2,
Mj+ c int Mj, Zl(Mj)= 0, and Mj has k-dimensional spine Kj. Let

Nj= Mi x [-1/j, 1/j]c E" x E E"+1.

Note that nl(Nj)= I(N- Kj)= I((Nj)--0.
Let h: E"+ X En+ y be a homeomorphism. We may assume that h

induces a homeomorphism of the quotient space E"+ 1IX onto E"+ 1/y. For if
this is not the case, then the end of E" + X corresponding to X is isomorphic
to the end of E" + 1, as is the end of E"+ y corresponding to Y; from this we
see that X and Y are cellular in E"+ 1, hence both have trivial shape and the
desired conclusion is obtained. Ifj 1, 2,..., let N)= E"+1 h(E"+1 Nj).
Then Y = N’ and, for j 1, 2,..., N is a compact topological manifold
and N)+lintN). By Lemma 1 of [20], n2(Nj, N-X)=0, so
n(N X) 0. Hence n(N) Y) 0. This, along with the fact that
1 (N), N) Y) 0, implies rtl (N)) 0.

If j= 1, 2, let pj: NM {l/j} denote the natural projection, and
definef N N/by f.(x) h(p.i(x)) for all x Nj. The neighborhoods {N,}=
of X form, along with the inclusion maps, an inverse sequence X of ANR’s
whose inverse limit is X. Similarly {N’}= determines an inverse sequence
whose inverse limit is Y. We shall show that (1) f (f, id): X ---, Y is a (level
preserving) system map and (2) ifj 1, 2, thenf:N Nis a homotopy
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equivalence. Our conclusion will follow, since it is readily seen that if
f): N)N is a homotopy inverse off, then f’= (f’, id): Y X is a system
map inverse to f, thereby showing that Sh (X)= Sh (Y).
Now, if j 1, 2, then Pi/I -pilN/I in N-X. It follows that

f+l -f IN+I in N) Y (consequently in N)). Hence f is a system map.
It now remains to be shown that ifj 1, 2, thenf: N N3 is a homo-

topy equivalence. Since N and N/are simply connected ANR’s, it suffices to
show that (f), H(N) H(Nj)is an isomorphism for q 2, To this
end, let N N, N)= N’, f =f, p p, and let

: cN N,/3: c3N En+ int N, i: cON’ N’ and /: dN’ En+ int N’

denote the inclusion maps. Considering the Mayer-Vietoris sequence for

(E"+; N, E"+ int N),
we find that the sequence

0 Hq+1 E’+ 1) Hq(C3N) L Hq(N) O) Hq(E"+1 int N) Hq(E"+ 1) 0

is exact. Hence q (,, -/3,) is an isomorphism. It follows that

H(dN) ker , ker/3,
and that

, [ker/3,: ker//, Hq(N) and //, [ker ,: ker , - H(E"+1 int N)
are isomorphisms. Similarly

H(N’) ker 6, 03 ker ,,
and

6, [ker ,: ker ?, H,(N’) and , [ker 6,: ker 6, -/_/(/n/ int N’)
are isomorphisms.
Note that ap idN. Therefore p,: H(N) --, H(dN)is a monomorphism and

H(N) p,(n(N))(R) ker a,. Note also that p,(n(N)) ker fl, since p(N)
is inessential in E"+ {l/j} E+ -int N. Therefore p,(H(N))= ker fl,.
Note finally that if h’: cN tN’ is defined by h’(x) h(x) for all x cN, then
h, ]ker/3, carries ker fl, isomorphically onto ker , Hq(dN’) since h’ ex-
tends to a homeomorphism of E"+ int N onto E"+ int N’.
From the above and the commutative diagram

H,(N) p,(H(N))= ker

H(N’) ker ?,

we see that f, is an isomorphism, thereby completing the proof.
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THEOREM 5. Let X and Y be r-shape connected continua in E" offundamental
dimension at most k and satisfying ILC, where

n > max (2k + 2- r, k + 4, 5).
Then En- X E" Y implies Sh (X)-- Sh (Y).

Proof If r _< 0, the result follows from Theorem 1 of [20]. We assume, then,
that r >_ 1. Since k <_ n 4, k (2k + 2 n) _>_ 2, and so Theorem 5 of [10]
shows that X and Y may be embedded up to shape in E 1, say as X’ and Y’.
The proof ofTheorem 5 of [10] shows that the hypothesis of Theorem 3 may be
assumed to apply to X’ and Y’. Hence

E"-X’-E"-X-E- YE- Y’.

By Theorem 4, Sh (X’)= Sh (Y’), hence Sh (X)= Sh (r).

5. Movable continua

Let X be a continuum in a PL n-manifold M". Then X is pointed m-movable if
there exists a point x X with the following property" for every neighborhood
U of X there exists a neighborhood V of X in U such that if 4" (K, k) (V, x)
is a map of a pointed complex of dimension < m into V and W is any neighbor-
hood of X, then is homotopic in U to a map into W (keeping the base point
fixed). All continua considered in this section shall be pointed 1-movable. It
follows from Theorem 7.1.3 of [5] that all shape equivalences may be regarded
as equivalences in the pointed shape category. Since the work of this section
leans heavily on the notion of homotopy progroups, we shall find this of use.
We therefore assume henceforth that when a certain shape morphism is given,
it is a pointed morphism; however, we suppress base points from our notations.
A shape morphism f" X - Y is said to be shape r-connected if f induces an

isomorphism f" pro-k(X)- pro-k(Y) for 1 < k < r and an epimorphism

f#" pro-r(X)--* pro-r(r). A map is shape r-connected if it generates a shape
r-connected shape morphism.

LEMMA 2. Let M" be a PL n-manifold and let X int M" be an r-shape
connected, pointed (r + 1)-movable continuum offundamental dimension at most
k, where (r + 1) < k <_ n 3 and n > 5. IfX satisfies ILC then X has arbitrarily
close compact PL manifold neighborhoods V such that V has a k-dimensional
spine and the inclusion ofX into V is shape (r + 1)-connected.

Proof Let U be an open set containing X. By Theorems 1 and 2 there exists
a neighborhood U1 of X in U such that U1 is r-connected. Choose a neighbor-
hood V1 of X satisfying the movability condition with respect to U 1. By
Theorems 1 and 2 we may assume that V1 is a compact PL manifold with an
r-connected, k-dimensional spine K. Choose a smaller neighborhood V2 of X
satisfying the movability condition with respect to
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We will find a neighborhood V of X such that V1 = V = U1, V has a k-
dimensional spine P, P is r-connected, and the inclusion induced map
rtr+ 1(V2)--’ rtr+ I(V)is onto. That will finish the proof since the choice of V2
shows that if W is any neighborhood of X in V2 then the image of the inclusion
induced map rt,+ I(W) - rt+ 1(V1)equals the image of ft,+ l(V2) --- gr+ 1(V1) and
thus tr +1(W) ---, rt+l (V) is an epimorphism.
Now rt,(V1)= 0 for < r, so rtr+ 1(V1)is finitely generated. Let

i St+ 1, S) (V1, X), 1, j,

denote representatives of a generating set. The choice of V implies that//i is
homotopic in U1 to 7i: (Sr+ 1, s) (V2, x). Let p: V1 K denote the end of a
strong deformation retraction and let L denote the complex obtained from K
by attaching (r + 2)-cells along [P,][PT ,]-1, 1,...,j. The inclusion of K into
U1 extends to a map f: L - U1. Exactly as in the proof of Theorem 2, we can
.apply Theorem 4.3 of [19] to find a k-dimensional polyhedron P c U1 such
that L --,f(L) c P is a simple homotopy equivalence. Let V be a regular neigh-
borhood of P. As in the proof of Theorem 2 there exists a homeomorphism h
such that V1 c h(V) U1. Then h(V)is the neighborhood we want.
We are now prepared to state a variant of Lemma 1.

LEMMA 3. Let X and Y be continua in E" each satisfyin9 ILC and havin9 the
shape ofan (r 1)-shape connected, pointed r-movable continuum ofdimension at
most k, where n > max (2k + 2 r, k + 3, 5). Let f {f, X, Y} and f {fl, Y,
X} be mutually inverse fundamental sequences in E". Let Uo be an open (2k +
1 n)-connected neiyhborhood ofX in E" such that the inclusion ofX into Uo is
shape (2k + 2 n)-connected, and h" E" E" be a PL homeomorphism such that
Yc h(Uo) and such that there exists a neighborhood Wo of Y with
h- Wo - f’i Wo in Uo jbr almost all i. Then Jbr every neiyhborhood Vo of Y,
there exist an open (2k + 1- n)-connected neighborhood V of Y lyin9 in

Vo h(Uo) such that the inclusion of Y into V is shape (2k + 2 n)-connected, a
PL homeomorphism q" E" E", and a neiyhborhood U1 of X such that

(2)
(3)

qlE"-Uo--hlE"-Uo,
q(X) V, and
q U - fi U in V jbr almost all i.

Proof By Theorem 1, X has arbitrarily close compact PL manifold neigh-
borhoods with k-dimensional spines. The proof of Lemma will thus apply
here if we can find an arbitrarily small open neighborhood V of Y such that V is
(2k+ 1-n)-connected, the inclusion of Y into V is shape (2k+
2 n)-connected, and the pair (h(Uo), V)is (2k + 2- n)-connected.
By Lemma 2, there exist arbitrarily small neighborhoods V of Y such that V

is (r- 1)-connected and the inclusion of Y into V is shape r-connected. We
need to check that the pair (h(Uo), V)is r-connected. Let

h-:h(Uo)-Uo, j:X--*Uo and k: Yh(Uo)
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be shape morphisms generated by h -1" h(Uo)- Uo and the inclusions
j" X Uo, k" Y ---, h(Uo). Note that the hypothesis h-ll Wo - f}]Wo in Uo for
almost all shows that jr’

_
h- lk, and so hjf’

_
k. By hypothesis induces an

epimorphism
j4" pro-n(X) pro-r,(Uo)

and so, since f’ and h are shape equivalances, k induces an epimorphism

k" pro-t,(Y) pro-rt(h(Uo)).
It follows that in the exact sequence

" t,(V)- rt,(h(Uo)) rt,(h(Uo), V)--. O,

0 is an epimorphism, and so rt,(h(Uo), V)= O.
We are now prepared to prove Theorem C.

Proof of Theorem C. Suppose first that Sh (X)= Sh (Y). Then use Lemma
3 as Lemma 1 was used in the proof of Theorem 3 to show that E" X -E" Y. Next suppose that E" X E" Y. Since k < n- 4, the case k _< 2
follows from Theorem 1 of [20]. If k > 3, X and Y can be embedded up to shape
in E by Corollary 2 of [9]. By the direction of the theorem proved above,
E X - E X’ and E Y - E" Y’. Thus Sh (X)= Sh (Y) by Theorem
4.
The next theorem generalizes Theorem 1 of [12].

THEOREM 6. Let K and L be simply connected subpolyhedra of E". If
E,+ K - E"+1 L then K and L have the same homotopy type.

Proof Let h: E"+ K E"+ L be a homeomorphism. As in the proof
of Theorem 4, we may assume that h induces a homeomorphism of the quotient
space E"+ 1/K to E"+ 1/L. Choose regular neighborhoods M M2 M 3 of K
and N1 N2 N3 N of L such that h(t?Mi) Ni int Ni+ 1, for 1, 2,
and 3. We may assume that Mi is of the form

M, M’i x [-l/i, l/i] E" x E E"+1.

Define f: h(M2) c3N2 to be the map which pushes h(t?M 2)across the product
structure N2 int N3 ON2 x [0, 1] into tN2 Define

f" ON2 h(t?M2)
by pushing along the product structure h(M1 int M2) - h(t?M2) x [0, 1].
Then ff_ id in h(M1 M3) and sof- id in h(OM2). Similarly, ff’ - id in

t3N2. Thusf-: c3M2 t3N2 defined byf(x) =f(h(x))is a homotopy equivalence.
Note that f extends to a homotopy equivalence of E"+1- int M2 to
E"+1 int N2. Let p" M2 Mz x [- 1/2, 1/2] Mz x {1/2} denote the nat-
ural projection. Then fp" M2 N2 is a homotopy equivalence exactly as in the
proof of Theorem 4.
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Proof of Theorem D. If Sh (X)= Sh (Y), then E"-X E"-Y, by
Theorem C. If E" X E" Y, we first find polyhedra K, L E represen-
ting the shape classes ofX and Y respectively by Corollary 4.2 of 19] and then
apply Theorem 6.

6. Borsuk’s notion of position

A complement theorem is a sort of weak unknotting theorem. Another weak
type of unknotting, the notion of position, has been considered by Borsuk
(Chapter XI of [1]). We recall a definition of Borsuk from [1]. Let M and U be
spaces, M A1 A and N B B2 ’’" Then the sequences
{A}= and {B}= are said to be similar if there exist homeomorphisms
h,’M-,U, i= 1, 2, such that (1)h(A)= B, i= 1, 2, and (2)if
1 _< <j, then

hilM. A --hlM- Ai and hilAi -hjlAi in Bi.

A careful reading of the proof of Theorem 3 shows that under its hypothesis, if
Sh (X)= Sh (Y), then there exist compact PL manifolds

Ma D int M M2 D int M2 M3 and

N1 int Na N2 int N2 N3
such that {Mi}= and ,},: are similar, X ?: Mi, and Y =1 Ni.

(Specifically, Mi may be taken to be cl (S2i) in the proof of Lemma 4.2 of [7],
noting that the homeomorphism q constructed in Lemma 1 may be constructed
so that q]Uo - h lUo in h(Uo).) The following result is a consequence of this
observation and Theorem 8.6 on page 336 of [1].

THFOREM 7. Let X and Y be r-shape connected continua in E" offundamental
dimension at most k and satisfying ILC, where

n _> max (2k + 2- r, k + 3, 5).
Then Sh (X)= Sh (Y) if and only/fPos (E", X)= Pos (E", Y).

Similarly we have the following, corresponding to Theorem C.

THFORFM 8. Let X and Y be (r- 1)-shape connected, pointed r-movable
continua in E" offundamental dimension at most k satisfying ILC where

n _> max (2k + 2- r, 5, k + 3).
Then Sh (X)= Sh (Y) if and only/fPos (E", X)= Pos (E", Y).
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