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1. Introduction

A composite natural number n is called a pseudoprime (to base 2) if

2n- 1 (mod n).

The least pseudoprime is 341 11 31. Let (x)denote the number of pseudo-
primes not exceeding x. It is known that there are positive constants c , 2 such
that for all large x,

c log x < (x) < x.exp {--C2(1og x’log log X)1/2}.

The lower bound is implicit in Lehmer [6] and the upper bound is due to Erd6s
[4]. Very recently in [9] we have obtained an improvement in the upper bound.
There have been improvements on the lower bound, but they have only con-
cerned the size of the constant c. For example, see Rotkiewicz [13].

In this paper we show that there is a positive constant such that for all
large x,

(x) > exp{(log x’)}.

In particular, we may take 5/14.
ErdiSs conjectures that (x) x -)where e(x) 0 as x oo. See Pomer-

anee, Selfridge, Wagstaff [10] for more on this.
Our main result holds for pseudoprimes to any base and in fact for strong

pseudoprimes to any base (see Section 2 for definitions). Moreover our result
holds if we just count those pseudoprimes n with at least (log n)5/14 distinct
prime factors.
On the negative side, if ’(x), "(x), and k(x) denote respectively the

counting functions for pseudoprimes that are square-free, not square-free, and
have at most k distinct prime factors, then we cannot show any one of
’(x)/log x, "(x), ’k(x)/log X is unbounded.
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2. Preliminaries

If b, n are natural numbers and (b, n) 1, let l(n) denote the exponent to
which b belongs modulo n. Let 2(n) denote the largest of all the l(n) where b
varies over a reduced residue system modulo n. We always have l(n)12(n).
From the theorem on the primitive root we have, for prime powers p,

-(p 1) if p > 2 or if a < 2,
2(Pa) 2 2 if p 2 and a > 3.

For a general n we have 2(n) equal to the least common multiple of the 2(p) for
the p n.
A composite natural number n is called a pseudoprime to base b if

b"-=1 (modn).
If n is an odd pseudoprime to base b and if there is an integer k _> 0 such that
2k lo(p) for each prime factor p of n, then n is called a stron# pseudoprime to base
b. This slightly unorthodox definition is easily seen to be equivalent to the usual
definition of strong pseudoprime (see [10], for example).

If m > 1, b > 2 are integers, we let F(b) denote the mth cyclotomic polyno-
mial evaluated at b. We have F(b) > 1. If F(b) is divisible by a prime p with
lb(p) 4= m, then m pklb(p) for some integer k > 0. In this case, p is called an
intrinsic prime factor, and is evidently unique. The common case for prime
factors q of F,,(b) is for lo(q) m. Such prime factors q are called non-intrinsic
or primitive. Moreover F(b) has at least one primitive prime factor except in
the cases m 1, b 2; m 2, b 2 1 for some integer n > 2; rn 6, b 2.
This result is due to Bang [2] and many others. (Artin [1] is a more accessible
reference on this topic.) Thus if m pc where p is prime and larger than the
largest prime factor of c and if c 4= lb(p), then every prime factor of F(b) is
primitive and F(b) > 1.

If 6e is a set, by #6 we mean the cardinality of

3. The constant E

If n > 2 is an integer, let P(n) denote the largest prime factor of n. Let H(x, y)
denote the number of primes p < x such that P(p 1) < y. Let

E sup {c" H(x, x1-c) >> x/log x}.
ErdiSs [3] showed that E > 0. In [8] we showed that E > 0.55092. Furthermore
we indicated that a new result of Iwaniec [5] and our method give E > 0.55655.
ErdiSs [4] conjectured that E 1. We remark that E 1 follows from the
method of [8] and the conjecture of Halberstam (see Montgomery [7], equation
15.10) that Bombieri’s theorem holds for moduli up to x- rather than just up
to X1/2-e.
The interest in the constant E comes from the following result which is a

variation on a theme of Erd/Ss (see [3]).
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THEOREM 1. For every e > O, there is an Xo(e) such thatfor each x > Xo(e), if
A is the least common multiple of the inteoers up to log x/log log x, then

# {a < x: 2(a)lA, a square-free} >_ x-.
Proof. We may assume E > e > 0. Let z (log x)tx-+/2)-l. Let

{p <_ z: p prime, p l lA}.
From the definition of E, there is a di > 0 such that for all large x,

H(z, log x/log log x) _> diz/log z.

If p is a prime with the properties p < z, P(p 1) < log x/log log x, and yet
p q , then it must be that there is a prime power qClp 1 with c _> 2 and
qC > log x/log log x. Now the number of such primes p is at most

[z/q] , z(log log x/log X)1/2 o(z/log z).
Thus for all large x we have

# > (6/2)z/log z.

Now let V" denote the set of square-free integers a < x composed only of the
primes in . Every member p of satisfies p < z, so that V" has at least as
many elements as has subsets of eardinality [log x/log z]. Thus, for large x,

#A/" >
[log x/log z] >- [log x/log z]

l ((6/2)zllog )lgx/’g"

>-
z log x/log

XE-e XE-e.

But if a , then a _< x, a is square-free, and 2(a)l A.

4. The main result

Let b(X) denote the number ofpseudoprimes to base b that do not exceed x.

THEOREM 2. For every e > 0 and inteoer b > 2, there is an x0(e, b) such that
for all x >_ x0(e, b), we have

b(X) > exp {(log x)ElsE+

Proof Let e > 0, b _> 2 be given. Let x be large and let y (log x)(E+
Let A denote the least common multiple of the integers up to log y/log log y.
Let p denote the first prime that is congruent to 1 modulo 2A. By Linnik’s
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theorem (see Prachar [11], Kapitel X, Satz 4.1) there is an absolute constant c
with

(1) p

_
A
_

y2e/log log y.

Let q be any fixed prime between A + 1 and 2A. Let

(a
_

y" ,(a)lA, a square-free, a l(q), aq l(p)).
The last two conditions delete at most 2 elements that otherwise would be in
4/’. By Theorem 1 and possibly deleting some elements of, we may assume
#..,r [.-q.
For each set c 4r with at least 2 elements, let

n(,9")= 1-[ Fp,,,(b).

We claim that

(i) n() is a pseudoprime to base b,
(ii) n() < x, and
(iii) if ’ V, #’ > 2, ’ 4: , then n(’) 4 n().

Our theorem then follows, for we have for large x

o(x) >_ 2- #/- 1

> 2-- y-- 1

> exp {(log x)/+ )-’}.
We now show (i). Let m denote, the least common multiple of the elements of

ff. We claim that if a ff, then

(2) Fp(b)-= 1 (mud pqm).

First, since every prime factor of Fpa(b) is primitive (l(p) v qa, p > e(qa)), we
have

Fp(b) 1 (mod pq).
Next, since every prime factor of Fa(b)is primitive (l(q) fi a, q > P(a)), if r is
such a prime factor, then r 1 (mud q), so rm. Hence we have (t(b), m) 1.
Thus

F(bp) Fo(b) 1 (mud m)Fp’a(b) Fa(b = F,,(b)
since A(m)]Al(p 1)and m is square-free imply b b (mud m). We thus have
(2) and so pqm[ n(Ae)- 1. Thus

/’/(’)] H fd(b)-- bpqm 1 ]bn(S)-I 1.
dlpqm
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Also, since has at least 2 elements, n(6e) is composite. Thus n(6e) is a
pseudoprime to base b.
For (ii), note that if x is large and using (1),

n(St’) < bt’r’as’a <_ exp {pq(log b)aa}
< exp {pq(log b).-+
< exp (y+ x)

Now note that if r is a prime factor of F;,.(b), then l(r)= pqa. This im-
mediately gives (iii).

Remarks. (1) We mentioned above that from [8] we have E > 0.55655. Thus

E/(E + 1) > 0.35755 > 5/14.

(2) Some people like to insist in their definition of pseudoprime to base b
that it be odd. Note that all of the pseudoprimes created in the proof of
Theorem 2 are odd and in fact are relatively prime to every prime r < 2pq. Also
note that

2pq > exp (log log x/log log log x) for all large x.

(3) In the proof of Theorem 1, if we insist in the definition of that p 4= 2,
we have the same theorem as before, but now every member ofV" is odd. Thus
in the proof of Theorem 2, we conclude that if r is any prime factor of n(Se),
then /(r) is odd. Since also n(5) is odd (Remark 2), we conclude that the
pseudoprimes n(5) are all strong pseudoprimes:

(4) We would stillobtain our result ifwe restricted 5e to those subsets ofV"
which have a majority of the elements of. The pseudoprimes so constructed
have at least (log x)/’ distinct prime factors.

(5) A slight modification of the above proof gives a lower bound for b(x)
that has an explicit dependence on b"

b(x) > exp {,(log x/log b)
for all x _> bxt), where Xo(e) is the constant in Theorem 1. To see this, we
change the definition of y in the proof of Theorem 2 to

y (log x/log b)rE+

Then if x > bx), we have y _> Xo(e), so that Theorem I can be used to estimate

(6) Consolidating Remarks 1 and 5, we have an absolute constant C such
that for all b >_ 2 and x >_ bc,

b(x) _> exp {(log x/log
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5. Cyclotomic pseudoprimes

If b > 2 is an integer and if 1 < dl < d2 < < dkare integers, we shall call
the number IIFa,(b) a cyclotomic number to base b. A cyclotomic pseudoprime to
base b is then a cyclotomic number to base b which is also a pseudoprime to
base b. For example, 341 Fs(2)F10(2) is a cyclotomic pseudoprime to base 2.
Let b(x), b(x) denote respectively the counting functions for the cyclotomic
numbers to base b, the cyclotomic pseudoprimes to base b.

It is clear that Theorem 2 holds for (x) in place of (x). Our point is
that Theorem 2 is near to best possible for cyclotomic pseudoprimes. Indeed
r6b(x) < cb(x) and an argument which uses estimates for the partition func-
tion p(n) (see Rademacher [12])shows that

c,(x) exp {(log x)*/2+(*)}.
This is the same estimate we would have for ’b(x) if we knew, as Erd6s has
conjectured, that E 1.
We conclude that. if there is to be substantial further progress on lower

bounds for b(x), one will have to consider pseudoprimes to base b that are not
cyclotomic.
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