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A NEW LOWER BOUND FOR THE PSEUDOPRIME
COUNTING FUNCTION

BY
CARL POMERANCE

1. Introduction

A composite natural number n is called a pseudoprime (to base 2) if
2""'=1 (mod n).

The least pseudoprime is 341 = 11 - 31. Let 2(x) denote the number of pseudo-
primes not exceeding x. It is known that there are positive constants ¢, ¢, such
that for all large x,

c; log x < P(x) < x - exp {—c,(log x - log log x)"/?}.

The lower bound is implicit in Lehmer [6] and the upper bound is due to Erdos
[4]. Very recently in [9] we have obtained an improvement in the upper bound.
There have been improvements on the lower bound, but they have only con-
cerned the size of the constant ¢,. For example, see Rotkiewicz [13].

In this paper we show that there is a positive constant o such that for all
large x,

P(x) > exp{(log x*)}.

In particular, we may take a = 5/14.

Erdds conjectures that 2(x) = x! ~** where ¢(x) — 0 as x — co. See Pomer-
ance, Selfridge, Wagstaff [10] for more on this.

Our main result holds for pseudoprimes to any base and in fact for strong
pseudoprimes to any base (see Section 2 for definitions). Moreover our result
holds if we just count those pseudoprimes n with at least (log n)*/** distinct
prime factors.

On the negative side, if 2(x), 2"(x), and #*(x) denote respectively the
counting functions for pseudoprimes that are square-free, not square-free, and
have at most k distinct prime factors, then we cannot show any one of
' (x)/log x, 2"(x), #*(x)/log x is unbounded.
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2. Preliminaries

If b, n are natural numbers and (b, n) = 1, let l,(n) denote the exponent to
which b belongs modulo n. Let A(n) denote the largest of all the I,(n) where b
varies over a reduced residue system modulo n. We always have I(n)|A(n).
From the theorem on the primitive root we have, for prime powers p®

p* '(p—1) ifp>2orifa<?2,
272 ifp=2and a>3.

For a general n we have A(n) equal to the least common multiple of the A(p®) for
the p°||n.

A composite natural number n is called a pseudoprime to base b if
b"'=1 (mod n).

If n is an odd pseudoprime to base b and if there is an integer k > O such that
2%||1,(p) for each prime factor p of n, then n s called a strong pseudoprime to base
b. This slightly unorthodox definition is easily seen to be equivalent to the usual
definition of strong pseudoprime (see [10], for example).

If m > 1, b > 2 are integers, we let F ,(b) denote the mth cyclotomic polyno-
mial evaluated at b. We have F,(b) > 1. If F (b) is divisible by a prime p with
l,(p) # m, then m = p*I,(p) for some integer k > 0. In this case, p is called an
intrinsic prime factor, and is evidently unique. The common case for prime
factors q of F,(b) is for I(q) = m. Such prime factors q are called non-intrinsic
or primitive. Moreover F,(b) has at least one primitive prime factor except in
thecasesm=1,b=2;m=2,b=2"— 1 for some integer n > 2;m = 6,b = 2.
This result is due to Bang [2] and many others. (Artin [1] is a more accessible
reference on this topic.) Thus if m = pc where p is prime and larger than the
largest prime factor of ¢ and if ¢ # I,(p), then every prime factor of F,(b) is
primitive and F,.(b) > 1.

If & is a set, by #% we mean the cardinality of &.

Ap?) =

3. The constant E

If n > 2 is an integer, let P(n) denote the largest prime factor of n. Let I1(x, y)
denote the number of primes p < x such that P(p — 1) < y. Let

E = sup {c: I1(x, x' ~¢) > x/log x}.

Erdos [3] showed that E > 0. In [8] we showed that E > 0.55092. Furthermore
we indicated that a new result of Iwaniec [5] and our method give E > 0.55655.
Erdos [4] conjectured that E = 1. We remark that E =1 follows from the
method of [8] and the conjecture of Halberstam (see Montgomery [7], equation
15.10) that Bombieri’s theorem holds for moduli up to x! ~¢ rather than just up
to x1/27e,

The interest in the constant E comes from the following result which is a
variation on a theme of Erdos (see [3]).
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THEOREM 1.  For every ¢ > 0, there is an x(c) such that for each x > x (), if
A is the least common multiple of the integers up to log x/log log x, then
#{a < x: Ma)| A, a square-free} > xE~°.
Proof. We may assume E > ¢ > 0. Let z = (log x)! "E+¢/27" Let
of ={p <z:pprime,p—1|A}.
From the definition of E, there is a 6 > 0 such that for all large x,
I(z, log x/log log x) > dz/log z.

If p is a prime with the properties p < z, P(p — 1) < log x/log log x, and yet
p ¢ <, then it must be that there is a prime power ¢°|p — 1 with ¢ > 2 and
q° > log x/log log x. Now the number of such primes p is at most

Y [2/4°] < z(log log x/log x)'/* = o(z/log z).
Thus for all large x we have
#. > (6/2)z/log z.

Now let 4" denote the set of square-free integers a < x composed only of the
primes in /. Every member p of </ satisfies p < z, so that 4" has at least as
many elements as &/ has subsets of cardinality [log x/log z]. Thus, for large x,

# #o [log x/log z]
[log x/log z]) = (W)
1 (6/2)2/10g 7\ log x/log z
>= |
z \log x/log z

log x/log z
=1 (é) . xE—t:/Z > XE_E.

#r=

z\2

But if a € A, then a < x, a is square-free, and A(a)|A.

4. The main result
Let 22,(x) denote the number of pseudoprimes to base b that do not exceed x.
THEOREM 2. For every ¢ > 0 and integer b > 2, there is an x (e, b) such that
for all x > x(e, b), we have
Py(x) = exp {(log x)*/=+ D77},

Proof. Let &> 0, b> 2 be given. Let x be large and let y = (log x)E* V",
Let A denote the least common multiple of the integers up to log y/log log y.
Let p denote the first prime that is congruent to 1 modulo 2A. By Linnik’s



THE PSEUDOPRIME COUNTING FUNCTION 7

theorem (see Prachar [11], Kapitel X, Satz 4.1) there is an absolute constant ¢
with

(1) p < A° < ylcllog log Y
Let g be any fixed prime between 4 + 1 and 2A4. Let
N = {a < y: A’(a) | A9 a square-free, a :Ié lb(q), aq # lb(p)}

The last two conditions delete at most 2 elements that otherwise would be in
A". By Theorem 1 and possibly deleting some elements of 4", we may assume

#N =[]

For each set & — A" with at least 2 elements, let
(L) =[] Fpaald)
ae ¥
We claim that

(i) n(&) is a pseudoprime to base b,
(i) n(&)<x, and
(i) if S <A, £ 22, F + %, then n(+") + n(¥).
Our theorem then follows, for we have for large x
.@b(x)z 2#'/V - #‘/V‘ - 1
D s |
> exp {(log x)E/E+ D¢},

We now show (i). Let m denote the least common multiple of the elements of
A". We claim that if a € 4", then

() Fouad) =1 (mod pgm).

First, since every prime factor of F,,(b) is primitive (I,(p) # qa, p > P(qa)), we
have

Foub)=1 (mod pq).

Next, since every prime factor of F,(b) is primitive (l5(q) # a, ¢ > P(a)), if r is
such a prime factor, then r = 1 (mod g), so rfm. Hence we have (F ,(b), m) = 1.
Thus

since A(m)|A|(p — 1) and m is square-free imply b? = b (mod m). We thus have
(2) and so pgm|n(¥) — 1. Thus

n(#)| T Fab) = bPm — 1|p#~1 — 1.

dipgm
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Also, since & has at least 2 elements, n(¥) is composite. Thus n(¥) is a
pseudoprime to base b.

For (ii), note that if x is large and using (1),
n(#) < bpa%ac#% < exp :pq(log b) Y. a}

< exp {pq(log b)y*~**}
<exp (y**1)

= X.

Now note that if r is a prime factor of F,.(b), then I,(r) = pqa. This im-
mediately gives (iii).

Remarks. (1) We mentioned above that from [8] we have E > 0.55655. Thus
E/(E + 1) > 0.35755 > 5/14.

(2) Some people like to insist in their definition of pseudoprime to base b
that it be odd. Note that all of the pseudoprimes created in the proof of
Theorem 2 are odd and in fact are relatively prime to every prime r < 2pq. Also
note that

2pq > exp (log log x/log log log x) for all large x.

(3) In the proof of Theorem 1, if we insist in the definition of o that p # 2,
we have the same theorem as before, but now every member of A" is odd. Thus
in the proof of Theorem 2, we conclude that if r is any prime factor of n(%),
then [,(r) is odd. Since also n(¥#) is odd (Remark 2), we conclude that the
pseudoprimes n(¥’) are all strong pseudoprimes.

(4) We would still obtain our result if we restricted ¥ to those subsets of A~
which have a majority of the elements of .4". The pseudoprimes so constructed
have at least (log x)3/** distinct prime factors.

(5) A slight modification of the above proof gives a lower bound for 2,(x)
that has an explicit dependence on b:

Py(x) > exp {(log x/log b)*/E* D77}

for all x > b**®’ where x,(e) is the constant in Theorem 1. To see this, we
change the definition of y in the proof of Theorem 2 to

y = (log x/log b)E*+* V",

Then if x > b**®” we have y > x,(e), so that Theorem 1 can be used to estimate
#N.

(6) Consolidating Remarks 1 and 5, we have an absolute constant C such
that for all b > 2 and x > b,

P4(x) = exp {(log x/log b)*'*}.
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5. Cyclotomic pseudoprimes

If b > 2 is an integer and if 1 < d, <d, < ‘- < d,are integers, we shall call
the number I1F ,(b) a cyclotomic number to base b. A cyclotomic pseudoprime to
base b is then a cyclotomic number to base b which is also a pseudoprime to
base b. For example, 341 = F5(2)F ;¢(2) is a cyclotomic pseudoprime to base 2.
Let €,(x), 2€,(x) denote respectively the counting functions for the cyclotomic
numbers to base b, the cyclotomic pseudoprimes to base b.

It is clear that Theorem 2 holds for 2% ,(x) in place of 2,(x). Our point is
that Theorem 2 is near to best possible for cyclotomic pseudoprimes. Indeed
PE(x) < €y(x) and an argument which uses estimates for the partition func-
tion p(n) (see Rademacher [12]) shows that

(gb(x) = exp {(log x)1/2+o(1)}.

This is the same estimate we would have for 2%,(x) if we knew, as Erdos has
conjectured, that E = 1.
We conclude that if there is to be substantial further progress on lower

bounds for 2,(x), one will have to consider pseudoprimes to base b that are not
cyclotomic.
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