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EQUIVARIANT BUNDLES

BY
R. K. LASHOF

We develop a theory of equivariant bundles, i.e., bundles with a compact Lie
group G of automorphisms. Equivariant vector bundles were discussed by
Wasserman [9] and Atiyah-Segal [8]; Bierstone [1] considered smooth equivar-
iant bundles; and in [6] we sketched the general theory of equivariant bundles
with a finite group G of automorphisms. However, general equivariant bundles
are needed in equivariant smoothing theory [5]; and unfortunately, none of the
above expositions generalizes without important modifications. As in [6], we
generalize the Dold numerable bundle theory [3] to the equivariant case.

1. Numerable G-bundles

Let p: E — X be a locally trivial bundle with fibre F and structure group A.
We call p a G-bundle, or more precisely a G-4 bundle if E and X are G-spaces, p
is a G-map, and G acts on E through 4-bundle maps. Two G-A bundles over X
are called G-A equivalent if they are A-equivalent via a G-equivariant map.

Example 1. A G-vector bundle [8] of dimension n is a G-L, bundle, L, the
group of linear isomorphisms of R".

If p: E— X is a G-A bundle, the action of G induces an action of G on the
associated principal A-bundle P, again through A-bundle maps. That is, G acts
on the left and A4 acts on the right of P and these actions commute. Conversely,
if p: P> X is a principal G-4A bundle and A acts on the left of F, then
E =P x ,F is a G-A bundle with fibre F. Two G-A4 bundles with fibre F are
G-A equivalent if and only if their associated principal G-A bundles are G-4
equivalent.

In order to prove a covering homotopy property or to produce a classifying
space for ordinary bundles, the local triviality condition is essential. Bierstone
[1] pointed out that for equivariant bundles one needs a G-local triviality
condition for the same purpose. Before defining this condition we recall the
local structure of a completely regular G-space X (see [2]): For any x € X there
is a G,-invariant subspace V, containing x, called a slice through x, such that

b G xgVim X, g, v]l=gv
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is a homeomorphism onto an open neighborhood of the orbit Gx. The G-
invariant neighborhood GV, is called a tube about Gx. For an arbitrary
G-space X we define an H-slice V to be an H-invariant subspace V of X, H
some closed subgroup of G, such that

e G XHV_')X, #[99 U]=gl),

is a homeomorphism onto an open set. (Note that a slice through x isa G, slice
which contains x.) Palais [7] shows that, if f: Y — X is a G-map, then f ~*(V) is
an H-slice in Y.

We now describe the appropriate generalization of product bundle: Let H be
a closed subgroup of G and p: H —» A a homomorphism. For any H-space V,
we denote by ¢”(V) the G-A bundle over G x y, V with fibre F given by

p:Gxy(V xF)>G xyV, plg, (v, y)] =g, v],
where H acts on F via the homomorphism p and the left action of 4 on F.

DEFINITION. A G-A bundle p: E— X with fibre F is called G-A locally
trivial (or simply G-locally trivial if A is fixed) if there is an open cover {GV,}, .,
of X, where V, is an H, slice, such that E|GV, is G-A equivalent to &’%(V,) for
some homomorphism p,: H, — A (under the identification u: G x 5V, - GV,).

If p: E—> X is a G-4 bundle and f: Y —» X is a G-map, the induced bundle
f*(p): f*E - Y is a G-A bundle. Further, if p is G-A4 locally trivial, then f*(p) is
G-A locally trivial. Also note that a G-A4 bundle is G-A locally trivial if and only
if its associated principal bundle is G-A4 locally trivial.

Bierstone [1] gave a somewhat different definition of G locally trivial:

Bierstone’s Condition. For each x € X there is a G, invariant neighborhood
U, such that p~!(U,) is G,-A equivalent to U, x F with G, action

h(u, g) = (hu, p.(h)y),
where ue U,, he G,, y € F and p,: G, — A is a homomorphism.

LemMA 1.1. 4 G-A locally trivial bundle satisfies Bierstone’s condition.

Proof. Suppose p: E — X is G-A locally trivial. For any x € X there is an
H-slice V such that x e GV and p~!(GV) is G-A equivalent to

e(V)=G x x(V x F)

over the homeomorphism of GV with G x V. If x=gv,ve V, then G,c H
and G, = gG,g~ . If D is a small normal disc to H through 1 € G with respect
to a biinvariant metric on G, then D is invariant under conjugation by any
he H and u: D x H— DH is a difftfomorphism. Thus U, = gDV is invariant
under G, and p~!(gDV) is G,-A equivalent to gDV x F.
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COROLLARY 1.2. A4 G-A locally trivial bundle is locally trivial as an A-bundle.

LemMMA 13. If X is completely regular, a G-A bundle over X which satisfies
Bierstone’s condition is G-A locally trivial.

Proof. Suppose U, is a G, invariant neighborhood of x such that p~}(U ) is
G,-A equivalent to U, x F.Then U, contains a slice ¥, through x and there is a
G,-A equivalence ¢q: V, x F — p~(V,). The map

¢: G x (Vs x F)=p~(GV,), ¢lg, (v, )] = gdo(v, ¥)

is then a G-A equivalence over the homeomorphism G x 4V, —» GV,, H=G,.
Since X is covered by {GV,},.x, p is G-A locally trivial.

Of course, a G-A bundle satisfies Bierstone’s condition if and only if the
associated principal bundle does. For principal G-4 bundles we have:

LeMMmA 14. A principal G-A bundle satisfies Bierstone’s condition if and only
if for each x € X, p: E— X has a local G, section where G, acts on E by
z-9zp(9)~ . (px: G, — A is the homomorphism induced by the action of G, on
the fibre over x. This is unique up to conjugation by a € A.)

Proof.(a) 1f U, exists with p~*(U,) G,-A4 equivalent to U, x A with action

g(u, a) = (gu, p(g)a),
then s: U, - U, x A, s(u) = (u, 1) satisfies s(gu) = gs(u)p.(9)~*.
(b) If U, exists with s: U, —» p~1(U,) satisfying
s(gu) = gs(u)p(g)™", g€ Gy
define ¢: U, x 4 - p~Y(U,) by ¢(u, a) = s(u)a. Then ¢ is a G -4 equivalence
where G, acts by g(u, a) = (gu, p,(g)a).

COROLLARY 1.5. A G-A bundle with A a compact Lie group and base space X
completely regular is G-A locally trivial.

Proof. 1t is sufficient to prove this for a principal bundle p: E — X. For any
x € X, let U, be a G, -invariant neighborhood such that p~*(U,) is A equiva-
lentto U, x A.1f zy € p~(x), then gz, = z( p(g), g € G4, p: G, — A a homo-
morphism. Consider the action of G, x 4 on p~}(U,), (g, a)z = gza~'. The
isotropy group at z, is {(g, px(9))},c,» and the orbit through z, is p~*(x). Let
V., be aslice. (Note that U, is completely regular and hence p~*(U,) = U, x 4
is completely regular.) Thus a tube about p~*(x) is (G, x 4) x g, V,,, where G,
acts on V,, by v > gvp,(g)” " and on (G, x A4) by right translation on G, and
right translation via p, on A4. Thus,
(G, x A)xg V,yxAXV,

by
[(g, a), vl (ap.(g)~", gvpslg) ™).
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Note that left multiplication by a™ ' in 4 x V, corresponds to right multiplica-
tion by a in p~*(U,). Thus p|V,, is a G, homeomorphism with respect to the
action v — gvp,(g)~ !, and (p| V,,) " is the desired local G . cross-section. Hence
p satisfies the Bierstone condition and since X is completely regular, p is G-4
locally trivial.

A locally trivial bundle p: E — X is smooth if p is a smooth map of smooth
manifolds, the fibre F is a smooth manifold and the local trivializations
U x F - p~}(U) are diffeomorphisms.

If A is a Lie group which acts smoothly and effectively on F, then any locally
trivial A-bundle with fibre F over a smooth manifold admits the structure of a
smooth bundle such that the smooth local trivializations are A-admissible. The
smooth bundle structure is unique up to A-isotopy. A smooth bundle with a
smooth trivializing A4-atlas will be called a smooth A-bundle. Any smooth A-
bundle is associated to a smooth principal 4-bundle.

A smooth equivariant bundle is a smooth bundle on which G acts smoothly by
bundle maps. A smooth G-A bundle is a smooth A-bundle on which G acts
smoothly by A-bundle maps. Bierstone [1] shows that the action of G on the
associated principal smooth A-bundle is smooth; so that every smooth G-A
bundle has an associated principal smooth G-A bundle.

COROLLARY 1.6 (Bierstone). A smooth G-A bundle satisfies Bierstone’s condi-
tion (and hence is G-A locally trivial).

Proof. 1t is sufficient to consider a smooth principal G-4 bundle p: E - X.
For any x € X, let U, be a G, invariant neighborhood such that p~*(U,) is
smoothly A-equivalent to U, x A. If z, € p~*(x), then let p,: G, — A4 be the
homomorphism such that gz, = z, p,(g). Choose a G, invariant Riemannian
metric on p~}(U,) under the action z - gzp (g)~'. If D is a sufficiently small
normal disc to p~!(x) through z,, then p|D is a G, diffeomorphism and
(p|D)~! is the desired local G, cross-section. Hence p satisfies the Bierstone
condition. Since a manifold is completely regular, p is G-A4 locally trivial.

Remark. Since (p|D)~! is a smooth G, section, p satisfies a smooth Bier-
stone condition; ie., the G,-A equivalence of p~!(U,) with U, x F is a
diffeomorphism.

LemMA 1.7. A principal G-A bundle p: P — X reduces to a G-B bundle, B a
closed subgroup of A such that A/B has local cross-section in A, if and only if the
associated bundle P/B with fibre A/B has an equivariant cross-section.

Proof. Let:P — P/B be the quotient map. If s: X — P/B is an equivariant
section, then Q = A1~ s(X) is a G-B invariant subspace of P. That p|Q =
q: Q - X is a locally trivial B-bundle follows from the local A-triviality of P
and the condition on 4/B. But P is G-A equivalent to Q x 3 A.
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Conversely, if P is G-A4 equivalent to Q x yA for some G-B bundle Q, then
P/B contains Q/B and the induced projection p: P/B — X when restricted to
Q/B is a G-equivalence and s = (5| Q/B)~"! is the G cross-section.

DerINITION. If B is a closed subgroup of 4, A/B will be called A-B locally
trivial if for each compact Lie group H = A, A: A — A/B is an H-B locally
trivial bundle.

Example. If A is any Lie group, then A: A — A/B is a smooth H-B bundle
for any compact Lie group H <= A, and hence H-B locally trivial (1.6).
The following is obvious:

Lemma 1.8. Let p: B— A be a homomorphism. If q: Q — X is a G-B locally
trivial bundle, then the associated G-A bundle P = Q x z A over X is G-A locally
trivial.

We also have the following partial converse:

PROPOSITION 1.9. Let p: P— X be a (principal) G-A locally trivial bundle

and suppose p reduces to a G-B bundle q: Q — X, B a closed subgroup of A such
that A/B is A-B locally trivial. Then q is G-B locally trivial.

Proof. Locally P is equivalent to G x 4(V x A) for some H-slice V in X
and homomorphism p: H — A. The reduction of P to a G-B bundle gives an
equivariant section of P/B and hence a G-section of G x ,(V x A/B). This last
is equivalent to an H-map f: V — A/B with H acting on A/B via p. By assump-
tion A — A/B is p(H)-B and hence H-B locally trivial. Let W be a K slice in A/B
such that the preimage of H x ¢ Win A is H x (W x B), K acting on B via
some homomorphism ¢: K — B. Then, over

Gxy(HxgfTH W) =G xgf}(W),
Q is equivalent to G x g (f ~*(W) x B) since, with s the above section,
q Y W)= 2" (W) ={(v, w, b) e fTH(W) x W x B| f(v) = w)},

where A: P — P/B is the quotient map and K acts on B via ¢. Thus q is G-B
locally trivial.

ProposiTION 1.10. (Wasserman-Segal). Any G-L,bundle over a completely
regular X is G-L, locally trivial.

Proof. It is sufficient to prove Bierstone’s condition for the associated G-
vector bundle p: E— X. Let x € X and let

¢:U,xR"->p Y(U,)
be a local trivialization. We can assume U, is G,-invariant. Define

Px: Gx - Ln
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by

pulh)y = &5 'hd(y), he G, yeR"
Now let ¢: U, x R"— p~!(U,) be the map obtained by averaging over G ; i.e.,

by =& | B0 Pupih() dh ue Oy

Then ¢, is linear, ¢, = ¢, is an isomorphism and hd(u, y) = @(hu, p (h)y),
h € G,. Now for u in some smaller G, invariant neighborhood U, = U,, ¢, will
still be an isomorphism. Thus ¢|U, x R": U, x R"->p~}(U,) is a G,-L,
equivalence and p is G-L, locally trivial.

By (1.9) and (1.10) we have:

PropoSITION 1.11.  If A is a closed subgroup of some general linear group L,,
then any G-A bundle over a completely regular space X is G-A locally trivial.

DEerINITION.  If X is a G-space, an open cover {U}, ., will be called an open
G-cover if each U, is G-invariant. An open G-cover will be called numerable if
there is a subordinate partition of unity {4}, . ;such that each 4,is G-invariant.

LemMma 1.12. If X is a paracompact G-space, then every open G cover has a
numerable refinement.

Proof. If X is paracompact so is X|G. Further, the quotient map
g: X » X |G is open. Hence, if {U,} is an open G cover of X, {qU } is an open
cover of X|G and has a locally finite open refinement {V;}. Then {V;},
Vs =q~ 'V, is an open G cover refining {U,}. If {Z;} is a partition of unity
subordinate to {V;}, A; = 4; o q is G-invariant and subordinate to {V;}. Hence
{V}} is numerable.

DEFINITION. A G-A bundle p: E — X will be called numerable if X has a
trivializing numerable G-cover {GV,},.,. That is, G x4 V,— GV, is a G-
homeomorphism onto an open set and u is covered by a G-A bundle equiv-
alence ¢:G xp (V,x F)>p~'(GV,) where H, acts on F via a
homomorphism p,: H,— A.

COROLLARY 1.13.  Every G-A locally trivial bundle over a paracompact X is
numerable.

2. Classification of equivariant bundles

We follow the methods of Dold [3]:

An equivariant map p: E — X of G-spaces has the equivariant section exten-
sion property (ESEP) if for any closed invariant subspace X , = X with invar-
iant halo W, and equivariant section so: W, — p~}(W,) there is an equivariant
section s: X — E such that s| X, = so| X ,. (Note: W, is an invariant halo of X,
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if there exists an invariant map v: X — [0, 1] such that v™(1) = X, and
v1(0, 1] = W.)

LemMMA 2.1. Let V and F be H-spaces and give V x F the diagonal H-action.
Let q: V x F > V be projection onto the first factor. If F is H-contractible, q
satisfies the ESEP.

Proof. Equivariant sections of g are equivalent to equivariant maps of V
into F. Let V, be a closed invariant subspace of V with invariant halo W, and
equivariant map fy: W, —» F. We need to show there is an equivariant map
f: V> F such that f |V, = f, | Vs

Let v:V—>[0,1] be an invariant map such that v~ (1)=V, and
v 10, 1] = W,. Let ¢: F x I > F be an H-contraction of F to y, € F; ie,
c(y, 0) = y and ¢(y, 1) = y,. Define f by

f(x)=c(fo(x), 1 — v(x)) for x e v~ (0, 1]

and f(x) = y,, elsewhere. Then fis a continuous equivariant function and f = f,,
onv- l(l) = Vo.

COROLLARY 2.2. Let p:G xy(V x F)—>G X,V be projection. Then p
satisfies the ESEP (with respect to G).

Proof. If X, is a closed invariant subspace of G x 5 V, then Xy =G x 4V,
where V, = X, n V is an H-invariant subspace of V. If W, is a G-invariant
halo of X, Wy = G x ; U,where U, = W, n V is an H-invariant halo of V in
V. Now G-sections of p are determined by H-sections of g =p|V x F and
conversely. Hence (2.2) follows from (2.1).

Just as in the G-trivial case, one easily gets from the local ESEP the global
result:

PROPOSITION 2.3. Let p: E — X be an equivariant bundle. If for some numer-
able open G-cover {U,},;, E|U, has the ESEP, then E has the ESEP.

COROLLARY 2.4. Let p: E — X be a numerable G-A bundle with fibre F. If F
is equivariantly contractible for compact Lie groups in A, then p has the ESEP
and any two equivariant sections which agree over a halo of a closed invariant
subspace X, = X, are equivariantly homotopic rel X .

Proof. The first statement is immediate from (2.2) and (2.3). The second
follows by applying (2.3) to E x I over X x I.

Propositions (2.5) and (2.6) below are simple extensions of results of Bier-
stone [1]:

PROPOSITION 2.5. Let B be a closed subgroup of the Lie group A. If A/B is
equivariantly contractible for compact subgroups of A, there is a bijection between
equivalence classes of numerable G-A bundles and numerable G-B bundles.
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Proof. By (1.7) and (2.4) every G-A bundle comes from a G-B bundle.
Reductions of equivalent G-A bundles give equivalent G-B bundles as can be
seen by applying (1.7) and (2.4) to bundles over X x I. Conversely, G-A
bundles associated to equivalent G-B bundles are G-A4 equivalent. By the argu-
ment of (1.7) this sets up the desired bijection.

By (1.9), G-locally trivial bundles correspond to G-locally trivial bundles.
Further, the G-4 bundle associated to a numerable G-B bundle is clearly
numerable. Conversely, using the fact that for any compact H = G and
p: H— A, the bundle 4 — A/B is H-B numerable, we see that if p: P — X is
G-A numerable any reduction Q of P to a G-B bundle will be G-B numerable by
the method of constructing the G-B local trivialization in (1.9). (That is, as
H x ¢ W runs over a numerable K-B trivializing cover of A/B,

GxgfTH(W)=G xy(H xg f1(W))

runs over a numerable trivializing cover of G x 4 V.)

Remark. Instead of assuming A is a Lie group in (2.5), it is sufficient to
assume A — A/B is H-B numerable for every compact Lie subgroup of 4.

PROPOSITION 2.6. If B is a maximal compact subgroup of a connected semi-
simple Lie group A, then A/B is equivariantly contractible for compact subgroups
of A. Hence by (2.5) there is a bijective correspondence between equivalence
classes of numerable G-A bundles and numerable G-B bundles over a G-space X .

Proof. We follow an argument of Bierstone [1]. For any 4-invariant metric
on A/B, A/B is a complete 1-connected manifold with negative curvature.
Hence exp,,: T,5(A/B) — A/B is a diffeomorphism foreacha € A.IfK < Aisa
compact subgroup, K — aBa™! for some a, since all maximal compact sub-
groups are conjugate. But then aB is a fixed point of 4/B under K, T,(A/B) is
an Euclidean K- space and exp,gis K-equivariant. Since a Euclidean K-space is
K-contractible, so is A/B.

COROLLARY 2.7. There is a bijective correspondence between equivalence
classes of numerable G-L, bundles and G-0, bundles.

Proof. L, is a connected semi-simple group and SO, its maximal compact
subgroup. Since L, /0, = L, /SO, and O, is a maximal compact subgroup of L,
and any two such are conjugate, the argument of (2.6) applies.

In order to prove the equivariant covering homotopy property (ECHP), just
as in the non-equivariant case, one must prove that a numerable G-4 bundle E
over X x I is equivalent to E, x I, E,= E|(X x (0)).! Following Husemoller
[4], it is sufficient to find a numerable open G-cover {W,} of X such that
E|(W, x I) ~ (E|W,) x I. Bierstone [1] has proved this in the case that X is
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paracompact. In fact, in the paracompact case by (1.1) one can find for each
x € X, t e I a G, invariant neighborhood U , of x in X and an ¢ > 0 such that

E|(U,x[t—¢t+¢])
is G equivalent to (U, x F) x [t — ¢, t + ¢]. Since a finite number,
Ubx[ti—eti+e) i=12..,r

cover (x) x I, U? = ()i, UL is a G, invariant neighborhood of x in X such
that E|(U? x I) is G, equivalent to (E| U%) x I.If V, is a slice through x in U?,
then E|(GV, x I)~ (E|GV,) x I. Taking {W,} to be a numerable open G
refinement of {GV,} we have E|(W, x I) = (E|W,) x I.

For a general X, one may again follow Husemoller to find a numerable open
G-cover {W,} of X such that

W, x [(g — 1)/n(@), g/n@)], q=12, ..., n(x),

refines the given trivializing numerable open G-cover {GV;} of X x I. Since the
restriction of a trivial G-A bundle to a G-invariant subspace is again trivial, the
result for the general case will follow from the lemma below and its corollary
applied to

E|(W, x [(q — 1)/n(a), a/n(@)].
LeMMA 2.8. Let X be a G-space and V an H-space and suppose we have a
G-homeomorphism ¢ of X x I with G x 4 V. Let
Vo=9"1(V) n (X x (0)),

so that we may write X = G x 4 V,. Then there is

(@) an H-homeomorphism y of V, x I with V, and

(b) an H-map 0: Vy x I - G, where H acts on G via g —>hgh™?, g € G,
he H,
such that

¢([g’ Uo], t) = [ge(vm t)a '//(DO’ t)]’ [99 UO] € G x H VO =X.
COROLLARY 2.9. If E is a trivial G-A bundle over X x I, then
E~(E|X)x 1.
Proof of Corollary 2.9. By definition of G-trivial, there is an H-slice V in
X x I for some closed H < G, such that X x I is G-homeomorphic with
G x » V and there is a G-A4 bundle equivalence of E with G x 4(V x F) cover-

ing this G-homeomorphism ¢. With X = G x 4V, as above, E|X is then equiv-
alent to G x 4 (¥, x F), and we need to define a G-4 bundle equivalence

$:Gxy(Vox Fyx I -G xyx(V x F)
covering ¢: (G x z Vo) x I > G x4 V.
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Define ¢ by
&g, (vo, Y)], t) = [96(vo, t), (W(vo, 1), Y)].

Before proving the lemma we note the following: Let q: G — G/H be the
quotient map. Let H act on G via g — hgh™! and G/H by gH — hgH ; then q is
an H-map. Indeed, ¢ may be regarded as the associated bundle with fibre H to
the principal H-H x H bundle

p: G x H—G/H, p(g, h)=gH

(with left H-action given by hy(g, h) = (h,g, h,h) and right H x H action
(9 h)(hy, hy) = (ghy, hh,)) where H x H acts on H by

(hl’ hZ)h = h1 hhi'l
The equivalence of (G x H) x ;. 5 H with G is given by
[(g, hy), hy] = ghyhT .

Thus q: G - G/H is H-locally trivial and satisfies the ECHP for paracompact
H-spaces; in particular, for the contraction of the space of paths P in G/H
beginning at eH (with the C-O = metric topology). That is, if =: P — G/H is the
endpoint map, there is an H-map #: P — G such that gft = 7.

Proof of 2.8. Let A: G x ; V — G/H be projection. Then
Ap: (G xx V) x I -G/H
is a G-map such that A¢(V,) = eH. Define an H-map ¢,: V, x I - P by
@ 4(vo, s)(t) = Ap(vy, st), s, tel

Then n¢, = A¢p and 7 ,: V,, x I - G satisfies qitdp , = A¢. Let 0 = 7t , and
define y by Y(v, t) = (v, t)™ (e, t). Then (1)

lp(l)O’ t) € V’
since
l‘/’(vo’ t) = 0(”09 t)- lj,qﬁ(vo, t)
= 0(vo, t)” 'qt 4(vo, t)
= 0(vy, t)™ 'q0(vo, t)
= q(6(vo, t)”'0(vo, t)) = eH;
and (2)

¢([ga UO]’ t) = [99(00, t)’ ‘P(”o, t)]’

by equivariance. It remains to show that y is a homeomorphism:



EQUIVARIANT BUNDLES 267
(@)  is injective.
If Y (vo, t) = Y(vh, t'), then

B(DOa t)_ ld’(vo’ t) = 9(06, tl)~l¢(v’0’ tl)'

Taking ¢! of both sides yields O(vo, t)™1(ve, t) = 8(v, t')™ (v, t'). But then
there is an he H such that 0(v,, t) = hB(vp, t') and (v, t) = (hvy, t'). Thus
t="t, vy = hvy and

0(vo, t) = hO(h~*v,, t) = hh™10(vy, t)h = O(vy, t)h.

Hence h = e and v, = v},

(b) ¥ is surjective.

IfveV,

v = [g6(vo, t), Y(vo, t)] for some g, vy, t.

But then gf(vo, t) = h € H and v = hy(v,, t) = Y(hv,, t).

() ¢! is continuous:

Let A': (G x V) x I > G/H be the projection. Then

N$~':V—-G/H.

If v € V, there is a local cross-section s of q: G — G/H defined on a neighbor-
hood of A’¢~*(v). For v’ near v, let

(') = sAdp~ (V).
Then t(v') = y(v') ¢~ 1(v) € Vo, x I and ¢~ 1(v') = [y(v'), ©(v')]. Hence
v =¢o ¢ (v) = [y(t)), 1(v)] = [y(¥)O(e(v))), Y(z(v))):
So y(v')(z(v')) € H and v' = y(y(v')0(zv')z(v')). Thus
¥ (v) = y(v)0(cv ) (v')

is defined and continuous for v’ near v. Thus y~! is continuous.
We have proved:

THEOREM 2.10. A numerable G-A bundle E over X x I (trivial G-action onI)
is G-A equivalent to (E|X) x I, where by E| X we mean E|(X x (0)).

COROLLARY 2.11. Let p:E—Y be a numerable G-A bundle and let
fi X x I -Y be an equivariant homotopy between the G-maps fo, f1: X = Y.
Then f$E and f¥E are G-A equivalent.

COROLLARY 2.12. A numerable G-A bundle satisfies the ECHP.
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Just as in the non-equivariant case, there are at least two possible definitions
of G-A universal bundle (which turn out to be equivalent):

A universal G-A bundle is a numerable principal G-A4 bundle n: E — B such
that for any G-space X, the equivalence classes of numerable G-A4 bundles over
X are in bijective correspondence with [X, B]g, the equivariant homotopy
classes of equivariant maps of X into B; the correspondence being given by
induced bundles.

A strongly universal G-A bundle is a numerable principal G-4 bundle
n: E —» B which satisfies: Let p: P — X be a numerable principal G-4 bundle
and let X, < X be a closed invariant subspace with invariant halo W,. If
¢o: P|W, > E is a G-A bundle map, then there is a G-A bundle map ¢: P — E
such that ¢ agrees with ¢, on P|X,.

It is trivial to see that:

LeMMA 2.13.  Strongly universal implies universal.

THEOREM 2.14. A numerable principal G-A bundle p: P — X is strongly
universal if and only if for each closed H = G and homomorphism p: H — A, P is
H-contractible to a point under the action z — hzp(h)™*,z € P, he H.

Proof. (a) Suppose p: P — X is strongly universal.

First consider the G-4 bundle n: G x ;4 » G/H, H acting on A through
p: H — A. Since p is universal there is a G-4 bundle map ¢: G x ;A — P. Let
e, € G, e, € A be the unit elements. Then

hle,, e;] = ¢[h, e;] = dles, p(h)] = (dley, ez]p(h).

Thus ¢[ey, e,] is a fixed point of the H-action on P described in the statement
of the theorem.

Now consider the G-A bundle n: G x 4 (P x A)—> G x y P, H acting on P as
described and on A through p. Define the G-4 bundle maps

A:Gxy(Px A)-»P, i=0,1,
by
Aolg, 2, al = gza and Ay, z, a] = gzoa,

z, any fixed point of P under the given action. Since P is strongly universal,
there is a G-A homotopy 4,: G x (P x A)—> P,0 <t < 1, between A, and 4,.
In particular, z = Ao[e;, z, e,] is deformed to

Aley, z, 2] = zo.
But

)'t[el’ th(h)— l’ e2] = lt[h9 Z, p(h)_ 1] = h(j'r[el’ Z, el])p(h)_l'

Hence, 4, defines an H-contraction of P to z,.
For the converse we shall need the following result.
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LemMMA 2.15. Letp: P— X and p’': P' - X' be G-A bundles. There is a bijec-
tive correspondence between G-A bundle maps of P into P’ and equivariant sec-
tions of the associated bundle P x 4P to P with fibre P' and G-action
glz, 2] = [9z, 9]

The lemma follows trivially from the non-equivariant case.

(b) Suppose for each H = G and p: H — A4, P is H-contractible.

Let g: Q —» Y be any G-A bundle, Y, a closed invariant subspace of Y, and
¢o: Q|Wo — P be a G-A bundle map, W, an invariant halo of Y,. Now ¢,
corresponds to an equivariant section s, of Q x , P defined on W, = Y, and itis
sufficient to define an equivariant section s of @ x , P such that s| Y, = s, | Yo.
But this will follow if the ESEP is true locally; that is, over each trivializing
open set G x y V of a numerable cover for Y. But if

Q|G xy V=G xgz(VxA) forsome p: H- A4,
then
QXx4P|GxygV=Gxgz(VxP),
H acting on P through z — zp(h)~'. But a G-section
5:GxygV->Gxy(VxP)

with G acting on [g, (¥, z)] by g1[g, (»» 2)] = [919.(, 91 2)] is equivalent to an
H-section of V x P with H acting on P via z— hzp(h)™'. Since P is H-
contractible, the local ESEP holds, and hence the desired global section exists
and defines the desired bundle map ¢ with ¢ = ¢, on Q| ¥,.

The above characterization of strongly universal bundle implies:

LemMA 2.16. If a strongly universal G-A bundle exists, then every universal
G-A bundle is strongly universal.

Existence of universal G-A bundles. There are as many ways to construct
universal bundles in the equivariant as in the non-equivariant case. One may
use Steenrod’s approach via Stiefel manifolds (see [9]) or one may use the
geometric bar construction (see [10]). Perhaps the most general is Milnor’s
infinite join construction first generalized to the equivariant case in [6]:

Choose a representative H from each conjugacy class of closed subgroups of
G and a representative p: H — A from each A-equivalence class of homomor-
phisms. Let {p,}; ., be this set. Let E; = G x y, A, where H acts on A through
ps. Let E=[]scrE;. Then E is a numerable G-4 bundle. Finally, let
P = %>, P;, where each P; = E. Then, following Husemoller [4], see [6], it is
easy to prove that P is a strongly universal G-A bundle. (We shall not repeat the
proof here.)

Our final theorem gives information on the universal base space for G-4
bundles. To state the result we need some notation. Let H = G be a closed
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subgroup and p: H —» A a homomorphism. Let 4” be the centralizer of p(H) in
A ie.,

A? ={ae A|p(h)ap(h)™* =a, he H)}.

Then A4” is a closed subgroup of 4 and we let BA” denote its universal base
space. (Note that if p’ is A-equivalent to p, then A”' is conjugate to A” and BA*'
may be identified with BA”.) Let R, be a collection of homomorphisms of H in
A containing exactly one representative from each A-equivalence class. Then
from (2.14); we have:

THEOREM 2.17. Let n: E — B be a universal G-A bundle and H < G a closed
subgroup. Then BY, the fixed point set of B under H, is the disjoint union of the
BA?, p € Ry. If K c H, B¥ = BX corresponds to the maps BA” — BA*'X induced
by A? < A°X,

Proof. Let
E=[zeE|hzp(h)"' =z he H].

Then E” is contractable by (2.14). If ze€ E® and a€ A, then zae E*, p'
A-equivalent to p; and za € E” if and only if a € A4°. Thus

n(E?) A n(E”) =

if p’ is not A equivalent to p. Finally, E” is a locally trivial A” bundle over an
open subspace of BY; since if x € n(E”), x € BY, and if U, is a G, invariant
neighborhood such that n~*(U,) is G,-A equivalent to U, x A4 with G, acting
via 0: G, — A, we can assume ¢|H = p. Thus E* n n~!(U,) is A” equivalent
to U¥ x 4.

Added in Proof. The paper [11] (of which Bierstone was also unaware) was
recently pointed out to the author. In it, tom Dieck gives essentially the same
definition of numerable bundles and uses the join construction for universal
equivariant bundles. He also proves the equivariant covering homotopy
property for o-compact spaces under the assumption that the structure group
of the bundle is a compact Lie group.
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