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Introduction

In 1979 Shiffman ([7]) conjectured that if f:C™— P, is a non-constant
meromorphic map and if D, ..., D, are distinct hypersurfaces of degree d in
P, such that no point is contained in the support of n + 1 distinct D; and
Sf(C™ & supp D; for all j, then

(1) j‘; 54D) < 2n,

where 6, denotes the Nevanlinna defect. To support his conjecture Shiffman
proved (1) for a class of meromorphic maps of finite order.

To extend the class that satisfies (1) we use the method of associate maps
which was introduced in 1941 by Ahlfors [1], generalized and developed by
Weyl [11], Stoll [8], Cowen-Griffiths [4] and Wong [12]. Namely, (1) holds
either if f(C™) is contained in a line of P, or is a projection of a “special
exponential map”, ie., an exponential map satisfying (6.1) (see Section 6).
More in general we introduce an auxiliary defect 7., which we express explic-
itly and for all meromorphic maps f: C"— P, we prove

2 j}: 3AD) <n(l + 7).

Therefore in order to prove (1) for all meromorphic maps it would be
sufficient to prove 7, < 1.

To add generality we prove (2) for meromorphic maps f: C™— X, where X
is a compact complex n-dimensional manifold and for Dy, ..., D,e|L|,
where L is a spanned line bundle.
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532 ALDO BIANCOFIORE

1. Nevanlinna theory

Define
2)=1z?= Y |z|* foranyz=(z,...,2z,) € C"
j=1
If r > 0, we set
C"[r1={zeC"||z| <r}, C™r)d=aC"[r].

Define
v=dd‘c onC"
and
c=4dlogt A (dd° log 7)"~! on C™ — {0}
where

c L a_
d—(4n>(a 0).

Let v be a divisor on C™. For all 0 < ry < r the valence function is defined
by

N(r, o) = frnv(t)t‘1 dt

ro

where, with S, = C™[t] N supp v,

22m f w"l ifm>1
n(t) = 51
Y W2) ifm=1
zZ€S:
is the counting function of v.

Let L be a non-negative line bundle on the compact complex manifold X,
with a hermitian metric x. Let f:C"— X be a meromorphic map. For
r > ro > 0, define the characteristic function

T(r, 1o, L, ) = f’ < (L, k) A Dm—l)tl—Zm dt

ro Cm(t]

where ¢(L, k) is the Chern form of L for «.
Let s € I'(X, L) be a global section on L and let D = D[s] € |L| be the
divisor associated to s. Define the valence function of f for D

Nf(r, o, D) = Nv'f’(r’ rO)
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for r>ro >0 and where v? =f*D) is the pull-back divisor. If f(C™) &
supp D and r > 0, then

sy
m(r, D)=J log ————
! cmdry Isofl
is the compensation function of f for D, where | is a metric on I'(X, L) such
that |s|;|s o fl-! < 1. Such a metric exists since X is compact.
The First Main Theorem asserts that
(1.1) T,(r, ro, L, k) = N ((r, ry, D) + my(r, D) — m(ro, D)

if r >ry >0 and f(C™) & supp D.
The defect of f for D € | L| is defined by

e m(r, D)
oA = st L 1)

(1.1) implies 0 < 6 (D) < 1.

Now assume X = P,. If f: C"— P, is a meromorphic map then we recall
that «: C™"— C"*! is a representation for fif Po «=fon C" — 4" 1(0) # 0
and the representation « is said to be reduced if dim «~1(0) <m — 2.

Let L = H be the hyperplane section bundle on P, with the metric x
induced by the standard metric on C"*!. Let

T((r, ro) = T((r, ro, H, x).

If D=D[a] €|H| is a hyperplane in P, and «: C"— C"*! is a reduced
representation of f then Jensen’s formula states that

(1.2) N,{r,ro,D)=J loglaoa|a=L log |a o «|o0.
Ccmir) m{ro)

(1.1) and (1.2) imply

(1.3) T,(r, ro) = f

Cmiry

loglala—L log | «|o.
miro)>

2, Associated maps

Let B be a holomorphic (m — 1, 0) form on C™. We shall define a differen-
tial operator Dy as follows. Let «: C™— C"*! be a holomorphic map. Then

« =Dgew: C"— C"*!
is a holomorphic map defined by
de NB=Dge dz, \---Ndz,,.



534 ALDO BIANCOFIORE

The differential operator Dy can be repeated so we can define
P = D}« = Dg(D} ™ 1)

Let f: C"— P, be a meromorphic map and «: C"— C"*! a representation
of f. Take p=0, ..., n. Then

wy, = ttyp = N N Net®
is the pth associated representation. Obviously

w,. C"— GM, < /\ cr*t
p+1
is a holomorphic map. (Here G,,,P is the Grassmannian cone of (p + 1)-planes
in C"*1)
We say that f is general of order p for B if and only if «, % 0. Also fis
general for B if and only if f is general of order n for B, in which case f is
general of order p for all p =0, ..., n. Then

f,=Pou,C">G,,=P@G,,

is a well defined meromorphic map with «, as a representation. The mero-
morphic map f, is called the pth associate map of f for B.

Let Q, be the Fubini-Kaehler form on P(/\,+1 C"*') respectively on G, ,
forp=0,..., n. Let f: C"— P, be a meromorphic map general for B. Define
the pth volume form of f for B by

H,=ipn_mf¥Q)ABAB onC"—1I,,

where i,_; = (i/27)" " *(m — 1)! (= 1)~ D"=2/2 and I, is the indeterminacy
set of f,. Let h, be such that H, = h,v™; then we have

2 2 2
2.1) ho = Ilalll‘ and h, = L‘-‘L‘-Tl'—l‘jﬂ for0<p<n.
“ dp
Define

1
= log |h,| 0.
2 Lm<r> ’

Let f: C"— P, be a non-degenerate meromorphic map (ie., f(C™) is not
contained in any hyperplane in P,). Then (see [9] Theorem 7.1) there exists a
holomorphic (m — 1, 0) form on C™ whose coefficients are polynomials of
degree at most n — 1 and such that f is general for B and

2.2) S,r) =

2.3) in-tBAB<(1 +r> ™! on C"[r].
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3. General position

Let X be a projective variety of dimension n, in P,. For p=1, ..., n, set
X,={x»eXxG,,|xeEy)}

where E(y) € P, denotes the p-plane associated by y € G, ,. We know that
the projection m,: X »— G, p is proper and holomorphic. Therefore X, =
np(X ») is a compact analytic subset of G, ,. For any D = D[a] € | H| hyper-
plane in P, we define
u,(D): X,— R[0, 1]

by
|z L of?
|z |?|af?
and for x = P(z) € X,. Here z L « is such that

(@ L a, )= (2, a AP) forevery pe /\, (C" )

If D; = D[«;] are hyperplanes in P,, j = 1, ..., q define

u,(D)(x) = forp=0,...,n

cp=CyDy,...,D)): X,—»Z forp=0,...,n
by
cy(x) = #{j € N[1, q]|u,(D)}x) = O}.
DErFINITION 3.1.  Let ko, k; € N such that n, < k,. We say that D,, ..., D,
are in general position of order (ko, k,) with respect to X if co(x) < k, for

every x € X and if ;, ..., «;, span a linear subspace of dimension at least
ko + 1 in (C"*')* for every choice of 1 <j, < - <ji, < 4.

We observe that if Dy, ..., D, are in general position of order (k,, k;) with
respect to X then

(3.1 no < ko < Min (k, n)

and for any t <k, and 1 <j, < ‘' <j, < q then
t
(3.2 dim () D,, < (n — ko) + (k; — 1).
h=0

Now proceeding as in [3] for the proof of Lemma 3.2, for any x € X we
have

3.3 c(x) < Mko, ky, p) forp=0,...,n

where A(kq, k,, p) is an abbreviation for Min (k;, n — ko + k, — ).
Let f: C"— P, be a meromorphic map not contained in any hyperplane in
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P,. Consider a holomorphic (m — 1, 0) form B. Assume f is general for B and

fICM s X, then f(C") = X, for p=0, ..., n. So the map ¢,(D) = u,(D) - f, is
well defined for every hyperplane D. Set

my(r, D) = — f log ¢,(D)a.
cmery

Then we have

(3.4) mo(r, D) = m(r, D),
(3.5 m,(r, D) =0 (since f, is constant).
From (3.4) and (3.5) we get
n—1
(3.6) go (my(r, D) — m, . ,(r, D)) = m{r, D).

Let Dy, ..., D, be distinct hyperplanes in P, in general position of order
(ko ky) w.rt. X. Set

q

= U1 uD)~' ) <X, forp=0,...,n

Then, similarly as in [3] for Proposition 4.1 we have

¢p+1(D 1)) ( $p+1(D !)),
3.7 21 ( oDy ? < Mko, ki, p) log | 3 oDy + 0(1)

on C" —f,(Y,), where 0 < f < 1.
We note that, by (2.1) and (2.2),

n—1
- z_:o }'(kOs kla P)Sp(r)

=klj log |« |0 + (ky — ko) 1og'“—"1'a
ICm{r)

Cm{r) | “y I
+j lo gl nto o.
Icmdr) I “p I

Set 0, f) = f gletly and 00p) = 00
C"'(r) | nl
Therefore by (1.3) we have
n—1
(3.8) — ), Mk, ky, PIS,(r)
p=0

= ki T((r, ro) + (ky — ko)Q(r, f) + O (7, /) + O(1).
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4. Defect relation

Before stating the theorem we fix some notations. Let g and h be real
valued functions on R(ry, c0). We write g(r) < h(r) if a subset E of R(ry, o)
with finite Lebesgue measure exists such that g(r) < h(r) for all r € R(r,, o0)
—E.

We set

7(f) = lim sup %’E( rfo ))
and t, = 7,(f).

THEOREM 4.1. (SECOND MAIN THEOREM AND DEFECT RELATION). Let f:
C™— P, be a non-degenerate, transcendental, meromorphic map. Let D, ..., D,
be hyperplanes in P, in general position of order (ko, ky) with respect to a
projective variety X of dimension ny in P,. Then

1) S myr, D) < ki Ty(r, ro) + (ky — ko)(r, f)

j=1
+ Qko(r9 f ) + O(log rTj’(r, rO»9
and

4.2 qu:l 04D)) < ky + (ky — ko)ty + T4o(f)

Proof. Since the proof is rather long and since it is similar to the proof of
the Second Main Theorem in [4] for m=1 and in [9] or [12] for the
general case, we shall give here only a sketch of it.

By (3.6) we have

@3 S mjr, D) = z go(m,,(r, D) = My (7, D).

=1
Let y, = Max, _;., m,(ro, D)) and
1
q(Ty(r, ro) + '))p).
Since T (r, ro)— oo for r— oo then there exists r’ > r, such that 0 < f(r) < 1

for all r > . Using (3.7) and proceeding similarly as in [9] for Lemma 11.4
we get

Br) =

(44) Mk, ki, P)S,(r) + jgl (my(r, D)) — my,4(r, D)) + O(1)

M, ks, 7) ( $peiD) )
ST L8\ X 5,y )
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Using Ahlfors Estimates (see [9] Theorem 10.3) and proceeding as in [9]
for lemma 11.5 we get

p+1(D)
4.5) melog <121 9,0, h )a < O(log rT(r, 1)).

Then (4.4) and (4.5) yield

46) ko, ky, PIS,(0) + jz (m,(r, D) — my 44(r, D))
< 0(log rTy(r, 7o)

Therefore by (3.8), (4.3) and (4.6) we get (4.1). Since f is transcendental, by the
definition of 7, 7,(f) and (4.1) we get

q q
Y o4AD) =Y lim 1nfML
j=1 j=1

r—o Tf(r rO)
m(r, D!)
< lim fnf ( 2, Tr, 7o
< ky + (ky — ko)ts + Tio(f), Q.ED.
We observe that
4.7) 0., f) = T((r, o) — Ne(r, 7o)
= 0(1)

< Ty(r, ro) + 0(1)

where 6 is the Wronskian divisor of f. More generally,

onNH= 3 log =1l

s=n—k+1 JCm{r) l“sl

and since (see [9] Proposition 10.6)

sp(r)=J logl-—"-:-l-l-o' L ﬁLla
Cmdr)

I“pl mir) I“p+l|
< O(log rTy(r, ro))
we have
4.8) Qur, f) < kQ(r, f) + O(log rT(r, ro)).

Therefore (4.7) and (4.8) imply the following result.
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COROLLARY 4.2. With the same notations as in Theorem 4.1 we have
k(T (0, 7o) + Q. 1)
+ O(log rTi(r, ro))
2k, T((r, ro) + O(log rTy(r, r,))
ifn=1
@9) Y mylr D) s (ks + DT, ro) + (ks — mQ0 /)
= + O(log rT(r, ro))
ifkg=n
(n + DTr, ro) + O(log rTi(r, o))

ifky =ko=n

ki1 +1))

2k, ifn=1

ki +1+(ky—ny, ifkg=n
n+1 if k, =ky=n.

410) Y 5,D)<
j=1

Remark 43. If k; = ko =n and X =P, then “general position of order
(ko, ky) with respect to P,” is the same as “general position”. Therefore (4.10)
for ko = k; = n is the classical result.

S. An application

First we fix some notations and recall some known results. Let Y be a
compact, complex, n-dimensional manifold. Let L be a line bundle over Y.
Set N + 1 = dimcI'(Y, L). Let y: Y — Py be the dual classification map. Then
L is spanned if and only if  is a holomorphic map. In addition, if L is
spanned, we have that y(Y) is a projective variety in Py. If H is the hyper-
plane section bundle over Py then y*(H) = L and y*: I'(Py, H)— I'(Y, L) is
an isomorphism.

DEeFINITION 5.1.  Let D, ..., D, be divisors of L. We say that Dy, ..., D,
are in general position if no point of Y is contained in n + 1 distinct D;.
We shall need later the following general assumptions.

(A1) Let Y be a compact, complex n-dimensional manifold and L a line
bundle over Y with hermitian metric Y*(x) the pull-back of the metric in the
hyperplane section bundle H over Py. Set n, = dim y(Y).
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(A2) Letf: C"— Y be a meromorphic map. Set
h=y o f: C"— Py.
Assume h is not constant.

(A3) Let P, < Py be a subspace of minimal dimension such that (C™) <
P,. Define h: C"— P, by h(z) = h(z) for every ze C™ If 1: P, Py is the
inclusion then h = 1 o h. We have h non-degenerate.

(A4) Let B be a holomorphic (m — 1, 0) form on C™ Assume / is general
for B and i,,_ ,BAB < (1 + r*~ %™~ ! on C"[r].

(AS) Let Dy, ..., D, be distinct divisors of L in general position such that
f(C™) & supp D;forj=1,...,q. Assume g 2 n + 1.

DEFINITION 5.2. Assume (A1)+(A4). Then we define

(5.1 o, f) = Qr, h),
(5.2) T, = T;

THEOREM 5.3.  Assume (A1)}+(AS5). Abbreviate T/(r, ro, L, Y*(x)) by T(r, r,).
Then

Z WTLr, ro) + Q(r, f)) + O(log rTAr, o))
:3) L,msn D) < {Zan(r, ro) + O(log rT/r, ro) if s =1
and
] n(l + 1y)
(5.4) PUOE {2n iy

Proof. Let Dy, ..., D, be hyperplanes in Py such that y*(5)) = D;. Then
Ti(r, ro) = Ty(r, ro),
(5.5 N(r, ro, Dj) = Nyr, ro, ﬁj),
mg(r, D;) = my(r, 5,).

Moreover D, ...,~ﬁq are in general position of order (ny, n) with respect to
Y(Y). Let P; = 1%(D;) be hyperplanes in P,. Then we have that P, ..., P, are
in general position of order (np, n) with respect to X = y(Y) n P, where
ny = Max (dim X, no — N + s). Since h = 1 - i we have

T (r, ro) = T(r, vy, H, k) = Ti(r, ro, 1*H, 1¥k) = T(r, 1o),
(56) Nh(r’ To, 5j) = Nﬁ(r, To, Pj)a
my(r, B) = mir, P) + 0(1).
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Hence by (5.5) and (5.6) we get
Ty(r, ro) = Ti(r, ro),
5.7 Ny(r, ro, Dj) = Nir, ro, P)),
mg(r, D;) = my(r, P)) + O(1).

Applying (4.9) and (4.10) to the map h and hyperplanes P,, ..., P, and using
(5.7) we obtain (5.3) and (5.4), Q.E.D.

6. Exponential maps

In the previous sections we found that if f: C"— P, is a meromorphic map
such that f(C™) < P, then

Q(r, f) < Tylr, ro) + O(1).

Our aim, in this section, is to extend this result to a wider class of mero-
morphic maps.
Let f: C"— P, be a non-constant meromorphic map with

«=(fo, .-, /)
as reduced representation. We say that f is an exponential map if f; =
Y; exp ¢;, where ; and ¢; are holomorphic functions on C™ for j =0, ..., n,
and there exists a holomorphic function u on C™ such that if h; = y;u~! then
T;Ij(r’ rO) = O(Tj(r, "o))-

We also say that the holomorphic function u satisfying the above condition
is admissible for f.

We note that if f is an exponential map then f is transcendental (see Mori
(5D

Let « = (Y, exp ¢¢, ..., ¥, €Xp ¢,) be the reduced representation of the
exponential map f. Then we set

R(“) = (exp ¢0’ -0y CXP ¢n)
and
I(«) = (exp (— o), ..., €xp (— ).

Then R(f) =P o R(«) and I(f) = P o I(«) are exponential maps. We say that
fis a special exponential map (S.E.M.) if

6.1) Tys\1, 7o) = Trep)1, 7o) + oTi(r, 70)).

DerFiNITION 6.1. Let f: C"— P, be a meromorphic map. We say that
fe R (or f e As) when the following are satisfied.
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(i) There exist an exponential map (or an S.EM.) g: C"—> Py and a
linear map A: C¥*!— C"*! such that f = P(4) o g.

(i) If « and g are reduced representations of f and g respectively and if u
is a holomorphic function on C™ such that ux = A o ¢ then u is admissible
for g.

(iii) g is non-degenerate.

@iv) 40,...,0,1,0,...,00#0 forj=0,...,N.

J

Let f € # then (g, A) defined above satisfying (i)}(iv) is called a decomposi-
tion of f.

Let f: C"— P, be a meromorphic map. We also must define Q(r, f) when f
is degenerate.

Let P, = P, be the subspace of minimal dimension such that f(C") < P,.
Then f* C™"— P, defined by fz) = f(z) for every z € C™ is non-degenerate. Let
B be a holomorphic (m — 1,0) form on C™ whose coefficients are poly-

nomials of degree at most k — 1 and therefore satisfying (2.3). Assume f is
general for B. Then we define

Q. f) = o, f).
If fe # with (g, 1) as decomposition then f'e # with (g, 1) as decomposition,
where 1: CV*1— C**! js defined by A(z) = A(z) for every z € C¥*1,

PROPOSITION 6.2. For every f € Rg we have

(6.2) Q(r, f) < Tylr, ro) + o T((r, 1o)).

As a direct consequence of Proposition 6.2 we have the following result.

THEOREM 6.3. Assume that (A1)~(AS5) holds. Then if HWC™) = P, = Py or if
h € &5 we have

q

(6.3) Y. myr, D) < 2nTLr, ro) + o(TAr, 1o)),
i=1

(6.4) S 5,D) < 2n.
j=1

Before proving Proposition 6.2 we want to show that % is not empty. In
fact it extends the class of meromorphic maps for which Shiffman [7] proved
(6.4).

PROPOSITION 6.4. Let f: C™— P, be an exponential map with

«= (o €Xp Po, ..., ¥, €Xp ¢,)

as reduced representation. If one of the following conditions is satisfied then f is
an S.E.M.
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1. There exists an isometry o: C"— C" such that —¢;=¢;o o for
j=0,...,n

2. There exist a holomorphic function ¢ on C™ and real numbers A, ..., A,
such that ¢; = A;¢ for j=0,..., n.

Proof. If f satisfies condition 1 then since ¢ is invariant by isometry we
get Tr(y)r, o) = Ty(r, 7o) and therefore (6.1).

Suppose now that f satisfies condition 2. Let

Gos +++»Jn)
be a permutation of (0, 1, ..., n) such that 4;; <--- < 4;. Let o = 4;, — 4;,
and a = A;,. Then there exist constants ¢, > ¢, > 0 such that

69 col 4101+ | PFe < T [t
<cie¥|(1 + |e?|?)™
Therefore if h = P(1, €®): C"— P, then, by (1.3),
Trir)1s 7o) = 0, Ty(r, 7o) + O(1)
and
Tigr, 1o) = &, Ty(r, 1) + O(1).

Hence (6.1) is satisfied, Q.E.D.

Remark 6.5. (a) Condition 1 in Proposition 6.4 is clearly satisfied when all
¢; are homogeneous polynomials of the same degree or in general when
¢; =0 P; where Pj are homogeneous polynomials of degree 2*(2k + 1)
for a fixed h € Z[0, 00). For example when h = 0 then ¢; are odd functions.

(b) Processed as in [2] for the proof of Proposition 6.1 it is possible to
prove that all the meromorphic maps considered in [7] by Shiffman are in
AR. Moreover if (g, 1) is a decomposition of a meromorphic map in [7] then

g =P, exp Py, ..., Yy exp Py)
where all P; are homogeneous polynomials of the same degree. Therefore by
(a) we have that #g extends the Shiffman class.
Proof of Proposition 6.2. Let (g, 4) be a decomposition of f. Then from
(6.1) and

(6.6) T(r, ro) |< Ty(r, o) + o(Ty(r, 7o))s
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(6.7) Tre)rs 7o) < Ty(r, 1o) + o TH(r, 1o)),
(6.3) Q(r, 9) 5 Ty)rs 7o) + o Tr, o))
(6.9) o, f) £ Qr, g) + oTyr, o)),

we will get (6.2). Therefore we will prove (6.6)—6.9). First we note that (6.6) is
a direct consequence of Proposition 4.3 in [2]. Let g = (Yo exp o, ...,
Yy exp ¢p) and « be reduced representations of g and f respectively and u a
holomorphic function such that us = 4 o 4. Then if h; = y,/u we have by
assumption T, (r, ro) = o(T(r, ro)). Since

N 12
| R(g)| S<1§l|h1|_2> lul™ gl

and
N 1/2 N
J log < Y Ihj|2> o< Y Ty r, ro) + O(1) < o(Ty(r, 1)),
emery j=0 j=0

and we have (6.6), we get (6.7).
Set g =u"'g. Then g, = u~**Vy, and

(6.10) o 9= | loglr=tl,

Uc”'('> '7}1 l

= logly" ll J log |ulo
Jomery lﬂN | Cmr)

r

< 10g|?1v 1|
JCmr) |?N|

Write g = (o, ..., gn) Where g; = h; exp ¢; for j =0, ..., N. Then

F =@, )

and g = d,; exp ¢; where d,; are meromorphic functions defined recursively
by

dkj=d;‘—l,j+¢}dk—l,j forkeN and d01=hj’
Set @ = (d,j)forn,]—() s N, ® =(d;) fori=0,..., N—1land j=0, ...,

k—1,k+1,..., N and a/z,, = det @ (det ®)~'. Then 1t is not difficult to see
that

N 1/2
|y~—1||5’N|-1=<Z|'//ke_¢k|2) .
Jj=0
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Proceeding as for the proof of (6.7) we get

~ N
(6.11) J log "”1"1' 0 < Tirs 1) + Y Tyu(r, 1) + O(1).
ICmdr) I?NI k=0

Now a standard technique in Value Distribution Theory and the Lemma of
the Logarithmic Derivative (see Vitter [10]) give us

(6.12) Ty, (1, o) < o(Ty(r, ro)).

Then (6.10), (6.11), (6.12 and (6.6) imply (6.8).

In order to prove (6.9), without loss of generality we may assume f is
non-degenerate. Consider ¢ € /\y_, C"*! such that E(P(¢)) = Ker 1. Then
there exist constants ¢, > ¢, > 0 such that

colgaNel <1 o gkl = lul** Y wxl < cqlay Al
for k=0, ..., n. Therefore

_ A
f logl—”-”——l—lasj logl—gl—l—ila+j log |u|o + O(1).
Cmry [ enl Cm(ry lgaNE] cm(ry

Since u is admissible for g, N,(r, ro, 0) = o( T(r, r,)). Hence

I In—1 A & |
(6.13) o, ) < Lmbs e O T o).

Choose an orthonormal base ey, ..., ey in C¥*! such that
&= e,,+l/\"'/\eN.

Define «;, € (/\ CV*!)* by
N

ax) =xAe, forxe AC"*'andk=0,..., N.
N

Set
By = gu-1N\exr1 N Ney

and
h(k) = P(ﬁ(k)): Cm~—> P(/\ CN+1) >~ PN'
N

Then by Ahlfors Estimate, and since f is transcendental, we get

| Ao, L ol
log —&—*' 5 < o(TAr, ro)).
J;"'(r) [ Ay L oul | Byl . To
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Moreover we have (see [8] Hilfsatz 4)
| Ay, L ol = g2 Nex Ao Neyl lguNegst A - Aeyl.
Therefore we have

lge-2Ae A Aeyl
6.14) J lo
( cm(ry lge-1AeA-Aeyl

g1 Nest A Aeyl
< log o + o(Tur, ro)
'J;:n.(r) g Nexs1 A Neyl 7 To

for k=1, ..., N. Applying (6.14) recursively we have

I Fn—1 Ne I
615 [, toge==slc < 06 0+ ot v

and by (6.13) we get (6.9), Q.E.D.
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