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HANKEL OPERATORS IN VON-NEUMANN-SCHATI’EN
CLASSES

BY

FINBARR HOLLAND AND DAVID WALSH

Introduction

In [3], Bonsall reduced the study of a Hankel operator on the Hardy space
H2 of the disc D to the study of its action on a class of simple elements in H2

which generate the space. To this end he introduced the unit vectors

v(w) 1- Izl 2
1 5w (w D)

indexed by the points z D and proceeded to show that A is a bounded
Hankel operator if and only if { IIAv, II z D } is bounded. His methods also
show that A is compact if and only if Ilavll 0 uniformly as Izl 1.
The purpose of this paper is to try to find conditions which relate the

quantities IIAvll with the property that A belongs to the von Neumann-Schat-
ten class c(1 < p < oo). We get a complete characterization only when
p 2. For other values of p we obtain implications in one direction only but
are able to show that the converse implications do not hold.

Bonsall also considered unit vectors u,,(), n > O, OD, the counterparts
of the .v on the unit circle. We obtain completely analogous conditions in
terms of IlAu,(’)ll as stated above for IlAvll including a necessary condition
that A cgt. Again the condition is shown to be not sufficient.

Preliminaries

We record some notation we will use and recall some pertinent results. Let
D denote the unit disc, OD the unit circle, L’ LI(OD) the usual Lebesgue
space, 0 < p < o, and Hp, Hardy space, the subspace of Lp of functions

analytic)n D.
Let f(n) be the nth Fourier coefficient of the function f in L1. We will

follow the usual practice of identifying a function f in Hr with its analytic
extension to D, En_of(n)z n.
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Let (a.) be an 12 sequence, a, C. The matrix A (ai+j) is called a
Hankel matrix and the sequence (a) the coefficient sequence of A. This
matrix defines a bounded operator on l2 or equivalently on H2, if and only if

/= ,ax__, (x(e") e’’, n Z),
0

is in BMO and is compact if and only if f is in VMO [8]. With the Hankel
operator A we associate the function f above. Defining P to be the orthogo-
hal projection of L2 onto H2 and J the unitary, JX. X-. we may represent
the action of A as follows, when A is bounded:

Let T be a compact operator on H2 and let (Sk) be the sequence of
eigenvalues of (T’T)1/2 arranged in decreasing order of magnitude. The
number sk Sk(T) is called the k-th s-number of the operator T. We may
represent T in the form of a Schmidt series

rg (g n
0

where (Ok), (kk) are orthonormal systems in H2. T is said to belong to the
yon Neumann-Schatten class c, (0 < p < oo) if the sequence (Sk) belongs
to 1’. For 1 < p < oo, c, is a Banach space with the norm

II TII II TII Sk(Z)
0

and II TII ,0 so(T) is the operator norm. For further information on these
classes see [5], [9].

Besov spaces. The Besov space B/(1 < p < oo) consists of those L’
functions f for which

ff_ - f" If(ei(’+t)) + f(eiO-t)) 2f(e")Ij’
dsdt <

For p > 1 this is equivalent to

f_- /_[f(e"’+’)) f(e’)[p ds dt < oo;

se [7] and [lll.
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Let A/’ denote the subclass of those f in B/’ that are analytic in D.
Again we identify a function f in At_n’ with its analytic extension to D. We
may also characterize An’ as follows f An, if and only if

or if p > 1, f A/’ if and only if

fflf>(z) ["(1- Izl) "-2 dxdy <

The study of the Besov spaces is made easier by the following result proved
in [7].

TI-mORM A. pB/’ A/’ (1 < p < oo).

1. Hankel operators in T(1 < p < oo)

Suppose I < p < oo and f is in L’. We define a function F(z, p) on D by

F(z, p) f_ [f(eit) f(z)[’P(ze-it) dt, (1)

where

P(w) 1- Iwl z

i1_ wlZ (wD)

is the Poisson kernel and f(z) is the harmonic extension of f to D. Taking M
to be the family of disc automorphisms gr(" D) with

z+#r(z)= X+-z (zD)

we note that by a change of variable

where f(w) f * #,(w) f(z) (w D).
We recall that the space BMOA of analytic functions of bounded mean

oscillation may be described for any value of p, 0 < p < oo, as the family of
functions f in H for which

sup{llLIl," z D} < oo;
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see [2]. We may define a family of equivalent norms on BMOA by choosing p,
0 < p < oo, and setting

Ilfll. If(o) + sup(llfll,’ z D ).

In his discussion of the boundedness of A [3], Bonsall introduced two
families of unit vectors ( oz ), ( u,(’)).
For each z D,

Oz(eit)

while for each n > 0 and " OD,

n

u() /n + 1 0xg’
If A what can be said about IIAvII beyond the fact that IIAoII 0
uniformly as zl --’ 1.9 First we recall the fundamental result of Peller [7].

THEOREM B. The Hankel operator A A(f) belongs to Cl, (1 < p < oo) if
and only iff A/.

Suppose A A(f) is a Hankel operator with f in L2. From [3] we then
have

[[Av[[ -= (1- [z[ :) E
kO

2

E ak+jj
jO

l flf(e’t)l’e(ze-")dt-lf(z)[
F(z,2).

(2)

(3)

The case p 2 is straightforward.

THOPM 1. The following are equivalent.
(a) A rg2;
(b) /o2"llAu.()ll 2 dO O(l/n) ( ei);
(c) follAoll 2 dO 0(1 r)(z =rei);

Proof (a) =, (b). It is elementary that A belongs to cg
2 if and only if

E(k + 1)Jail 2 < o.
0
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We note that

Taking " e

lfo2, 2

(b) (c).

iiAun()ll2= 1 a 12n + 1 k+jJ
k=O j=O

and integrating over (0, 2r) we get

1 o n

dO n + 1 - lak+j 12
k=O j=O

-,,+ E(m+)laml:+(’+)
m’-O

1

To see this we write

v(w) 1- [z[ 2

1- Sw

as follows, with z r’,

/1 r 2 E rw"
n’-O

o n

i r 2 (1 r) , rnEkwk

n=0 0

/1 r 2 (1 r) E Vc + 1 rnun()(w)
n--0

m-n+l

(4)

which expresses oz as a linear sum of the un(’). It follows that

2

IlAvll 2 < (1 r2)(1 r)2 E /n + i rllau()II
n--0_

(1 r’)(l r E (n + l)rllu()I1’- I2 r
n=0 n=0

(1 r2)(1 r)F.(n + 1)rllAu.() ,
0

where we have used the Cauchy-Schwarz inequality. Hence

lf:llAvll: dO (1 r2)(1 r)E(n + l)r "llAu,()2r’o o

O(1 rZ),

dO

which is (c).
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(c) (a). From (2) we have

2- Ilao ll 2d0 f(e’t) dt f(re )12
"0 "0

Elakl2(1 r2k+2)
0

(1 r2)Elakl2(1 + r 2 + +r2k),
1

assuming as usual that f- EakX-k-1. By assumption there exists K > 0 such
that for 0 < r < 1

Elakl2(1 + r 2 + +r-*) < K.
1

Fixing N and letting r ---) 1 we have E(k + 1)lakl 2 < K which implies that
A is in 2. This completes the proof of Theorem 1.

Let

sin2( n + 1)2 x

2 x(n+ 1)sin

be the n-th Fejer kernel and let o(g, x) g K(x), the convolution of g
with K,, be the n-th Cesaro mean of g. We define functions F(, p)
analogous to the F(z, p) as follows: For 1 < p < o and f L’ let

p) :(e") On(f, e "t’) t) dr.

The next result gives a characterisation of B/’(1 < p < o) in terms of both
F(z, p) and of F,(, p). For simplicity we shall write f(t) instead of f(e it)
etc. First we observe by consideration of the change of variables u s + t,
s s and the periodicity of f, that f B/’ if and only if

sin:( u-2)s
du ds < oo

TaOEM 2. The following are equivalent for I < p < "(a) f -(b) /_,,F(z, p) dO O(1 r) (r --, 1);
(c) f_,F(b, p)d O(1/n) (n - oo).
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Proof. We shall show that (a) and (b) are equivalent and then that (a) and
(c) are equivalent. Suppose that / B/v and z rei with r < 1. Then

f(e") f(z) f_"(f(e") f(e’"))P(ze-") du,

and

by Jensen’s inequality. Therefore

F(z, p) < If(t) f(u) I’V(ze-’")V(ze-") dudt,

from which it follows that

1
2r ,,

(1-r4)
1 2r2cos(t- u) + r4

dud,

4(1-r) ,, ,, If(t) f(u) v

1 r ,, ,, if(t) f(u)["

provided r > 1/2. Since f B/v it follows from our remark above that (b)
holds. If conversely (b) holds, then from (1) we have

If(t) f(re’) v

r)2+ 4rsin2( t- O)2
dtdO s k

for some constant k and all r < 1. Now let r --, 1; since f Lv, f(re) --,

f(eis) a.e. and Fatou’s Lemma gives

f,/lf(t) -/(0)1v

4ing.(’"t ..0.) dtdO k,

from which we conclude that f BXv/v. The proof that (a)** (c), though
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similar is more difficult and we therefore give it in full. Let f B/P; then

f(t) on(f, q) (f(t) f(u))Kn(q u) du,

and

{/(t) o(f q,) ’ 2- f:,lf(t) f(u) I’K.( u) du

as before. Therefore

The convolution K,, K(x) is

ekx1 n+l

COS2 2 x
Kn(x) + x(n + 1)sinE]

x(n + 1)sin-

x
sin( n + 1) x cos

x2(n + 1)2sin3()
x

sin( n + 1)x cos

x2(n + 1)sin3(--)
and the second term is dominated by

( n + 1) sin x cos--
2(n+ 1)2[ sin3(

whence

xCOS2-
( n + 1)sin2x2

2
[K.,K.(x)[

(n + 1)sin2
x
2

Integrating (5) through with respect to q and using the above estimate we
obtain

1 1
2r (’ p) dch _<

(2r)2
1

2 ,, , If(t) f()1"n+a f_=f_, sinE( t-2 -)
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since f B//’. Next assume that (c) holds and let

T,(t) if_ If(t + q,) o,(f, ) [’ ddp.

By hypothesis we have

sinZ(,n + 1)2
T(t)dt=O(X)

sin
Consequently

Now

1 N

N+I EI,,=O(1) (N o).
n--0

N

2 E(1- cos(n + 1)t)
0

=N+I-
sin( N 2 cos 2

sin-
so that

1 n+lsin2 2
0

1
t’ (N oo) (6)

for each t, 0 < tl < r. Also

lim T,(t) T(t) [f(t + q) f(q) ’ de (7)

uniformly in t, It[ < r, because by the triangle inequality for norms

]T,(t)1/’- z(t)/l <-Ilo,(f) -fll for all t,

Whence

noo IT,(t)x/ T(t)/[ 0
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uniformly in t. Putting these observations together we see that by (6) and (7),

1 N

)N+I n-0E T,(t) sin2’ n+2 1

IN()+1 ( ).sin2
n+l T(t) sin2 n+l

N 2 t(T(t)- T(t)) + N + 1 o 2

T(t)
2" asN ooforallt.

By Fatou’s Lemma

f_ T(t) 1
2t

dt< liminfN+l
rs1n Noo

which says that f B/’ and finishes the proof of Theorem 2.
We remark that just as Io(e")l 2 P(ze-") we also have lu()l 2 K(ff)

(see [3]). Taking A A(f) we can now draw the following conclusions.

THEOREM 3. IfA c(2 < p < ) then
(i) O(1/n) ( e’*),
(ii) f_llavll’ dO-- O(1 r) (r ei).

Proof. Although (ii) can easily be derived independently we remark that
(i) = (ii) because of the following useful inequality which we obtain from (4):

IIAoII < 1 r 2 (1 r) E /n + 1 r"llau.()II. (8)
0

Thus, assuming (i) we have for any p > 1

Ilav:llp (1 r2)’/2(1 r)E(n + 1)"/2r"llAu.()
0

from which we have for some constant C,

f:llAo.II dO < C(1 r2)p/2(1 r).,(n + 1) p/2 r

0
n+l

C(1 r:)"/2(1 r),(n + 1)"/--xr"
0

r(p/2)C(1 r:)’/2(1 r)
(1 r) p/2

by a result in [12, p. 225]. This gives (ii). Now we prove (i).
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Although it is not true that IlAu,,(’)ll 2 F(, 2), we note that from [61,

lla.() II/u.() -llPfu.()II

since llPfu,,()ll 2

o(i/i , :) -II e/.(:)If"
o=(Ifl , ’) -lo,(f, )l
F(g,, 2), (9)

Io(f, ’)l 2 > 0 by the Cauchy-Schwarz inequality. Now
by Jensen’s inequality

and so

F,,(g,, 2) ’/2 F.(, p),

f:(g,, 2)’/ d? f_(q, p)d O(1/n)

by Theorem 2. The result follows from (9).

Remark. We have shown that the conclusion for IlAu(g’)ll implies that for
IIAoII above by virtue of inequality (8). We do not know if the converse
implication holds.

THEOREM 4. IfA r,(1 < p < 2) then
(i) f:llhu()ll de O((1/n) p/2)
(ii) f:llavll dO O((1 r)/2)

Proof. (i)
have

Since r, c r:, A fez and since L norms increase with p we

2 f_ IIAu(ff)I: d, f_ IIu(ff)II d,

by Theorem 1. The proof of (ii) is similar.
It is an open question whether (i) is stronger than (ii).
The converses of Theorems 3 and 4 are false and counter examples will be

provided later. In relation to Theorem 4 we have in the opposite direction the
following result.

TaOEM 5. Suppose 2 < p < o. If
(i) f:llAu.() I:d, o((1/n) ’/2)

or
(ii) /:.llav, ll" dO- o((1 r) "/2)

then A c.
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Proof. Suppose (ii) holds. Then

2-- IAoII 2 dO < f_,llaoll d0 O(1 r)

which implies that A cg
2 by Theorem I and so A cg. Since (i) is similar,

the proof is complete.

We do not know if hypothesis (i) is stronger than hypothesis (ii).
On comparing the conclusions of Theorems 3 and 4 one may wonder

whether a stronger result holds than, for example, that stated in Theorem 4
(ii). This is shown to be not the case by the argument below.
We set g(e it) f(e-") so that g is analytic and g(0) 0. As A (a+/)

we may write A A(f) A(g). If 1 < p < , then for any bounded oper-
ator A A(f) we have

aoll
dO >_ c.(1 r)/211LII

To see this, write

F(,, 2) (1- r2) f f(eit)
, e it ,

2

(1-r
27/"

Now

h(w) h)(O) w
k!

k-O

hence

F(,2) >_ (1 r E) g(z) g(O)

(1 r 2)

and

(1-r
rP

2 ) p/2 If(z) dO,

which is the desired conclusion.
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2. Hankel operators of class

We give here a necessary condition that the Hankel operator A belongs to
the trace class t which is of a slightly different kind to that in Theorem 3.
For this purpose we develop an integral representation for A which in turn
depends on an integral representation for functions in A.
We shall write h Lt(D) if

Ilhllm ffolh(z)ldxdy < .
Suppose f A with f(z) Ea,z" (z D). Let

F(z) (n + 2)(n + 3)a,,z".
0

It is not hard to see that F LI(D) also and that there are constants
Cx, C2, Ca such that

Lfo’lF(re’) Irde dr <_ c,ffolf"(re’)IrdO dr + C21aol + C3la, I. (10)

For instance, on writing g(z) z3f(z) we have g"(z) zF(z) and
is bounded by an expression similar to that on the right-hand side of (10).

For fixed z in D, with w pe’ we have

folf02F(w) (1 Iwl-)
(1 z)2 P dp de#

./o1(1 0
2 2

0 " F(#e’*) e- ’"’ dO do-) E (n + l)P"z
n=0

(1(1- 0)0+1 do)-o

an2n

=f(z);

that is

f(z) ffF(w)tw(z)o do dq, (11)
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which expresses f as a linear Lt(D) sum of the elements

tw(Z ) (1- Iw12)2

(1 z)2

It is easily verified that { t,: w D } is a bounded subset of A and in fact
that

lff (z)lrdOdr 61wl z (wD).

As in the argument following Theorem 5 we shall continue to write
A A(f) even when f is analytic, f Eanz n, where as usual A (ai+j).
Now A(tw) is a rank two operator [8] whose action on g(z) H2 is given by

A(tw)g(z ) ., z n ., (1 Iwl-)-(n + m + 1)n+m,m
n-O m-O

(1 -1w[2)2[ g()
(1 z)2

Furthermore

Since the function w A(tw) is continuous in the t norm, from (11) we
have

a a(f) -W ffF(w)a(t,), d do,
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where the integral is understood as a limit of Riemann sums. The action of A
on g H2 is given by

)2(g())(1 wl (1-z)’ + ’() }1 z pdOdp

and

ttAtt fflF(w)IllA(t,)gll, dq, do. (13)

We are now in a position to give a necessary condition in terms of Aun()
that A belong to x. It was shown in [6] that A is bounded if and only if

sup{ Ilau(ff)I1" n

THEOREM 6.
C such that

Suppose the Hankel operator A is in c1. There exists a constant

E Ilau()II
n + 1 <- ClIA Ilx (ff OD).

n-’O

Proofi From the definition of un(’),

n1 E gw (Iwl < 1).()(w) , + 1 -0

SO

1 n

lu()(w)l n + 1 70Iwl’..
Taking g(w) u()(w) in (12) we have

IIa(tw)u() II 2(1- Iwl)x/- "E Iwl +/n + 1 -o

(1- Iwl2)3/2
/n+l

n, kiwi-k-1
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Hence

E IIa(t)un(ff)II
n+l

n-O
n

(n + 1)3/2 Iwlk
oo n

(n + 1)3/9.

oo oo 12(1 -Iwl)X/ ,-oEIwl,_ (n+1)3/9_

+(1 Iwl)3/ E kiwi- E 1

k=l n---k (n + 1) 3/9.

2(1 Iwl2)x/ E Iwlo 1

k=O (k + 1)1/9.

+(1 -Iw12)3/2 E IwlkO(( k + 1)1/2)
k--0

O(1) as Iwl 1.

From (9) it now follows that there is a constant Cx such that

E ll. u.()II
n+l

0

Now we invoke a result in [4]" Let f H2, h(z) z2f(z); then A(f) is trace
class if and only if h" LX(D). Also

-llh"llv<o) IIa(f)II -< IIh"lle<o).

Applying this result with g(z) z 3f(z), g"(z) zF(z), (and f(z) replaced
by zf(z) and h replaced by g) a little manipulation now reveals that there is a
constant C2 such that C211FIle(z)< IIa(f)ll.

Putting these facts together we deduce that there is a constant C such that

llAu,,(’)II
n + 1 < CIIAII.

0

The proof is complete.

This result implies a similar result for IIAv, II as follows.
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THEOREM 7. Let A c1. There is a constant C such that

lllavll dr < cIIall (0 < 0 < 2r)

Proof. We recall the representation (4) for G:

G(w) /1 r 2 (1 r)E/n + 1 r"u.()(w)
0

From this it follows that

(z r’, w D).

Ilaoll V/1 r E (1 r) E v/n + 1 r’llau()II,
and so

2 )1/2dr < E/n + 1 Ilau ()II r"(1 r dr

1 Ev/n + 1 IIAu,(’)II 1(1 s)1/Es("-)/9- ds

1

0(1)E IIu,()II
n21-1

0

3 n 1

The result now follows from the previous theorem.
The converses of Theorems 6 and 7 are false.

3. Counter-examples

The implications in Theorems 3, 4, 5, 6 and 7 are in one direction only. Here
we want to construct counter-examples to show that the converses are false. In
order to do this we need the following characterization of the Besov classes
B/’, [7]. Define functions W (n Z) as follows:

if,’. ( k )

if n>2, Wl(Z)= z + z

O, k < 2n-1

k- 2"-1
2"-1 < k <

2n-1
2,+1 k

2" 2"<k<2"+1

0, k > 2"+1

2+ 1/2z 3Wo=l, W,= _, forn<0.
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THEOREM C. For 1 < p < o, f Bt/p if and only if E2_oo21"l[[f W,I[,

Now consider the function f given by the lacunary power series

f(z) Ea,z
1

It follows easily from Theorem C that f A/’ if and only if E’2klakl’ < oO.

For each p, 2 < p < oo, we will find a function f of this type such that f is
not in A/’ but for which

This will show that the converse of Theorem 3(i) is false. That the converse of
Theorem 3(ii) is also false now follows using inequality (8) and an argument
similar to that given in Theorem 3 itself. In what follows C or C, is an
absolute constant though not always the same one.

Fix p, 2 < p < oo, and let f(z) ,akgk A A(f); then

1
=n+l

k-0

n

/-0

1. + 1 E IA(", s y.
0

By the triangle inequality for norms, on putting G,(g) Ilau,(g)l[ z we get

1 oo

0

1 oo

n + i EIIf (n t") p"
0

Suppose now that

0, k,2m, (m> 1)ak 2 -"/’, k 2m,

so that f q At/ and f has a lacunary series. By a result on such series [1, p.
243], there is a constant C C, independent of f such that Ilfll < cllf[12.
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Applying this result to each fk(n, ) it follows that

+1 Z IIf( n,)ll
k-O

n+l k
k-Oj-O

nC, E (J + 1)laj[-+( n + 1)n+l

If 2" _< n < 2"+ 1, then

n+l m 2J+1-1
2E (k+l)aI< E E (k+l)ak

2 j-I k-2

m 1E(2j +1) 22j/,
j-1

m

2 E 2J(1-2/P)

O(n-/’),

while

O(nX-:/)(n + 1) ., ak
k-n+1

also. Putting these together we get

IIAu,() I( dth O(n-Z/’),

or

(1),,llu=() I(dO 0 -

j-n+l

which is the required result.
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Moving on to Theorem 4, fix p, 1 < p < 2, and choose A ’2 \ ’p- Then

by Theorem 1. Conclusion (ii) of Theorem 4 follows from this, completing the
demonstration.
Next consider the converse of Theorem 5. Choose p, 2 < p < o; it is

enough to show that aA A(f) p such that

llAvzllp dO 4 O((1 r)P/:).

As before we take a lacunary series for f,

f(z) , az
k--1

2 where a k (k/2k)1/:.

Since Z,2ka < o it is clear that f A/p. Choose z D and let

f(’)=f 1 +" f(’) for all ’ D.

By a simple change of variable,

F(z,2) I}f[[ > Ifz’(0) l: (1 ]zlZ)Zlf’(z)I:,

and so

1 f,[[ (1 r-) f_ [p2 AozlI" dO > 2r If’(z) dO

(

_
) p/2> C(1 r) p f_ [f’(z)[2 dO

o )
p/2

>_ Cp(1- r) p , 22k[ak[2r2k+l
k--1

once more using the equivalence of the Lp and L2 norms. Assuming r >_ 1/2 we
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have

_ lla ll a0 >_ G(1 r) 22rk2

C(1 r)" (logn)r
2

1 /

> C,(1 r)" 1-r
1-r

( 1 )
p/2

2 C(1 r)/ log 1 r

TNs shows that fKIIAII dO O((1 r)/) and completes the proof.
Our last counter-example sees for both Theorems 6 and 7. Once more we

consider a lacuna series, tNs time we te

0 1

Since2a m, it is plNn that f is not in A1 and so A (a+) is not in
by Theorem B. Let u u(1). We show that nevertheless

IIAull
n+l <’

0

which is clearly sufficient. We have

ai+j Xi,Au,, v/n + 1 i=o j=o

{ OO 2k+1--1(nEE E ai+j)2}
1/2

1
IIAull V’n / 1 =o i=2 y=o

since ao 0. Fix i, n and choose integers k and rn such that 2k < < 2k+t,
2m < n < 2m/ t. If k < rn the sum Y..oai+. has at most rn k + 2 non-zero
terms and

n m+l 1E ai+ < E 2-j <
2k-t]-o -k

while if k > m it has at most one non-zero term and is bounded by 1/2k.
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Consequently, for all i, 2k _< < 2k+l and all n >_ 1 we have

so that

Therefore

ai+j
j-o

2-2(k-l)

1 (oo )1/2IIAull <
/n + 1

2k2_2k_X) 2/-
k-0 /n+l

n + 1 < 2gE(n + 1) -3/2 <
0 0

as required.
Since Theorem 7 follows from Theorem 6 it is dear that this example also

serves to show that the converse of Theorem 7 is false.
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