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Let G be a finite group and let M be a finitely generated FG-module, where
F is a field. In representation theory, the most useful type of projective
resolution of M is obtained by the following method" take a projective cover
of M, then a projective cover of the kernel, and so on. Such a projective
resolution is minimal and two minimal resolutions are isomorphic as aug-
mented complexes. Now replace M by a ZG-lattice A. Here there are no
projective covers to work with but nevertheless the exact analogue of the
above result is true: two minimal projective resolutions of A are in the same
genus (i.e., locally isomorphic) as augmented complexes. By a minimal projec-
tive resolution we mean a projective resolution in which no kernel contains a
non-zero projective summand. (Over a field this is equivalent to the projective
cover condition.) This was proved in [2].
We shall address here the question of what happens for minimal free

resolutions of A. Things can go wrong: we give an example where two minimal
free resolutions have different rank sequences; in this case A does not satisfy
the Eichler condition. The main fact to be proved here is that in the presence of
the Eichler condition all is well: two minimalfree resolutions ofA lie in the same
genus.
The difference between a minimal projective resolution and a minimal free

resolution may be considered as concentrated in a finite interval. We prove
that if A is non-periodic, then every minimal free resolution of A is minimal
projective beyond some finite dimension; while if A is periodic then there
exists a minimal free resolution that is periodic beyond some finite dimension.
Furthermore in the latter case, if A satisfies the Eichler condition and ZG is
not a direct summand of A, we show that A has a periodic minimal free
resolution.
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We are grateful to Heinz Jacobinski for critical comments on a first draft of
this note.

This paper is dedicated to the memory of Irving Reiner. The first author’s
understanding of integral representation theory owes much to Irving’s interest
and help during a close friendship of more than twenty years.

1. Notation and terminology

If R is an integral domain and L is an RG-module, we write dRE(L), or

d(L), for the minimum number of elements needed to RG-generate L,
and L for the G-invariant elements of L. All modules are assumed to be
finitely generated. The direct sum of copies of L is written L(t). In particular,
RG(t) is the free module of RG-rank d(RG(t)).
The order of G is [G[, and the set of prime divisors of IGI is r(G). If p is a

prime, Z(p) denotes the local ring at p and we set

Z(G f’) Z(p).
pr(G)

If L is a ZG-lattice, L) means L (R)z Z<E) and QL means L (R)z Q.
A projective excision of the ZG-lattice L is a decomposition L L’ P,

where P is projective and L’ has no non-zero projective direct summand. We
call L’ an L-core. Projective excisions are only unique to within genus. If P<)
is free of Z<E)G-rank t, we call the projective rank of L and write pr L.
A projective representation of L is a short exact sequence

OKPLO,

where P is projective. It is minimal if K is its own core" this is not the general
definition of minimality proposed in [2] but is equivalent to it when the
coefficient ring is Z (cf. [2], {}2). The presentation is free if P is ZG-free and it
is a minimal free presentation if dE(P) dE(L).
A ZG-projective resolution of the ZG-lattice A,

in which the image of Pi in P;_ is C, will be abbreviated as (P, C), or just
(P). We set CO A. If Pk Ck is minimal, we say that (P) is minimal in
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dimension k (or at k) and if (P) is minimal in all non-negative dimensions,
then (P) is a minimal projective resolution. A similar terminology is used for
free resolutions.
An elementary property that we use repeatedly is that a short exact sequence

of ZG-lattices splits if the left hand term is projective. We record some further
facts for later use.

If (P, C) is a projective resolution of A, then

n

Xn(P) E (-1)n-irk(Pi),
i=O

where rk(P) is the Z-rank of Pi. The infimum of the set (xn(P): all (P)} is
xn(A), called the n-th partial projective Euler characteristic of A. The resolu-
tion (P) is minimal if, and only if, x,(P) x,(A) for all n > 0 [2, (3.4)].

(1.1) If (P, C) and (P’, C’) are projective resolutions of A,
x,(P) x,(P’) if, and only if, Cn+ and C’+I belong to the same genus.

then

For if we tensor the resolutions with Z(), they become free resolutions of
A() and then the result is an immediate consequence of Schanuel’s lemma
and the cancellation property over Z) (cf. [2], the proof of (3.3), for details).

(1.2) If the projective resolutions (P, C) and (P’, C’) of A have the same
rank sequences (equivalently, if x(P) X(P’) for all n >_ 0), then the
resolutions belong to the same genus (as augmented complexes).

This is really Theorem (3.5) in [2]: the proof given there does not use the
hypothesis that the resolutions are minimal but only its consequence that the
rank sequences are the same.

A genus r is said to allow cancellation if M L---N L implies that
M --- N, whenever L, M, N I’. An equivalent formulation is that for M and
N in F, M A -= N A implies M -= N provided A() is a direct summand
of M(n) for some n > 1 If L is a lattice in a genus that allows cancellation,(G)
we shall usually say that L allows cancellation. A sufficient (but not necessary)
condition for L to allow cancellation is that L be an Eichler lattice. This
means that the semisimple rational algebra EndQ(QL) has no Wedderburn
component isomorphic to a totally definite quaternion algebra. Hence L is
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certainly an Eichler lattice if, for each non-trivial simple QG-module W
occurring in QL, W W is a direct summand of QL.

It is clear that if ZG is an Eichler lattice and L is any lattice, then L ZG
is also an Eichler lattice. We shall need the following more general result; it is
proved by a slight extension of arguments in Chapter 9 of [6].

(1.3) PROPOSITION. If ZG allows cancellation and L is a ZG-lattice, then
L ZG also allows cancellation.

Proof. The lattice A allows cancellation if, and only if, A satisfies the
following condition"

(,) If S is a simple F,G-module with p r(G), then any two epimor-
phisms a, a2: A ---> S have isomorphic kernels.

The "only if" part is easy and only depends on the observation that the
pull-back to (a1, a2) is expressible as A Ker cq and also as A Ker a2; the
"if" part is (9.4) in [6].
We shall verify condition (,) for A L ZG. Choose S and a, a2 as in

(,) and then choose a ZG-lattice C having S as a homomorphic image and
with QC a simple QG-module. This determines QC up to isomorphism.

Suppose first that QC is not a direct summand of QL. Then L is contained
in Ker a and so

Kerai=LPi, wherePi=KeratqZG (i=1,2).

Since ZG allows cancellation, P1 -= P2 by (,)and hence Ker al -= Ker a2.

It remains to consider the case when QC is a summand of QL. Then
QC QC is a summand of QA and our proof of (,) will be complete once
we have established the following result.

(1.4) LEMMA. Let A be a ZG-lattice and a, a2: A --> S be epimorphisms to
a simple FpG-module S with p prime to Ial. If C is a ZG-lattice such that QC is

simple and S is an image of C, assume that QC QC is a summand of QA.
Then there exists an automorphism 0 of A so that a2 Oa (whence Ker a -=
Ker ct2).

Proof Let A be a maximal order containing ZG and set M A (R)z A,
so that QM =-QA. Hence the A-lattice M decomposes as M M M2,

where each of QM1 and QM2 contains a copy of QC and so there are
epimorphisms ,: M S (i 1, 2). Extend a; to an epimorphism #i: M S.
We now claim that there exists an automorphism 0 of M such that 2 0/
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and for all x in M, xO -= x (mod IGIM). To see this, proceed as in the proof
of (9.5) [6], but replace Swan’s map by klGIq, where the integer k is chosen
so that klGI =- 1 (rood p). This ensures that/9 1 (mod IGI). Since IGIM c_ A,
it follows that our A-automorphism/9 of M induces a ZG-automorphism on A
and a2 Oa1, as required.

2. Swan modules

We recall first the definition of Swan modules. If A is a ZG-lattice, then

(2.1) dc,(A(c, ) <_ dt(A) <_ d(A(,) + 1.

The first inequality is obvious, while the second is due to Swan [5]. As in [1],
the lattice A is called a Swan module if the first of these inequalities is an
equality, i.e., if d(A())= d(A). This is not a genus property. Indeed, a
projective module is a Swan module if, and only if, it is free.
We introduce a genus version of the Swan condition. A ZG-lattice A

satisfies condition (S) if all lattices in the genus of A are Swan modules. Swan
discovered [5] a very useful condition for A to satisfy (S). If

0 --) K --) Z(G)G(d) --) A() --) 0

is a minimal free presentation of A() and QK is divisible by (has as a direct
summand) every non-trivial simple QG-module, then A satisfies (S). We shall
use this in (3.5).

(2.2) LEMMA. Let 0 K E A 0 be a minimal free presentation.
Then:

(i) A is a Swan module if, and only if, pr K 0;
(ii) A is not a Swan module if, and only if, pr K 1;
(iii) if ZG allows cancellation, ZG does not divide K.

Proof Let 0 C P A 0 be a minimal projective presentation. So
KP-= CE, whence prK+prP=prE. Now A is a Swan module
precisely when pr P pr E. Also pr E < pr P + 1, by (2.1), so (i) and (ii) are
proved.

For (iii), if K ZG L, then E -= ZG Q and the surjection of E on A
induces one of Q on A. Since ZG allows cancellation, Q is also free, so
de(A) < pr E, which is a contradiction.

Note that some authors have used a different definition of Swan module.
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We shall deduce our main result, Theorem (2.5), from the following lemma.

(2.3) LEMMA. Suppose ZG allows cancellation. Then L is a Swan module if,
and only if, L ZG is a Swan module.

Proof. First note that

dc(L( Z()G)= d(L<)) + 1. (i)

Next we claim that

ao(L cto(L) + 1. (ii)

Clearly (i) and (ii) will establish the lemma. Since d(L ZG) < d(L) + 1,
we need to show d(L ZG) > d(L). Write d d(L) and suppose there
exists a short exact sequence

0 K ZG(a) L ZG 0.

If E LO-1, then we have short exact sequences

OKELO (iii)

and

0 E ZG(a) ZG 0. (iv)

Since ZG allows cancellation, (iv) shows that E ZG(a-l) and then it follows
from (iii) that d(L) < d- 1, a contradiction. This establishes (ii).

(2.4) Remark. (2.3) fails in general. If G is the generalized quaternion
group of order 32, Swan [4] showed that there exists a non-free projective
ZG-module P such that P ZG-= ZG ZG. Moreover, and we need this
later, d(P/PC) 2.

(2.5) THEOREM. Assume that ZG allows cancellation and let A be a ZG-
lattice. Then all minimal free resolutions ofA belong to one genus class.

Proof. In view of (1.2) it will suffice to show that two minimal free
resolutions have the same rank sequences. So let (E, K), (F, L) be minimal
free resolutions of A and write e for the ZG-rank of Ei, f of F. We shall
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prove e f by an induction on i. Clearly e0 equals f0 because each is
do(A). Assume that e f,. for all < n. By Schanuel’s lemma,

Kn+ ZG(/+e.- +’’’) Ln+ ZG(e.+f.-+’")

and, by hypothesis,

fn + en+l + en + fn-1 + "’’"
Hence do((K,,+ 1) (6)) do((Ln+ 1) (o)). But by (2.3) Kn+ is a Swan module
if, and only if, L+ is a Swan module. Consequently

i.e.,

So the induction is complete and hence the proof.

(2.6) To obtain an example of the failure of (2.5) when there is no
hypothesis on ZG, it is obviously sufficient to construct two minimal free
presentations of a lattice where the kernel of one is a Swan module and that of
the other is not. We use the following construction based on Swan’s example
(2.4) above. Let g * be the Z-dual Homz(g, Z) of the augmentation ideal ,
and write A p/pO. Since do(A) 2 we see that A is not a Swan module.
Now * ZG allows cancellation since each simple QG-module other than
Q occurs at least twice in Qg *. QG. Factoring out the G-invariant elements
in the relation P ZG -= ZG ZG gives

So if we add ZG to both sides of (i), we may cancel and obtain

A.ZG-= **ZG. (ii)

Next, take the relation sequence from a minimal free presentation of G [1, p.
7] and dualise it to obtain

0 ---, g * --, ZG (2) --) * --’ 0. (iii)

Adding ZG to the middle and left hand terms and using (ii) gives

and hence

0 A ZG ---’ ZG(3) * 0

O A Q ---, R * ---, 0,
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where Q ZG --- ZG(3). Again we may cancel and so Q --- ZG(2), whence

0 --’ A -’-’ ZG(2) * -’-’ O. (iv)

The sequences (iii) and (iv) are the required free presentations.

3. Comparisons

The ZG-lattice A is called periodic if there exists a positive integer q such
that the functors Extv(A, ) and Extn+qtA,z ) are naturally equivalent for
all n > 1. The minimum such q is the (projective) period of A. It is well
known that the period of Z (assuming it exists) can only be even. However it
should be said that for each positive integer q, there exist G and A so that A
has period q.

Suppose A has period q and (P, C) is a minimal projective resolution of A.
E nBy dimension shifting, Extq(A ) is naturally equivalent to Xtz(Cq, )

and hence Extz(A, ) is naturally equivalent to Extzv(Cq, ). By a result of
Hilton and Rees [3], there exist projective modules Q’, Q" so that Cq Q’ ---A Q", whence, by [2, (4.1)], Cq (which is its own core) belongs to the genus
of A-cores. Let A’ be an A-core and let 0: Cq A’ be an embedding with
cokernel finite and prime to the order of G. Then the push-out to

0 ,Cq, ,eq_ ,Cq_ ,0

A’

is a projective presentation

which is minimal because P’ is in the genus of Pqq-1
Let A A’ Q be a projective excision of A. Then the minimal projective

presentation P0 -’ A breaks up as

O CI Pg A’ O, Po Pg Q.

Re.peating the segment
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yields a periodic minimal projective resolution (P’) of A’. Thus we have
established

(3.1) PROPOSITION. The lattice A has projective period q if, and only if,
there exists a minimal projective resolution of an A-core having period q.
Consequently

X2rq+i(A’) xi(A’) for all i, r > O.

Now suppose (E, K) is a minimal free resolution of the periodic lattice A.
Let (P, C) be a minimal projective resolution contained in (E, K) as direct
summand [2, (3.2)]. Thus Kn -= Cn D is a projective excision. By (2.2),
prD < 1 and by (3.1), rk C, < N for some positive integer N independent of
n. Therefore rk K, < N + IGI and it follows by the Jordan-Zassenhaus theo-
rem that there exist m < n so that K,,-= K. Replacing (E, K) above
dimension n by repeats of the segment from m to n gives a minimal free
resolution that is periodic above m.

(3.2) PROPOSITION. If A is periodic, then there exists a minimal free
resolution that is periodic above some finite dimension.

A more precise result is true. If q is the period of A, then there exists a
minimal free resolution (E, K) of A and some > 1 so that (E) becomes
periodic at dimension iq, with period a multiple of q, and Kiq belongs to the
genus of A’ or of A’ ZG, where A’ is a core of A. If ZG allows cancellation,
the case A’ ZG does not arise. To prove this requires a somewhat different
circle of ideas.
When ZG allows cancellation we can improve (3.2):

(3.3) PROPOSITION. Assume that ZG allows cancellation. If A is periodic
and ZG is not a direct summand of A, then A has a periodic minimal free
resolution.

The hypothesis that ZG does not divide A is necessary, in view of (2.2) (iii),
if we wish A to have a periodic minimal free resolution.

Proof
segment

By (3.2) any minimal free resolution (E, K) of A contains a

(where we have written K K,,). We claim that there exists a minimal free
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segment

where L Kin_ 1. A repeated application of this fact proves the proposition.
To establish the claim we apply the dual form of Schanuel’s lemma to

O K--> EI Kt--’> O, O --> K--> Em_ ---> L ---> O

giving L E K Era_ 1.

If Ez and E have unequal ranks, say pr E < pr E 1, then pr L > pr Kz
and so (by (2.2)) pr K 0 and pr L 1. Therefore pr Era_ 1 + pr Ez and
consequently

L ZG(e) --- Kt ZG ZG(e),

where e pr Et. By (1.3), K ZG allows cancellation and so L -= Kt ZG,
which contradicts the fact that ZG is known not to be a summand of L (by
(2.2) (iii) if m > 1 and by hypothesis if m 1). Hence pr Ez pr Era_ 1. Now

0 --> K Era_ "-> El_ Era_ ---> Kt_ 0

becomes

and gives the projective presentation

0 L E’ Kt_ O,

where E’ E =- Et_ Era- 1" By cancellation E’ is free and pr E’ pr Ez_ 1.

So this projective presentation of Kt_ is a minimal free presentation and our
claim is established.

On the other hand, (3.3) fails if ZG does not allow cancellation. To show
this we need"

(3.4) LEMMA. Let P be a non-free ZG-module such that

P ZG ZG ZG.

Then P Z (2) does not have a periodic minimal free resolution.
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Proof. If P Z(2) has a periodic minimal free resolution, then there exists
a short exact sequence of ZG-lattices

0 -+ P * Z (2) -+ ZG() -+ X -+ 0 (i)

where n dG(X). Note that n > 3. Since we have a short exact sequence

0--+ Z--+ ZG--+ g* --+0,

there exists a short exact sequence

0 --+ P (9 Z () --+ ZG (4) --) ZG * 9 *(2) 0, (ii)

so by the dual of Schanuel’s lemma applied to (i) and (ii),

g,(2) (9 ZG(n+l) --- X ZG().

We now have two cases to consider.

Case 1. n > 3. By cancellation {],(2) () ZG(n-3) =- X, so dG(X) n 1,
a contradiction.

Case .2. n 3. Factoring out the G-invariant elements yields

9"(6) X( 9"(4),

so by cancellation X -- 9 ,(2). Thus d(X) 2, another contradiction, and the
proof is complete.

Now take P to be the projective module in Swan’s example (2.4). If
A P ZO), then by (3.4) we will have the required counterexample to (3.3)
provided we can show that ZG is not a direct summand of A. Suppose on the
contrary that A ZG Y for some ZG-module Y. Then factoring out the
G-invariant elements would yield

P/PV =- A/A 9 * Y/Y. (i)

Also by factoring out the G-invariant elements in P ZG ZG, ZG, we
see that

P/PG 9" 9" * 9", (ii)



3"72 K.W. GRUENBERG AND P.A. LINNELL

and it follows from (i) and (ii) that y/ya= O. Therefore da(P/Pa) 1,
which is not the case.

We turn now to non-periodic lattices and prove:

(3.5) TI-IEOtM. If A is a non-periodic ZG-lattice, then every minimal free
resolution is minimal projective beyond some dimension.

We begin the proof with:

(3.6) LEMMA. The lattice A is non-periodic if, and only if,

lim Xn(a) d- ot.
n o

Proof. When A is periodic, then by (3.1) the function x(A) is bounded.
We now assume that x(A) does not have limit + o as n and shall show
that A is periodic.
Choose a minimal projective resolution (P, C) of A. For each n > 0,

rkC+ x(A) + (-1)rk A 0 (i)

and therefore the function x(A) is bounded below. Since x(A) does not have
+ as limit, there exists > 0 so that xn(A) < for infinitely many n.
Hence there is an integer k < so that xn(A)= k for infinitely many n.
Among these choose an infinite set J so that if s is the smallest element in J,
then n s is even, for all n in J. It follows, using (i), that rk C,/ rk C/
for all n in J. By the Jordan-Zassenhaus theorem there exist rn < n in J so
that C, -= C. We conclude that C is periodic and so, by dimension shifting,
is A.

Proof of (3.5). We mimic an argument of Swan [5, p. 202] to show that, if
(P, C) is a minimal projective resolution of A, then ultimately all C have the
genus property (S). Let us write s x(P)/IGI. For each n > 0, we obtain a
formal equation (cf. (i) in (3.6) above)

QC,,+.- sQG + (-1)QA 0

(which we could regard as an actual equation in the ring of rational characters
of G). Since s ---, + as n ---, by (3.6), we can find n o so that n > n o
implies that C, has the property (S).
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We may now replace the part of our resolution (P) above dimension n o by
a free resolution that is still minimal projective using the following stepwise
construction. If we have done it up to dimension n 1, say

then K, belongs to the genus of C,. Hence K,
presentation

(S) and so any minimal free

is also minimal projective. We shall denote by (E, K) the new minimal
projective resolution of A constructed in this way (so E P, K Cg for
< no).
Suppose (E ’, K ’) is a given minimal free resolution of A. We need to show

(E’) and (E) are ultimately in the same genus. It will suffice to prove K,’ is in
the genus of K, for all n > n o + 1 (use (1.1) and (1.2)).
By [2, (3.2)], (E’, K’) contains a minimal projective resolution as direct

summand and so each g is in the genus of K[-cores. Since QG divides
if m > n 0, so K is faithful and therefore so is every core of K,’,. By Roiter’s
replacement theorem [1, 5.9] we may choose a projective excision of the form

K, Bm ZG(r).

We know Km (S) and Bm is in the genus of Kin, so Bm (S), whence also
Km’ (S). If em dG(Em) then em dG(Km) and so, if e, d(E,), then
comparing the free presentations of KL, Km by Schanuel’s lemma and using
e,,, em + r, yields

(K,+)() = (Kin+ 1)(G),

as was required. This completes the proof of (3.5).

All the results in this paper remain true if Z is replaced by any Dedekind
domain of characteristic 0 in which no prime number dividing the order of G
is invertible and whose field of fractions is a global field.
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