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In memory of Kuo-Tsai Chen

I. Introduction

Given a system of ordinary differential equations, locally with coefficients
which are holomorphic functions on a Riemann surface, one obtains a
representation of the fundamental group. If P is a chosen base point, and if ,/
is a path beginning and ending at P, then there is a matrix m(,/) which
expresses the transformation effected on a basis of solutions at P, by the
process of continuation around ,/. Thus there is a map from the set of systems
of differential equations to the set of representations--a map which has come
to be known as the Riemann-Hilbert correspondence. The purpose of this
paper is to describe some properties of this map which reflect on its essentially
transcendental nature. The main technique is Kuo-Tsai Chen’s expansion of
the solution of a system of differential equations as a sum of iterated integrals
[3], [4]. I never met K-T. Chen, but learned about his work from Richard Hain.
I hope that this paper may make a contribution toward showing the influence
of Chen’s ideas.

In order to illustrate the types of problems to be considered, let us discuss
the case of systems of rank one on a compact Riemann surface X of genus g.
A system of rank one consists of a line bundle L and a connection X7 on L.
The set of these objects forms a group under tensor product, and we will
denote this group by U. It is an algebraic group. There is a map to the
Jacobian of line bundles on X of degree zero, and the kernel is the set of
connections on the trivial bundle:

0--) H(lx) "-+ U--+ Jac(X) --+ 0.

On the other hand, the set of one dimensional representations of the funda-
mental group of X is Hom(rrx, G,,), which is isomorphic to Gs after a choice
of generators 3q,..., 2s" The Riemann-Hilbert correspondence in this case is
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an isomorphism of complex manifolds

" Uan (C*) 2g.

Suppose X is defined over Q c C. Then the algebraic group U is defined over. On the other hand, the group G2s is certainly defined over . The
prototype of the questions considered in 3 is the statement of Theorem 1,
that the only points in U(Q) which are mapped to (,)2s by are the points
of finite order, mapped to points whose coordinates are roots of unity. In 3
we will discuss some c__onjectures about the general question of which local
systems defined over Q are mapped to monodromy representations defined
over Q. Some results will be obtained in the special cases of irreducible
systems of rank 2 on PX- {0,1, o ) (Theorem 2), and unipotent systems of
rank 3 on subsets of P (Theorem 3).

In the rank one case, one part of the map is easy to write down: the map
from H(f]r) to (C*)2s is given by

In 4 we will try to find and describe similar exponential behaviour in the
Riemann-Hilbert correspondence for higher ranks. The results are asymptotic
expansions for the monodromy matrices of certain families of systems of
equations (Corollary 4.3 and Theorem 5).
The discussion in {}3 will make use of some of the principal results of

transcendence theory: the theorem of Gelfond-Schneider, which says that if a,
/3, and a are algebraic, then/3 is rational; its generalization, Baker’s theorem,
which says that if ax,..., an are non-zero algebraic numbers, and log al,...,
log a are determinations of the logarithms which are linearly ind__ependent
over Q, then 1, log al,...,log an are linearly independent over Q; and a
consequence due to Waldschmidt of the criterion of Schneider-Lang. Our
application of Baker’s theorem was inspired by a somewhat similar application
due to Hoffman. The technique which we use in 4 is based on the classical
method of the stationary phase. The general version, although analytic in
nature, is modeled on Laumon’s l-adic interpretation of the Fourier transform.

I would like to thank J. Bernstein, B. Gross, G. Laumon, and I would
particularly like to thank R. Hain for introducing me to Chen’s beautiful
ideas.

2. Differential equations and iterated integrals

Throughout this paper, X will denote a smooth quasiprojective algebraic
curve, and X its smooth projective completion. The field of definition of X
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will always be of characteristic zero, sometimes and sometimes not with a
chosen embedding in C. If X is defined over C, then Xan will denote the
corresponding Riemann surface in the analytic category. From now on, P will
denote a fixed base point in X. The universal cover of Xan will be denoted by
Z, with a chosen base point which will also be denoted P.
A system of algebraic differential equations on X will mean the following

data: A locally free sheaf E on X; and a connection, in other words a first
order algebraic differential operator

V" E E (R) 21x

satisfying Leibniz’s rule V(ae)= d(a)e + aX7(e). Very often, our bundle E
will be a trivial bundle E (.0. (in fact this is always the case after going to a
Zariski open subset). In this case, the exterior derivative d provides one
example of a connection, and any other example can be derived from d by
adding a matrix of holomorphic one forms. In other words, a connection X7 on
E (_9. is an expression of the form

V =d-A

where A is an n x n matrix with coefficients in
If X is not compact, a system (E, X7 ) has regular singularities if for every

s X- X, a trivialization of the bundle E may be chosen over a neighbor-
hood of s such that the connection matrix A(z) has a pole of order < 1 at
z s. The choice of trivialization amounts to choice of an extension E of the
bundle over s, although not every extension will do. See [6].

Suppose E is a system of algebraic differential equations. Suppose 3’ is an
element of rx(X, P). Then we obtain a matrix m(3’) in GI(Ee) as follows. For
any vector e0 in Ee, there is a unique solution of the differential equation
X7(e(z)) 0 with initial conditions e(P) e0, defined along the path 3’. At
the end of the path, the solution is a new vector m(3")eo. Another way of
looking at this is to consider the fundamental solution matrix m(z): Ee E
satisfying X7m(z) 0 and m(P) 1 (it is really a function on the universal
cover Z). Then m(3’) is the value of this solution matrix after being continued
along 3’. The matrices m (3,) combine together to form a representation
of the fundamental group. This map 9 from the set of regular singular systems
of differential equations to the set of representations of the fundamental group
is an equivalence known as the Riemann-Hilbert correspondence. The inverse
construction is provided by Serre’s GAGA theorems--see [6].
One of the features of the study of ordinary differential equations which

should not be overlooked is the fact that a formula for the solution can be
written: the expression is a convergent sum of iterated integrals. Suppose
W1,... Wk are one-forms on X (possibly with coefficients in a matrix algebra)
and 3’: [0, 1] ---, X is a path. Write 3’*W w(t)dt. The iterated integral of
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W1... Wk over , is defined to be

f f’*, o o
wl(tx) w2(t2) Wk( tk) dtk dt2 dtx.

This definition was made by K.-T. Chen in [3], [4]. The importance of iterated
integrals is indicated by the following proposition.

PROPOSITION 2.1 (CHEN). Suppose that V d- A is a connection on a
trivial bundle d)c, where A is an n n matrix of one-forms. Suppose y is a path
in X, with (0) P and y(1) Q. Let re(z) denote the unique solution matrix
with Vm(z) O, and m(P) 1, defined along . Then

The right hand expression is absolutely convergent.

Proof ([3], [4], and see also [8]). This can be seen by differentiating both
sides with respect to Q. The series converges because for the k-th term, the size
of the region of integration 0 < k < < tx < 1 is 1/(k!), whereas the size
of the integrand AA... A is bounded by Ck.

If the A(x) are upper triangular n n matrices with zeros along the
diagonal, then A(z)... A(Zk) 0 for k > n. In this case, the expansion is a
finite sum.

3. Algebraic values of the Riemann-Hilbert Correspondence

The first of the two types of problems connected with the transcendence of
the Riemann-Hilbert correspo__ndence is the following general question:

Suppose X is definedover Q c C. What are all of the differential equations
(E, V ) defined over Q, such that the associated monodromy representations
g(e, v) can be defined over Q?

Before going to consider some special cases of this problem, let us take note
of some situations in which such points automatically arise, and in view of
these situations, formulate a standard conjecture.

Suppose Y X is a family of varieties, which locally over X varies in a
topologically trivial way. Then the fundamental group of X acts on the
cohomology of the fiber Yv, and the resulting representation is the mon-
odromy of a system of differential equations known as the Gauss-Manin
connection. This is a system of equations with regular singularities, and if
Y---, X is defined over Q, then the Gauss-Manin system is defined over Q.
Furthermore, the representation is defined over Q. Any subquotient defined by
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geometric maps can be defined over Q and hence satisfies the conditions of the
general problem. More generally, there may be other subquotients which are
algebraic for both Q structures, although it does not seem to be automatically
the case for every subquotient. In keeping with the usual kinds of conjectures
made about periods, we have the following.

STANDARD CONJECTURE. Any regular singular system of differential equa-
tions which is__defined over Q and such that the monodromy representation can be
defined over Q, comes as a subquotient of a Gauss-Manin system.

It is somewhat disingenuous to call this a conjecture. There is certainly no
more reason to believe it is true than to believe the Hodge conjecture, and
whether or not it is true, it is evidently impossible to prove with any methods
which are now under consideration. However, it is an appropriate motivation
for some easier particular examples, and it leads to some conjectures which
might in some cases be more tractable. These (essentially) weaker conjectures
are based on the philosophy that if a system comes from a Gauss-Manin
system, then there are certain properties it satisfies. A conjecture derived from
the standard conjecture is obtained by asking if any solution to the principle
problem must automatically satisfy some property known for Gauss-Manin
systems. These conjectures are analogous to Deligne’s conjectures about abso-
lute Hodge cycles [7].

CONJECTURE (Absoluteness I). __Suppose i: Q-, C and suppose E is a
regular singular system defined_over Q such that the representation corresponding
to i(E) can be defined over Q. Then for any other embedding o: Q - C, the
representation corresponding to o(E) can be defined over Q.

CONJECTURE (Absoluteness II). Suppose j: Q C and suppose p is a
representation defined over Q such that the system of e__quations with regular
singularities corresponding to j(p) can be defined over Q. Then for any other
embedding z" Q C, the system of equations corresponding to z(p) can be
defined over Q.

CONJECTURE (Variation of Hodge structure). Suppose E is a regular singu-
lar system deft__ned over Q c C such that the corresponding representation can be
defined over Q. Then the representation is a subquotient of the monodromy of a
good variation of mixed Hodge structure on X.

CONJECTURE (Galois-type). Suppose E is a regular singular system defined
over a number field K C such that the corresponding representation O can be
defined over Q. Let be a prime where the coefficients of # are integral, and let

lat denote the completion of t to a representation

x
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Then pt extends to a representation of rg(X (R)rL) for some finite extension
/g.

Remark. These conjectures hold for any geometric subquotient of a
Gauss-Manin system. Admittedly, it is not clear that they hold for any doubly
algebraic subquotient, so they do not follow from the standard conjecture.
Perhaps one should strengthen the standard conjecture by asking for geomet-
ric subquotients. My guess is that there may be counterexamples to this
statement.
The standard conjecture must be considered as a conjecture in transcen-

dence theory and algebraic geometry, because it asks for an actual family of
varieties. The absoluteness and variation of Hodge structure conjectures can
be thought of as conjectures in transcendence theory only. The Galois-type
conjecture is a problem in number theorymwe will not discuss it any further,
but have included it for comparison.
We will treat the following special cases: the standard conjecture for

systems of equations of rank I on any smooth variety; the standard conjecture
for irreducible systems of rank 2 on pl_ (0,1, o }; and the absoluteness (I
and II) and variation of Hodge structure conjectures for unipotent systems of
rank three on PI (s,..., sk ). This last case is the most interestingmit uses
iterated integrals and Baker’s theorem.

Before giving these theorems, let us recall a proof of the monodromy
theorem using transcendence theory.

LEMMA 3.1. If E is a system of equations on X defined over Q, with__regular
singularities, such that the associated monodromy representation has a Q struc-
ture, then the eigenvalues of the monodromy transformations around the points at
infinity are roots of unity.

Proof. This is due to Brieskorn [2]. Let z be a local parameter at a point of
X- X. By choosing an appropriate frame for the bundle, the system of
equations becomes

V =d-AdZ -B(zldzz

with A a constant matrix and B regularat z 0. We can assume that A has
coefficients in Q since v is defined over Q. The monodromy transformation is
conjugate to e 2riA. If the eigenvalues of A are aj then the assumption that the
associated local system has a structure implies that eEriaJ . By the
Gelfond-Schneider theorem, a Q, so the eigenvalues of the monodromy
transformation are roots of unity.

Remark. If one assumes the regularity of the Gauss-Manin connection
then this lemma proves the monodromy theorem, that the eigenvalues of the



374 CARLOS T. SIMPSON

Picard-Lefschetz transformations around the singular fibers of a family of
varieties are roots of unity [6].

THEOREM 1. Suppose X is defined over Q. The standard conjecture holds for
regular singular systems of equations of rank one on X.

Proof. The idea is to show that the monodromy representation is a
character which takes values in the group of roots of unity. Any such character
comes from geometry, by the following construction. The character is a finite
cyclic quotient G of q(X), so it gives an algebraic finite cyclic Galois
covering space f: Y X. The Gauss-Manin system for this map has mon-
odromy representation equal to the regular representation of the cyclic Galois
group G. The component which transforms according to the canonical charac-
ter G C* is isomorphic to the given rank one system.
By Lemma 3.1, the monodromy transformations around the points s S

X- X are roots of unity. Therefore there is a finite abelian cover r: Y ---> X
branched at the singularities, so that vr*(L, V ) has removable singularities.
Note that (L, V ) is a direct summand of r,r*(L, X7 ), so we may assume that
(L, V ) has removable singularities. Choose a trivialization of the line bundle
over an open set U, so that now our system is ((,0u, d- a) where a is a one
form with poles of order < 1 and residues which are integer multiples of 2ri.
The monodromy transformations are exp(fv,a ). Waldschmidt proves that if
these are not all roots of unity, then one of them is transcendental ([13]
Corollary 5.2.7, and remark on pp. 92-93). Note that the basic result from
transcendence theory which is behind Waldschmidt’s theorem is the criterion
of Schneider-Lang.

THEOREM 2. The standard conjecture holds for irreducible regular singular
systems of rank two on p1 (0,1, }.

Proof. The idea behind this proof is that the hypergeometric differential
equation essentially covers all possible systems of rank 2 on P1- (0,1, o )
(there are some unipotent cases left over) whereas Riemann’s integral repre-
sentation formula expresses the hypergeometric system as a direct image of a
rank one system (cf. Messing [15]). Let D denote the divisor of the function
z(z- 1)w(w- 1)(z- w) in C 2, and let X= C2- D. Let ,r: X-, pl_

(0,1, o } be the projection to the z-axis. Consider the rank one system on X
given by

dw
b

dw d ( w z) dz dz
V =d-a---- w 1 c -u-vw-z z z-l"

The monodromy transformations around the divisors (w), (w- 1), (w- z),
(z) and (z 1) are

a e 2ria e 2rib e 2eric e 2riu, /X and t) e 2riv
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respectively. Let E(a, b, c, u, v) R,((gx, X7 ) be the direct image system on
p1 (0,1, oo). Assume that c is not an integer. Then E has rank 2. Note that
the system of differential equations E has regular singularities, and depends
algebraically on the coefficients a, b, c, u, v (the relevant formulas may be
found in [14] for example). On the other hand, the monodromy transforma-
tions may be calculated topologically from the monodromy transformations
for (tPx, X7 ). The fundamental group of p1 (0,1, o ) is free on two genera-
tors, and one calculates that the monodromy representation of E is given by
the two matrices

a,/ 0
and qh

Now suppose (M, V) is an irreducible regular singular rank 2 system of
equations, defined over Q and such that the monodromy is defined over Q.
The monodromy representation is given by two matrices P0 and px with
coefficients in Q. Since the representation is irreducible, there is a matrix
S PGI(2, ) such that SpoS- is upper triangular and SpxS- is lower
triangular. There are less than four choices for S, up to left multiplication by a
diagonal matrix. There are at least one and at most finitely many choices of
this diagonal matrix, and nonzero numbers (a, fl, ,,/, v), such that 0--
SpoS-x and px SpxS-. In particular, a, fl, ,, , v . (Note that ,, 1,
for otherwise the matrices expressed by % and px would have a common
eigenvector, so the representation would be reducible.) There are finitely many
choices of a, b, c, u, c (modulo integers) such that the resulting direct image E
is isomorphic to M. By a specialization argument, this implies that the
a, b, c, u, v are in Q. But now we may apply the Gelfond-Schneider theorem
to conclude that a, b, c, u, c are rational, and a, fl, ,, , v are roots of unity.
Thus the system of equations (COx, V ) came from geometry (from an abelian
covering space of X), so E comes from geometry.

THEOREM 3. Suppose st,..., s, are rational points in pi. The conjectures
of absoluteness I and II, and the conjecture of variation of Hodge structure, hoM
for unipotent regular singular systems ofequations ofrank 3 on pt (st,..., Sn }.

Proof Suppose for now that an embedding Q c C is fixed. Assume that
(V, X7 ) is unipotent and rank(V)= 3. One checks that V =- g0avl_ s and the
connection is given by

dz
X7 =d-w=d-Atz_s

where

ak

0 ak
0 0

0 0

Z S

ck I
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Let 3’x "G be paths in p1 S going out from P to sl,..., sn respectively,
around counterclockwise, and back to P. Let M1,..., M GL(3) be the
monodromy transformations around /x,.--, 3’ respectively. These mon-
odromy transformations may be expressed in terms of iterated integrals:

Mk=l+fvkw+fa2vkww"
The series terminates after these terms. Fortunately, the iterated integrals in
question can be calculated in terms of logarithms"

dz
z sj)( dz

7, Sk)
(2,ri)(log(P- Sk) log(sj- Sk) ), i=j 4: k,

(2ri)(log(sk s:) -log(P- s:)), i= k

(2ri) 2
j k

O, ij,i=/:k.

In each formula, the determinations of the logarithms are related by the paths
joining P to s.

Thus the monodromy matrices become

1 (2ri) ak (2ri)2mk
0 1 (2ri)bk
0 0 1

where mk is defined by

(2’n’i)( mk akbk/2) Ck + E(ab- ajbk)(log(P sj) log(sk
J

We first isolate the degenerate case of depth 2, in other words when the
system of equations has a filtration of length two with trivial quotients. In this
case either ax a 0 or b bn 0. If the system of equa-
tions is defined over Q, then after conjugating by the matrices diag(1,1, 2ri)
or diag(1,2cri, 2cri) respectively, the monodromy is always defined over Q.
This proves the conjecture absoluteness I; conversely if the monodro_my is
defined over Q then the system of equations can be defined over Q, for
absoluteness II. From now on, we will assume that neither ak nor bk all
vanish.
The conditions are that ak_bk, and ck are in Q, and that we may conjugate
Mk so that the entries are in Q. It is easy to see that the matrix of conjugation
must be upper triangular. Furthermore, the diagonal of R must be



THE RIEMANN-HILBERT CORRESPONDENCE 377

1, 2ri, (2ri)2 up to algebraic multiples which we can ignore. After conjugating
by diag(1, 2ri, (2ri)2), the monodromy matrices become

1 ak mk

0 1 bk
0 0 1

Now R is upper triangular with l’s on the diagonal, say

1 v * )0 1 -u
0 0 1

Conjugating by R has the effect of changing M to

1 ak mk + uak + obk
0 1 bk
0 0 1

The conditions of the pr__oblem are that we can choose u and v so that
mk + Uak + Vbk Pk Q" A similar analysis works the other way, going
from the monodromy representation to the local system. Thus we have the
following criteria (assuming that neither ak nor bk all vanish):

(1) The system of equati__ons determined by (a k, bk, Ck) has monodromy
representation defined over Q if and only if there exist u, v C such that

ck + E(akbj
J

ajbk)(log(P sj) -log(sk sj)) + uak + vbk 2riO.

(2) The monodromy repre_sentation determined by (ak, bk, Pk) comes from
a local system defined over Q if and only if there exist u, o C such that

(2ri)(Pk- akbk/2) E(akbj aibk)(log(P- sj) -log(sk
J

uak vbk e Q.

Absoluteness I. There is a universal Q vector space with inclusion
Q .’ and map log: Q -o satisfying log(ab) log(a) + log(b). As a
consequence of Baker’s theorem we get the following statement: for any
embedding o: Q -o C, the resulting map also denoted

o" .’--, C/2rv/- 1Q

is injective. Now we may prove absoluteness I. For a given embedding
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o" Q C, the representation corresponding to local system given by
(ak, bk, Ck) has a Q-structure if and only if there exist u, v C such that

o(c,) + Eo(a,bj- ajb,)(logo(P- sj) logo(s,
J

+ uo(ak) + vO(bk) 2riQ

for all k. We may assume that u, v o(Ae) c C/2r/- 1 Q. Then because of
the injectivity in the above statement, the representation has a Q-structure if
and only if

Ck + E(akbj
J

abk)(log(P- s) -log(sk sj ) ) + akU + bkV O

in 0o’, for all k. This condition is dearly independent of the embedding o.
Absoluteness H: In this case, the complex numbers

(log(P sj) log(sk sj))

are fixed. Let .a ^ denote the Q vector space spanned by these numbers and
2ri. Baker’s theorem says that

Aa ^(R) Q C/Q

is injective. Suppose__that a representation p with coefficients in Q is given by
(ak, bk, Pk)" If : Q-> C is an embedding, the condition that (p) corre-
sponds to a system of equations defined over Q is that there exist u, v such
that

(2rri).( pk akbk/2) E’(akb
J

--’(ak)u--,(bk)vQ.

abk)(log(P- sj) -log(sk

This condition is equivalent to the condition that there exist u, v . ^(R) Q
such that

(2ri)(Pk akbk/2) E (akbj ajbk)(log( P sj) log(sk
J

akU-- bkO 0

in ’ ^(R) Q. Again this is independent of the choice of z.

Variation of Hodge structure. From the description of good unipotent
variations of mixed Hodge structure on subsets of p1 given in [9], we can



THE RIEMANN-HILBERT CORRESPONDENCE 379

extract the following statement. A unipotent system of equations on pl_

{ sl,..., sk }, such that the monodromy is defined over Q, comes from a good
variation of mixed Hodge structure if the system of equations can be put in
the form

dz dz
V d- A1 A,,

Z S Z Sn

where the matrices Ak have zeros everywhere except immediately above the
diagonal.

In our case, we have a representation defined over Q. By adding together all
of the Galois conjugates, we obtain a representation defined over Q. By
absoluteness II, each of these conjugates corresponds to a system of equations
(ak, bk, Ck) defined over Q. This implies in particular that

c aiu + bit),

due to the part of Baker’s theorem which says that 1 is linearly independent
from the logarithms. Thus after conjugating by the upper triangular matrix
with u and t) immediately off the diagonal, we get

ak

0 ak 0
0 0 bk
0 0 0

This holds for each system of equations corresponding to a conjugate of the
representation, so the direct sum of these systems has the required form.

In the degenerate case of depth 2, note that any such system can be
expressed as a subquotient of a direct sum of two systems of rank 2. Each of
these rank 2 systems automatically satisfies the criterion to come from a
variation of mixed Hodge structure. However, the subquotient of the direct
sum might not be compatible with the Hodge and weight filtrations, so it
might not itself carry a variation of mixed Hodge structure.

This completes the proof of Theorem 3.

Remark. The proof of Theorem 3 shows that there are restrictions placed
on the possibilities for unipotent systems of rank 3 on subsets of P which
satisfy the conditions of our problem. The fact that a Gauss-Manin system
always satisfies those conditions means that there are restrictions on which
systems may arise from Gauss-Manin systems. For example, a careful analysis
of the case of four singularities shows the following.

PROPOSITION 3.2. If ( V, V ) is a unipotent rank 3 system on p1 with regular
singularities at O, 1, , and oo, satisfying the conditions of our general problem,
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then either
(a) (V, X7 ) is abelian,
(b) one of the four singularities is removable, or
(c) .ra(1 ,)b 1 for some integers a, b.

COROLLARY 3.3. If is a transcendental parameter, then there are no
nonabelian unipotent rank 3 systems with nonremovable regular singularities at
0, 1, -, and c, which come from geometry.

4. Asymptotic behaviour of the monodromy

As described in the introduction, in the case of systems of rank one on a
compact Riemann surface, the monodromy grew exponentially along certain
algebraic paths of systems. For systems of higher ranks, we will consider some
simple paths of systems which go to infinity. Namely, we look at linear paths
of connections on a trivial bundle over a compact Riemann surface X. These
are connections of the form

V =d-tA-B

where A and B are fixed matrices of one forms, and is a parameter which
will tend to infinity (t is distinct from the variable of differentiation). Make
the further simplifying assumption that A is a diagonal matrix, and then
various types of matrices B will be treated. In all cases, we will assume that B
has zeros along the diagonal.
The basic idea is to obtain an expression for the solution using iterated

integrals, and then to investigate the asymptotic behaviour of the terms in the
expression. The expansion of Proposition 2.1 in its basic form is not useful,
because the terms will have higher and higher powers of t. Thus we first
transform the equation. Let Et(z) be a diagonal matrix such that d(Et) tAEt.

If the diagonal entries of A are one forms ax,..., a, let

g,(z) a i.

Here gi and hence E diag(...,etg,...) are functions of points z in the
universal cover of X, which we will denote by Z. Let mt(z ) be the fundamen-
tal solution matrix with mt(P ) 1. Let ht(2 ) ETl(z)mt(z). We have

dh, -tZE2Xm, + ETI(tA + B)m, E;-1BEth,
(note that A and E commute). Therefore we can express h t(Q) as a sum of
iterated integrals of B e‘‘ E;-1BEr Then multiply by Et(Q) to obtain the
expression

mr(Q) Et(Q) + fvEt(Q)Be, + +....
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Here 3’ is a path from P to Q in the universal cover Z. We will investigate the
asymptotic behaviour of this series term by term.

Write the entries of the matrix B as bii. Then the entries of B e‘ are
bijet(gJ -gi). The entries of the kth term in the above expansion are iterated
integrals of the form

fa,vbi,,i,,_,( Zk) bii, ( z2) bi,io(z) et(g’,,(Q)-g’,,(’,)+ +S,o(’)-g"o(e)).

Here z denotes 3’(t). The term written here contributes to the (ik, io) entry of
the matrix mt(Q).
We will show that any finite sum of terms such as these has an asymptotic

expansion. At the end of the section, we will state (without proof) a theorem to
the effect that in some cases, our infinite sum of integrals has an asymptotic
expansion, obtained formally by adding up the expansions for the terms.
The iterated integrals can be interpreted as follows. Inside the space Zk are

the subsets

Sa= ((z,...,Zk)" za=za+}.

Where a runs from 0 to k. The convention that z0 P and Zk+ Q will be
maintained throughout. Let S LISa. It is a complex subvariety of Zk. The
path y from P to Q leads to a singular k-simplex Ak3,. It is the set of points of
the form

(3"(q),3"(t2),...,3’(tk)) for0< t < 2 < < k< 1.

The boundary of Ak3, is contained in S, so this gives a relative homology class
h k Hk(Zk, S). The product

fl b,,,,_,( zk) b,x,o(z)

is a holomorphic k-form on Zk. Finally, the function

g( z,..., Zk) gi,,(Q) gi,(Zk) + + gio(z) gio(P)

is a holomorphic function on Zk. As such, for any we can multiply to get
another holomorphic k-form fie ts on Zk. The integral considered previously
can now be written as

etg.

This integral does not depend on the choice of representative for the relative
homology class A k. The reason for this is that Zk has complex dimension k, so
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any holomorphic k-form is automatically closed; and S has complex dimen-
sion k- 1, so the restriction of a holomorphic k-form to S must vanish
identically.
We will formalize the classical fact, known as the lemma of the stationary

phase, that integrals of the form file tg have asymptotic expansions as oo.
Since we intend to add together several integrals of this form, there is the
possibility that the asymptotic expressions would cancel out. In this case we
want to be able to get an expansion with a smaller exponent. For this reason,
we approach the lemma of the stationary phase via the Laplace transform.

Formally the Laplace transform of a function m(t) is the integral

f() m(t)e-;t dt.

The integration is taken along a direction in which the integrand is rapidly
decreasing. Such a direction exists for large values of ’ if m has exponential
order, in other words if it satisfies an estimate Im(t)l < Ce Rltl. In this case
f(’) is defined and holomorphic for I1 > R. Furthermore f is holomorphic
and vanishes at c. Conversely any such function f(’) determines a function
m(t) by the integral formula

1 f t d’m(t) =- ()e

where the path of integration is a large circle. These constructions are inverses
of each other.

If the function m is given as an integral

m( t) fbe*’

over a space with measure b and a bounded function g, then m has
exponential order and the Laplace transform is given by the integral

b
f(’)

Fix R so that f(’) is defined for g’l > R. Say that f has an extension with
locally finite branching if for each M there exists a finite subset Svt c C such
that for any path 3’ of length less than or equal to M in C- SM, such that
I(0)1 >- R, f can be analytically continued as a holomorphic function along a
neighborhood of 3’.
Given that this is the case, suppose 3’ is a path of length < M- 2e such

that 3’(1) s St and 3’(t) is in C- Sm for 0 < < 1. Suppose that 3’
approaches s along a ray. Let A A(s, e) be the disc of radius e about s, and
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let A* be the punctured disc. Then for any point in the universal cover of A*
there is a path of length < M extending wlt0,x- and ending at that point.
Thus f can be analytically continued to any point on the universal cover of
A*. In other words, f can be continued to a multivalued function on A*.

Say that a multivalued function f(’) on the punctured disc 0 < I’1 < e is
regular singular if it has a convergent power series expansion

o0 K

f( ) E E CjkJ/V(log ) k
j,=J k--O

Let T be the monodromy operator on multivalued functions: Tf() f(e2").

LEMMA 4.1. f() is regular singular if and only if it has polynomial growth
along ecery ray, and there exist N and K such that (Tiv- I)r+lf() is single
valued. The N and K in the expansion are the same as these.

Proofi If (T- I)f 0 then f is single valued, and hence meromorphic by
the condition of polynomial growth. Suppose for example (T- I):f= O.
Then hl (T- I)f/2ri is meromorphic. Set

f(’) (log’)hx.

Then (T- I)fx (2ri)h (T- I)f, so h 0 f-f1 is meromorphic. Thus

f h 0 + hi log"

gives the required expansion. Proceed like this in general, replacing " by .x/t
if necessary.

Say that our function f has locally finite regular singularities if it has an
extension with locally finite branching, and if the multivalued functions on
punctured discs around all singular points are regular singular. We remark
that the sum or product of two functions with locally finite regular singulari-
ties again has locally finite regular singularities.
There is one comment which should be made as a clarification. The

condition of locally finite regular singularities does not preclude the possibility
that the set of all singularities of the function is dense for example. In that
case it would imply that to get to most of the singularities, the analytic
continuations must be taken over long paths winding back and forth.
The following lemma is the lemma of stationary phase for the inverse

Laplace transform.

LEMMA 4.2. Suppose that a function f() has an extension with locally finite
regular singularities. Let re(t) be the inverse Laplace transform, and suppose m



384 CARLOS T. SIMPSON

is not identically zero. Then the function m(t) has a nonzero asymptotic
expansion for positive real c.

Proof Recall that m(t) is given as a path integral of f()e’. Deform the
path of integration until it is a sum of paths which go around critical points
with real part and back in the negative real direction from those points, and
paths which are supported on points of real part strictly less than . The lower
paths will not contribute to the expansion. Integrate by parts to remove any
poles of f at " , (in our case the function will already be bounded on every
sector). The contribution from a path which goes around a singular point h is
equal to

2,ri (T- I)f()e’ a.
This has an asymptotic expansion of the form e tx times a series in -1/v and
log t, given by the regular expansion for (T- I)f at s. If the expansion is
zero, then (T- I)f 0, so f can be analytically continued across s. If all of
the singular points vanish, then f is entire, so m 0.

THEOREM 4. The Laplace transform of the iterated integral

fakvbik,k_l ( Zk) bi2il ( z2) b,io( zl) e’(S,k(t2)-s,k(zk)+ + g’0(z)- g’0(e)).

has an extension with locally finite regular singularities.

COROLLARY 4.3. Suppose A is a diagonal matrix of one forms with distinct
entries, and B is an upper triangular matrix of one forms with zeros on the
diagonal. Let mr(z) denote the fundamental solution matrix beginning at P, for
the system X7 d- tA B, Then for any point Q, the matrix mr(Q) has a
nonzero asymptotic expansion in t:

m o K

m (t) E ex’t E E cijkt-J/V(lg t) k

i--1 j--J k=0

Proof. Since B is upper triangular, mr(Q) is a finite sum of integrals
treated in Theorem 4. Therefore the Laplace transform of mt(Q) has locally
finite regular singularities. Now apply Lemma 4.2.

Proof of Theorem 4. Keep the notation

fl bii_,( Zk) bi,_,( zz) bi,io(Zl)
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and

g g’,(Q) g’,(Zk) + + g’o(Zt) gio( P)"

Let

f() fa g
be the Laplace transform of the integral in question. The basic idea is to use
the method of steepest descent to move the cycle of integration around,
making it possible to analytically continue f. Suppose that the support of A
does not meet the fiber Yu g-t(u). Then the integral f(’) is well defined in a
neighborhood of "--u. Suppose 3’ is a path with 3’(0)= u (with no self
intersections). A is a class in the relative homology Hk(Y Yu, S Su). If A
is homologous to a class A’ in

Hk(Y- g-X(g),S- g-(?)),
then

/f(’) ,g_.

can be analytically continued along 3’. Intuitively, f can be analytically
continued along any path 3’ such that Y is smooth over 3’. We really only need
smoothness in some compact subset, whose size depends on how far we are
moving the chains, in other words, on the length of 3’. In this compact subset,
there are only finitely many components of critical points of g, so if the path 3’
misses the finitely many images of these critical points, then we will be able to
analytically continue along 3’. We will make this argument more precise.

Let Y Zk, and for a subset of indices I, let YI I,-Ja ISot These are the
smooth closed strata for a stratification of (Y, S). In order to deal with relative
homology classes, form the disjoint unions of the various closed strata:

Y =HY,, llY .

Let Ca, b(Y) denote the group of a-chains on Yb. There is a map e" Ca, b -Ca, b+ obtained by considering the various inclusions Yz c Yj and introducing
appropriate minus signs (in the usual way of getting a boundary operator from
a simplicial object). This has the properties that e2= 0 and e + e3 0.
Notice that with the maps 0 and e, we get a double complex C.,. which
computes the relative homology. Given a chain A which is a relative cycle for
(Y, S), we can extend it to an element A of the double complex, so that
(a+ e)A O.
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For each stratum Yx, choose a complex vector field F lifting the vector field
9/Oz on C, in other words dg.(F)= O/Oz. The vector field F will have
singularities at the critical points of g. However, we may choose a singular
metric h on Y so that the norm of the vector field F with respect to the metric
h is less than 1. Furthermore, we may assume that h is a complete metric. To
see this, note that Yx covers a compact space (a product of copies of our
Riemann surface), and the differential dg is pulled back from the compact
space. We may choose the vector fields and the metric on the compact space,
and pull back.

Let Fm c Y denote the set of points at distance < m from P (using the
metric h), and let F,C.,. denote the subgroup of chains supported on the set
F,. Let S denote the set of images of critical points of g on Y t Fm.
The vector field F can now be used to move things around. Fix a stratum Yt.

Suppose r(z, t) is a function from C [0,1] to C, such that r(z, 0)= z.
Suppose f019 r/Otl < for all z. Suppose r fixes a neighborhood of any point
z S,+,, and furthermore that r(z, t) is not in such a neighborhood if z is
not. Then we may lift r to a flow R(y, t) from F,Yz [0,1] to F,+Yz, using
the vector fields F: set R(y, O) y and

3R/c3t(y, t) ReOr/Ot( g( y), t) V( R( y, t))

(taking the real part of the complex vector field on the right gives a real vector
field as on the left). This differential equation has a solution due to the
completeness of the metric h. Furthermore, the condition that the norm of F
is < 1 means that the distance from y to R(y, 1) is less than f Or/Ot Note
that this also works if r is defined on a subset of C. The lifted flow R is
defined on the inverse image of this subset.

Suppose , is a path of length < x, without self intersection. If , does not
meet S,,+, then we may choose a map r: (C u) [0,1] C u such that
r(z, 1) C- -/. Lift to a map R on every stratum. Set M(c)= R(c, 1) and
K(c) R(c, [0,1]); these are a chain map and a homotopy

M" F,.Ca, b(Y- g-l(u)) - F,,,+Ca, b(Y- g-l(),)),
K" FmC,b(Y g-l(u)) F,.+C+I,b(Y g-l(u))

such that

K: F.Ca, b(Y- g-l(y)) Fm+Ca+l,b(y_ g-l(T))

and such that OK + KO M 1. The existence of a constant r and the chain
homotopy K follows from the estimate for the gradient flows of gl Yr

Set

L K + KeK + KeKeK +
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and _
(Ke)’M(eK) .

i,j>O

One checks that (O + e)L + L(O + e) N- 1. Note that the series for L
and N have at most k terms. Thus if 3’ misses S,,,+k,, then

N" F,,,Ca, b(Y- g-l(u)) F,,,+kC,,b(Y-- g-I(y))

and

L" FmCa, b(Y- g-X(u)) -* Fm+ko,Ca+X,b(Y-- g-X(U)).

Now extend the cycle of integration A to an element A with (O + e)A 0,
and let A’ be the b 0 component of N(A). The equation for the operators L
and N shows that A’ is homologous to A in relative homology. But A’ does not
meet g-X(3, ). Thus we have constructed a finite set Sm+kg such that if / is a
path of length _< r, then f(’) can be analytically continued along /. The
restriction that V does not intersect itself may be removed by doing this
process several times in a row, and noting that the increase in the distance
from P is linear in the length of V. Thus f has an extension with locally finite
branching.
Now we have to prove that f has regular singularities. Choose one singular

point, with a path to it. Apply the criterion of Lemma 4.1. We have to show
that f(’) has polynomial growth along any ray, and that (TN I)rf O.
To show polynomial growth, we must show that when the cycle of integra-

tion is moved toward the fiber over the critical point, its size grows at most
polynomially. We may assume that we have analytically continued to the
neighborhood of a point u near the critical point s, and that the cycle of
integration is contained in some F,, (with m independent of u). Let U be a
disc around s containing u. Let

r(z,t) =s+ (1-t)z forz Uandt [0,1-e].

Follow the same procedure as before, choosing a lifting R(y, t) on each
stratum, and then combining to get a homotopy of relative cycles. This will
allow us to analytically continue from u to eu.

Notice that a stratum Y is a product Z", and the function g has the form

g(z) E gJd,-,(z’)’ where gJd,-1 g2,
i--O

(The indices j are those corresponding to the ends of strings of coordinates
which are set equal to get the stratum Yr) In particular, we may write



388 CARLOS T. SIMPSON

YI-" Za X Zb where the function g does not depend on the factors Zb, and
has isolated singularities considered as a function on Za. We may ignore the
factors Zb in choosing R. Near an isolated singularity in Za, the situation is
the same as the usual algebraic case. Thus, in a compact set such as F we
may resolve singularities, and, by making the choice of U small enough, use
Clemens’ method [5] to construct a retraction from g-l(U) to the singular
fiber g- l(s) covering the retraction r(z, t) from U to s. The retraction R(x, t)
will be continuous up to and including 1, so in particular the sizes of the
cycles obtained by flowing with R are bounded. Thus the functions f(’) are in
fact bounded in any sector.

Finally we must show that (Tv I)rf 0. We will do this by interpreting
the operation T as a monodromy transformation on cohomology classes, and
then will invoke the well known result (first proved by Landman) that the
monodromy is quasi-unipotent. This result from algebraic geometry applies
here because we may reduce to looking at isolated singularities as remarked
above. Note that strictly speaking, the monodromy transformation does not
make sense, because there can be singular points in fibers arbitrarily near to
the fiber over s. However, these other singularities are far away in Y, and we
may restrict our attention to a compact subset of the form F,,,+ without
further mention.

Suppose we have analytically continued to a neighborhood of a point u near
the singularity, with cycle of integration A. The process of continuing once
around and back to u yields a new cycle of integration A’ and a chain A such
that 0A A’ A in relative homology. But notice that

(T- I)f() fA fl
,-ag-

for " in a small neighborhood of u. The map /xdg: k-1fg/c fkr is an
isomorphism outside of the critical points of g. Thus we may write b c/x dg

n--1with a section of fz/D, possibly meromorphic at the critical points. Now the
formula

(T- I)f() fo,4c dgg-)
implies by the calculus of residues that

(T- I)f() f C
Ag

where Ar A n g-l(.). This is a cycle for almost all " (by Sard’s theorem)
and all of these cycles are homologous in the relative pair (Y, S). The analytic
continuation of (T I)f() is obtained by moving the cycle At. In particular,
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if (T1 I)KA 0 (here, T denotes the monodromy transformation of mov-
ing the cycle A once around the singular fiber), then (Tiv 1)K(T- 1)f()

0 and we will be done. Thus we must show that the monodromy is
quasi-unipotent. There is a spectral sequence beginning at the homology of the
strata and converging to the relative homology--it is the spectral sequence of
the double complex considered above. The monodromy transformation acts on
this spectral sequence. Thus it suffices to show the quasi-unipotence at the
beginning of the spectral sequence, in other words on the strata. Once again,
on a stratum YI, we may assume that g has isolated singularities. Resolve
singularities, and use any one of several proofs of the monodromy theorem
[11], [5] to conclude that the monodromy transformation is quasi-unipotent.
This completes the proof of the theorem.

Example. Consider the case of matrices

A=( aO -aO ) and B=( O0 ob)
where a and b are one forms on X. Let g(z) f,a. Then the monodromy
matrix is

m,(Q)
etg(Q) e-tg(Q)fQb(z) e 2tg(z)

0 e -tg(Q)

The asymptotic expansion for the integral fpQbe 2tg has a nice geometric
interpretation. We can map X into its Jacobian variety, and then take the
universal cover of the Jacobian (which is a vector space). Let Z denote the
resulting covering space of X. It is a Riemann surface of infinite genus,
contained in the vector space. This one form a gives a linear function g on the
universal cover of the Jacobian, so g(z) is naturally defined on Z. Thus we
don’t have to go all the way to the universal cover of X, but now the path 3’
from P to Q must be specified. In order to get the asymptotic expansion for
positive real t, look at the real part R(g). Let be the smallest real number
such that 3’ is homotopic to a path contained in Rg < . Either 0,

9g(Q), or else Rg(C) where C is a zero of a. In the third case, 3’ is
homotopic to a path which goes over the "mountain pass" at C (if everything
is generic, there will be only one critical point at level ). The asymptotic
expansion is the expansion usually given by the one variable version of the
method of stationary phase. The exponent is e t(g(c)-g(Q)).

Question. What is the geometric picture for the asymptotic expansion of
an iterated integral?
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Again, we may consider the functions gi as linear functions on the universal
cover of the Jacobian, but it does not seem to be sufficient to move the path of
the iterated integral. One must move the cycle of integration to one which is
no longer a simplex coming from a path.

Non unipotent systems. Finally we will state a convergence result for
adding up the expansions even if the series does not terminate.

THEOREM 5. Suppose A is a diagonal matrix of one forms with distinct
entries, and suppose B is a matrix of one forms with zeros along the diagonal.
Let mt(z) be the fundamental solution matrix for the system V d tA B.
Denote the various terms in our expansion for mr(Q) by mkt(Q ). Then sum of the
asymptotic expansions for mkt(Q) converges formally to an asymptotic expres-
sion, and this expression is an asymptotic expansion form mt(Q) of the form

oo K(j)

m,(Q) E ex’‘ E E Cijkt-J/V(log ) k

j--J k--0

The constants Cijk are polynomials in B H(ftx)"2 and they do not all vanish
as polynomials. Thus for generic values of B, a nonzero expansion is obtained.

The proof will be presented elsewhere. One proves in fact that the Laplace
transforms of the terms mtk converge outside a locally finite set of singularities,
and that the local expressions for the Laplace transform converge to local
asymptotic expressions for the sum. The hard part is to show that relative
homology classes such as A

k can be moved around, with bounds on the sizes
which don’t depend too badly on k. One feature to notice is that there is no
bound, valid for all j, on the powers of logarithms which occur in the series.
This seems to be unavoidable.
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