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ANGULAR LIMITS AND INFINITE ASYMPTOTIC VALUES
OF ANALYTIC FUNCTIONS OF SLOW GROWTH

BY

ROBERT D. BERMAN

1. Introduction

Let A and C denote the unit disk {Izl < 1} and the unit circle {Izl 1} in
the complex plane . A continuous mapping F :[0, 1)---> A is called a
boundary path provided limt__, llI’(t)l 1, and it is said to end at C if
limt--, F(t) ’. If f is analytic on A and w is a point in the extended plane
u {}, then f is said to have an asymptotic limit (of w) at when there
exists a boundary path F ending at " such that lim t_, f F(t) exists (and is
equal to w). In case F(t) t" for [0, 1), the function f is said to have a
radial limit at and the value w is denoted by f*(sr). When f has the limit
f*(sr) as z approaches " in every Stolz angle

{zA’llm(z)l <lz-l}, a(0,1),

the function f is said to have an angular (or Fatou) limit at . We denote by
A(f, w), R(f, w), and F(f, w) the set of all points " in C where f has an
asymptotic, radial, and angular limit value of w at ’, respectively. The set of
all points sr where f has an asymptotic, radial, and angular limit (for any
value w (u {}) is denoted by A(f), R(f), and F(f), respectively. These
concepts and notation are defined similarly for harmonic functions with
values w occurring in the extended real line u + }.

Let ’ denote the class of nonconstant bounded analytic functions on A of
modulus no greater than 1. For every Borel subset E of C, let ]EI denote the
linear (Lebesgue) measure of E. Classical results for f (see [4; Chapter
2]) assert that ]R(f)] 2- (the Fatou radial-limit theorem) and that for
each w A {Izl _< 1}, we have A(f, w) R(f, w) F(f, w) (Lindel6f’s
theorem) and IR(f, w)l 0 (the Riesz uniqueness theorem). The following
local versions of these theorems are derived using a conformal mapping. If J
is an arc of C and f a nonconstant analytic function on A which is bounded
near J, then

IR(f) c JI I11
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and for each w , we have

A(f,w) nJ=R(f,w) nJ=F(f,w) nJ and IR(f,w) Jl =0.

A much wider class of functions, the MacLane class cce’, was introduced
and studied by G.R. MacLane in [10]. By definition [10; p. 8], the class
consists of all nonconstant analytic functions f on A for which A(f) is dense
in C. MacLane obtained a variety of results concerning the boundary
behavior of the functions in this class. The following is an analogue in terms
of asymptotic limits of the local version of the Fatou radial-limit theorem.

THEOREM A [10; Theorem 11, p. 25].
of C. If

Let f " and let J be an open arc

then

IA(f) JI > 0.

The inequality IA(f) n II < III for every open subarc I of J is possible as
[5; Theorem 3, p. 9] shows. In a surprising result recently obtained by Barth,
Rippon, and Sons [1], the conclusion of Theorem A was significantly
strengthened.

THEOREM B [1; Theorem 1]. Iff " and J is an open arc of C such that

then IF(f) JI > 0.

A(f, oo) n]=,

MacLane [10; pp. 35-37] gave a sufficient condition for a nonconstant
analytic function f to be in the class in terms of the growth of its
maximum modulus

M(f; r) max{lf(rr)l: e C}, r [0,1).

An improvement of this condition by Hornblower [8] is

(1) fo log + log+ M( f r) dr < +oo.

COROLLARY B. Iff is a nonconstant analytic function on A that satisfies (1)
and J is an open arc of C, then A(f, oo) J f implies IF(f) n JI > O.
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Let v:[O, 1) (1, +oo) be an increasing, continuous function with

lim u(r) +o.
rl

We call any such function u an admissible growth function. Define to be
the class of nonconstant analytic functions on A for which M(f; r) < u(r) for
all r [0, 1). Clearly, is the limiting class for the classes as u grows
more slowly. From results just mentioned, A, c a’ for sufficiently slowly
growing u. Therefore, it is natural to ask whether improvements of theorems
for the class s" are possible for a’ when u grows more slowly. MacLane [9]
proved a result which demonstrated that the assumption on A(f, oo)f3 J in
Corollary B cannot be omitted when a’ is replaced by any class

THEOREM C. For every admissible growth function u, there exists a function
f s’ such that R(f) .

However, Barth and Rippon [2] have proved the following result.

THEOREM D.
that

Suppose that f is a nonconstant analytic function on A such

logM(f;r) =o[1/(1-r)] asr- 1.

IfJ is an open arc such that A(f, o) q J is countable, then IF(f) N J! > 0.

Theorem 1 below fills in the picture for admissible v satisfying

logv(r) =o[1/(1-r)] asr 1,

and yields Theorem D as a corollary. We shall call a function o an admissible
generating function provided it is an increasing, continuous, concave-down-
ward function on [0, 2r] vanishing at 0 with o’(0) +o. We associate with
such a function o the admissible growth function

v(r) exp[o(1 r)/(1 r)], r [0, 1),

and the Hausdorff measure H,o. Recall that for each Borel subset E of C, we
have

H,o(E ) lim {inf to(IJI)),t-*O

where the infimum is taken over all covers ’ of E by open arcs J for which
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IJI-< t for every J . See [11] for background concerning Hausdorff
measures.

THEOREM 1. Let to be an admissible generating function and v voo. If
f and J is an open arc such that E A(f, oo) N J has Hausdorff measure
H,o(E) O, then IF(f) c JI > 0.

Theorem D follows from Theorem 1 since for every prescribed admissible
growth function u with logu(r)= o[1/(1- r)] as r- 1, there exists an
admissible generating function

to(r) >rlogv(1-r) forr (0,1].

In fact, we can take to to be the sum of any fixed admissible generating
function with the infimum over all increasing, concave-downward functions
on [0,27r] that are larger than r log u(1 -r) on (0, 1]. In connection with
Theorem 1, we also note that for any prescribed admissible growth function
u, there exists an admissible generating function to such that uo < u (see
Proposition 3 of 2).
We do not know if Theorem 1 is sharp; for example, whether or not the

weaker hypothesis Ho,(E) < + leads to the same conclusion. A more basic
question (raised specifically by K. Barth in a written communication to the
author) is whether there exist analytic functions of arbitrarily slow growth
such that IA(f)l- 0. Our second theorem answers this question in the
affirmative.

THEOREM 2. For every admissible growth function v, there exists a function
f for which IA(f)l 0.

The remainder of this paper is organized as follows. In 2 we establish
notation, state several standard results, and prove some lemmas and proposi-
tions. The proofs of Theorems 1 and 2 are given in 3. Throughout the paper,
we shall use the convention that c is a positive constant, independent of the
relevant parameters, that may vary in its value within a sequence of inequali-
ties.

2. Preliminary results

Corresponding to each finite, positive Borel measure/ on C, we denote by
P[dl] the Poisson integral of/z. Recall that

(2) P[dp](z)
I" zl 2

d/z(sr)’ z A,
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is a positive harmonic function and the integrand in (2) is called the Poisson
kernel.
For each arc J in C of length IJI < -/2, let C(J) denote the intersection

with A of the circle passing through the endpoints of J having the following
property: The tangents to the circles at each endpoint of J form an angle of
7r4 relative to the region R which is the intersection of the two disks
determined by the circles. It is elementary to check that

min{Izl z C( J)} > 1 I11,

a fact that will be used later.
We prove two propositions--the first provides an auxiliary function used in

the proof of Theorem 1, and the second an auxiliary function used in the
proof of Theorem 2. We start with a lemma which can be obtained by using
an easy geometric estimate of the Poisson kernel on each half of the arc
C().

LEMMA 1. Let J be an open arc of C with IJI < 7r/2. Let Ix be the measure
on C consisting of the sum of two positive point masses each of magnitude M
located at the endpoints of J. Then

cMP[dl](z) >
1 Izl’ z c c(]).

We proceed now to the proposition.

PROPOSITION 1. Let to be an admissible generating function and E a Borel
subset of C with H,o(E) O. Then there exists a nonvanishing function g
with the following property" For each E, there is a sequence of open arcs
{Im(’)} each containing , for which the sequence ofpositive numbers

sup{Ig(z)lv,o(Izl):zc [Im(’)]}, m 1,2,...

converges to O.

In the proof we shall use the same functions that were used to prove a
related but weaker radial result [3; Corollary 3.1].

Proof. Since Ho,(E)= 0, there exist covers {Jmk}=l of E by open arcs
each of length less than 7r/2 for m 1, 2,... such that ’m,k tO(IJmkl) < + oo.
Let {am} be a sequence of positive numbers for which limam +oo and

(3) E Olm E oo(IJmkl) < +,
m=l k--1
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For each pair of positive integers rn and k, let ].ll, mk be the measure of
Lemma 1 with J Jmk and M amto(lJmkt). Then

Olmto(IJmkl )1 Izl P[dtx ](z) > c > colm z C(Jmk)(4) to(1 Izl) mk to(1 Izl)

By (3), the sum Era, k ].l,mk converges to a finite positive Borel measure and it
follows from (4) that

Omto(1 Izl)
(5) P[d/z](z) > c

1 Izl z e c(J,).

Let v be a harmonic conjugate of P[d/z]. Then the function

g exp(-P[d/z] -iv)

is contained in the class . Let rn be a positive integer. By (5), we have

O,mto(1 Izl) ](6) Ig(z)l _< exp -c
1 Izl

z C(Jmk),

for each positive integer k. Corresponding to each E, there is an index
k(m) such that " Jm, k(m) since {Jmk}=l is a cover of E. Letting Im()=
Jm, k(m), the required conclusion for {Im(sr)} follows from (6). This completes
the proof.
To prove Proposition 2 we need to establish some notation and a collection

of preliminary lemmas.
If/z denotes linear measure on an arc J of C, then the bounded, positive

harmonic function P[dtz](z), which we will denote by y(z; J), is the har-
monic measure of the arc J with respect to z. The following lemma contains
standard facts that can be found, for example, in [6; pp. 466-7].

LEMMA 2. Suppose 0 < fl a < 2zr and eia, e il3 are the endpoints of the
arc J.

(1) If 0 is the angle with vertex z whose initial and terminal sides are the
segments joining z to eia and eit respectively, then

y(z;J)
0 zA
7/" 271"

(2) The function y is constant on any set S which is the intersection with A
of a circle or line in the plane " that passes through ei and eits.

Two immediate corollaries provide useful facts for our constructions.
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COROLLARY 1. IfJ is an open arc of C (with IJI < zr/2), then

y(z;J) -y(z;C\J) 1/2, zC(J).

COROLLARY 2. If {jm} is a sequence of mutually disjoint open arcs each of
length less than 7r/2, and 6(m) +_ 1 for each m, then for each positive integer
we have

y(z; jl) +

_
6(m)y(z; jm) >_. 1/2,

m4l
Z . c(Jl).

We proceed now to develop a system for placing "alternating harmonic
measure" on certain subarcs of a given open arc J of C. Let a IJI/2 and
00 [0,27r) such that eiO is the midpoint of the arc J. Corresponding to
each positive integer n, put On On_ + a2-n and O_ 0o -(O -0o).
Define Jn (J-n) to be the open arc with endpoints ei.-1 and ein (ei-n+ and
ei-m), respectively. Thus the arcs Jn result from a successive bisection
procedure rotating counterclockwise (clockwise) as n (-n) increases through
the positive integers.

Let n and k be positive integers. We now divide the arcs J, and J-n into
2(n + k)2 subarcs of equal length as follows. Set

j O
Onj On- -’[-

2(n + k) 2 2n

and O_nj 00 (Onj 00) for j 0, 1,..., 2(n + k)2. Observe that

Ono On_l, O_nO O_n+l, and O+n,2(n+k)2 0_t_ n.

For each j {1,..., 2(n + k)2}, let J+/- n,j be the arc with endpoints e iO+/-n,j

and ei +/-n,-l. Define

2(n + k)2

h(z;J,k,+n) E (--1)’Y(Z;J+n,)
j=l

and

h(z;J,k) E [h(z;J,k,n) + h(z;J,k, zA.

Let 12(J) denote the simply-connected Jordan subregion of A bounded by
C \ J and C(J). The following lemma ensures that Ih(z; J, k)l can be made
as small as we want in f(J) by taking k sufficiently large.
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LEMMA 3. For every open arc J of C having length less than zr/2 and
positive integer k, we have h(z; J, k) is a harmonic function such that

(7) Ih(z;J,k)l_<c/k, z e (J).

Proof Clearly h is a harmonic function with Ihl _< 1 that is continuously
0 at each point of C \ (where ] denotes the closure of J). By the
Phragm6n-Lindel6f maximum principle ([7; p. 76]), it suffices to prove that (7)
holds at each point of C(J) (and omit consideration of the endpoints ’1 and

’2 Of the arc J).
We assume, without loss of generality, that the midpoint of J is 1 and

z C(J) has its principal argument Arg z > 0. Observe first that for all
allowed indices n and j, we have

IJn’l Cy(z; J,i) < C[-n <
(n + k)2’

(where c is independent of all the allowed parameters). The first inequality
depends on a trivial estimate of the Poisson integral and the fact that the
distance of z from the arc Jni is at least as large as the order of the length
IJnl,
We claim next that for each nonzero integer n, there is an index

such that

1= l(n) {1,...,2(Inl + k)2}

Ih(z; J, n, k)l _< T(z; LI)"

In fact, is the index for which Jnl contains the point closest to z. The
inequality is verified using elementary geometry to obtain monotonicity
relationships on the Poisson kernel relative to the arcs Jn of Jn, and the fact
that the sum involved in the definition of h(z; J, n, k) alternates.

Finally, inequality (7) is a consequence of the inequalities of the preceding
two paragraphs on summing over nonzero integers n. This completes the
proof.
We now define a harmonic function and an associated region relative to a

sequence {jm} of mutually disjoint open arcs each of length less than 7r/2.
Define the function

h(z; {Jm},k) _,h(z;Jm,[k + m]2)

along with the arcs jm =_nj, n + 1, + 2,.. j 1,...,2[Inl + (k + m)2]2
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(defined relative to jm as the Jni are relative to J). Also, let

[-({jm}) N [’(jm).
m

The following proposition collects the facts concerning h(z; {jm}, k) that
will be needed in the proof of Theorem 2. We omit the proof since it is a
straightforward consequence of Corollary 2, Lemma 3, and other observa-
tions made in this section. The indices m, n and j will be understood to
belong to the appropriate index sets.

PROPOSITION 2. Let k be a positive integer, {jm} a sequence of mutually
disjoint open arcs of length less than rr/2, h(z) h(z; {jm}, k) the function just
defined, and f -({jm}) the associated region. Then h is a harmonic function
such that

(8)
(9)

(a0)

(11)

and

Ih(z)l _<1, zA,

Ih(z)l _<c/k, ze,
(-1)ih(z) > 1/2, zC(J),

inf{[zl z e h \ } > 1 max{[jml},
m

(12) I/nl l/m I/2,
n,j

where the sum is taken over all indices n. and j for which h(z) > 1/2, respec-
tively < -1/2, for every z C(J).

Note that the definition of the function h ensures that the constant c in (9)
can be taken to be the same as the one in (7) of Lemma 3. Thus the constant
is independent of the sequence {jm}.
We conclude this section with a result, referred to in 1, which deals with

arbitrarily slowly growing admissible functions v.

PROPOSITION 3. Let v be an admissible growth function. Then there exists
an admissible generating function o such that uo,(r) < u(r) for r [0, 1).

Proof Let r(r) log v(1 r) for r (0, 1]. We need to construct an
increasing, continuous, concave-downward function 0 :[0, 2rr] [0, m) van-
ishing at 0 with o’(0) +% such that w(r)/r < r(r) for r (0, 1].

Let {rn} be a decreasing sequence in (0, 1) such that rn < r(1)/n2 and
r(rn) > n + 1 for each positive integer n. We shall inductively select two
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decreasing sequences {tn and {O(tn) such that the function o whose graph
consists of the union of the origin with the line segments S joining the
points (t_ 1, o(t,,_ 1)) and (t, o0(tn)) for n 1, 2,..., has the desired proper-
ties.

Let o 27r and r w(t0) o(t1) Y0 Yl. Let L be the horizon-
tal line with y-value equal to r and let $1 be the segment joining the points
(to, oO(to)) and (tl, o(tl)). Also observe that oo(tl)/t 1.
Assume that n is a positive integer and we have selected positive, decreas-

ing sequences {tk}", {yg}’, and {o(tk)}’ such that the point (0, Yk) and the
segment Sk joining the points (tk_ 1, o(tk_l)) and (tk, oo(tk)) lie on the same
line Lk, and oo(tk)/tk k for k 1,..., n.
Choose tn+ (0, min{tn, rn+l}) such that the point (tn+l, y) on the line L

has Y/tn+ > n + 2. Select Yn+l (0, Yn) such that if Ln+ is the line
passing through the points (0, Yn+l) and (t, oO(tn)), the point (t+l,W) on
Ln+ has w/t+ n + 1. Notice that this is possible since as Yn+l de-
creases from Yn to 0, the associated quantity w/tn+ decreases from y/tn+
to n. Now take oO(tn+ 1) w and let Sn+l be the segment of Ln+ joining the
points (t,, o0(tn)) and (tn+ 1, o(t+ 1))" This completes the inductive step.

Let o) be the function whose graph is composed of the segments S and
the origin as described earlier. Since n < rn < r(1)/n2 and ntn o(t,) for
each n, we see that {o0(tn)} converges to 0. Because the point (tn, oo(t,)) is on
both of the lines L,, and L,,+ 1, and we have (0, Yn) Ln and (0, Yn+ 1) L,,+
with Yn+ < Yn for each n, it follows that the function o is an increasing,
continuous function on [0, 2zr] with w(0) 0.
By the construction, it is evident that the slopes of the segments Sn are

increasing as n increases so that o is concave downward. This implies that
oo(r)/r is a decreasing function on (0, 2r]. Because oo(t,)/t, n and
> n + 1 for each n with o- decreasing, we conclude that oo(r)/r <_ r(r) for
0 < r < 1. To ensure that this inequality also holds for < r _< 1, we can
multiply o) by a sufficiently small positive constant. The proposition is thereby
established.

3. Proofs of the theorems

We start with Theorem 1. Suppose that f sO’ and Ho,(E) 0 as stated
in the theorem. Then by assumption,

(13) If( z)l

Let g be a function as in Proposition 1 and put G fg. Then G is a
nonconstant analytic function with G[ _< If[ so that

and A( G, o) f J E.
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From Proposition 1 and inequality (13), we also see that A(G,) N E .
Hence A(G, o) J 3 and we may apply Corollary B to conclude that
IF(G) JI > 0. Since IF(g) JI ]JI and IF(g, 0)l 0, we conclude upon
dividing G by g that IF(f)N J[ > 0. This completes the proof of Theo-
rem 1.
We note in passing that the growth hypothesis f a of Theorem 1 can

be weakened to the requirement that the set S of points in J where
loglf(r’)[ O[to(1- r)/(1- r)] as r--+ 1 is of second category in C. In
fact, S is the countable union of the relatively closed sets

Fn= {J:log[f(r)[ <nto(1-r)/(1-r) forr [0,1)),

over all positive integer n. Hence for at least one n, the set Fn must contain
a subarc I of J. Observing that (for Borel sets), Ho,-measure 0 is equivalent
to Hno,-measure 0, we can apply a localized version of the theorem to the arc
I with u un, and obtain the same conclusion.
We turn now to the proof of Theorem 2. Let tr log u. We shall construct

a harmonic function u on A with [u(z)l < tr(Izl) for all z A such that
IA(u)l--0. Then taking v to be a harmonic conjugate of u, the analytic
function f exp(u + iv)will have the required properties. Additionally, we
obtain M(1/f; r) < u(r). In the subsequent proof, we shall use the notation
(sometimes analogously defined with additional subscripts or superscripts)
and the results of Proposition 2 without specific reference.

Let Uo(Z) 0 for all z A. Select r (1 2-1, 1), a positive constant
c1, and a positive integer kl such that 4 < 2c < tr(r1) and cc/k < 2-1tr(0),
where c is the fixed constant (independent of the positive integer k and the
allowed sequence of arcs) of inequality (9). Let {jlrn} be a mutually disjoint
sequence of open arcs such that 1 max{ljml} > r and C \ to jim 0.
Define

Ul(Z) Clh(Z ;{Jlm},kl), z A,

and

n _1,_+2,..., j= 1,...,2[Inl + (m +kl)212}
the associated arcs (as preceding Proposition 2). Observe that

Ic \  nl?l O,

t/1 is bounded, lUl(Z)l _< r(Izl)(1 2-1) for z A (as is seen on considering
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the cases Izl r and r < Izl < 1 separately), and the quantity

cJ inf(lul(z)l-l"zE U C(Jn)}
mnj

is positive. Note also that E I/nlnl IJlm[/2 when the sum is taken over all
of the arcs Jnlm for which u(z) > 1, respectively u(z) < 1, for every

lmz C(L ).
For our inductive hypothesis, we assume that p is a positive integer and

that we have defined sequences of mutually disjoint open arcs {Jqm}n= along
with bounded harmonic functions uq, numbers rq (1 2 -q, 1), and posi-
tive integers kq for q 1,..., p having the following properties:

(14) U jpm . U JPnj-i’m (P > 1)’
m rn,n,j

(15)

(16)

lug(z) u_(z)l _< tr(0)2 -p, Izl _< r,,

lu(z)l _< r(Izl)(1 2-P), z A,

(17)

(18) ;q inf(lup(z)l-q’z U C(Jn’)) > O, l <q < p,
m,n,j

and

(19) ZI]ne;m,’l IJ.-l’ml/2 (p > 1),

where the sum is taken over all indices m’, n’, and j’ for which the arc Jn,.m, is
contained in jj-l,m and up > p, respectively up < -p, on C(J’).
Choose rp+ (1 2 -p-l, 1), the constant cp+ x, and the positive integer

kp+ such that

Cp+l >" 2[(p + 1) + sup{lup(z)l}],
G(rp+ 1) > 2[ Cp+ -I- sup{lup(z)l }],

and

Cp+lClkp+ < min{2-p-ltr(O), c,q (1 _< q < p)}.
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Let {JP+ I,m} be a sequence of mutually disjoint open arcs such that

U Jp+l’m U JnPjm,
m rn,n,j

U Jp+ 1,

m

=0

and

and define

rp+ < 1 max{IJ"+l’ml},

Up+I(Z ) Cp+lh(Z; {JP+"m},kp+) + up(z), z A,

along with the associated arcs {J.+l’m}.
It is straightforward to check that the inductive hypothesis holds for p 1

and with p replaced by p + 1, so the induction is complete. Therefore, there
exist sequences {jpm}, {jpnfn}, and {Up} so that the inductive hypothesis holds
for all p. By (15) and (16)we conclude that {Up} converges, uniformly on
compact subsets of A, to a harmonic function u such that lu(z)l _< r(Izl) for
all z A. From (18)we see that for each positive integer p,

lu(z)l >p for allz U C(JnP’m)
m,n,j

Also by (14) and (17), the set E fqp U m,n, jJnPjm has IEI 27r.
Suppose now that r E. For each positive integer p, there is precisely one

arc jn.m, call it Ip, that contains ’. Let (sr) (N(sr)) be the set of all positive
integers p such that sr Ip and u(z) > p (u(z) < -p) on C(IP), respec-
tively. If F(t) is any boundary path ending at ’, then

limsupuoF(t) +oo (liminfuoF(t) -c)(20)
tl tl

whenever (’) (U(’)) is an infinite set, respectively.
Consider the set

W+= {" E" (’)is finite}.

We claim that W/ 0. Now W/

n, we define
U IV. / where for each positive integern

W,,+= {" E" (sr) c_ {1,...,n}}.

But Wn+l 0 for each n by (19), and the claim follows since the union is
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over a countable collection of sets. A similar argument shows that

W-= {" E’/(’) is finite}

has W-I 0. Hence WI 0 where W W+U W-, and IE \ WI 27r.
For each srE\ W and every boundary path F ending at sr, both

conditions of (20) hold, so we have sr A(u). We conclude that [A(u)l 0,
and the theorem follows as indicated before.
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