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1. Introduction

Riemannian k-symmetric spaces and, more generally, Riemannian regular
s-manifolds have been studied by several authors and the general theory is
now well established. All such manifolds are homogeneous and the associ-
ated canonical connection [5] is determined by the symmetry tensor field S of
type (1, 1)which is derived from s. Riemannian locally regular s-manifolds
can then be defined either in terms of s or, more usefully for our purpose, in
terms of the invariance of certain tensor fields under the action of S as a field
of tangent space endomorphisms. Thus, as well as the first order condition
that VS should be S-invariant, where V is the Riemannian connection, one
requires the second order conditions that V2S and the curvature tensor field
R are S-invariant and then the third order condition that VR is S-invariant.

For a regular s-manifold, the homogeneous Riemannian structure can be
shown to be naturally reductive [5] if and only if S satisfies the additional first
order condition (V(i_s)-lxS)S-lX--0 for all vector fields X. In turn, this
condition can be applied to define the notion of naturally reductive for
locally regular s-manifolds and one might then ask whether such a first order
condition can be used to simplify the higher order conditions given above.
The simplest example is afforded by a Riemannian locally symmetric space
which can be defined either by local 2-symmetries or by the single condition
VR 0. In this case S -I so the above tensor conditions are trivial except
for VR being S-invariant, that is VR 0. Moreover, this condition reduces to

(VxR)(X, JX, X, JX ) 0

for the Hermitian case. A less trivial case arises with locally 3-symmetric
spaces. These are almost Hermitian with almost complex structure J satisfy-
ing

S= -I+ --J
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and the naturally reductive condition reduces to the nearly Kihler property
(TxJ)X 0 for all vector fields X. Then, as shown by Gray [3], [4], a nearly
Kihler manifold is locally 3-symmetric if and only if

(xR)(X, JX, X, JX) 0

for all vector fields X, the latter condition being equivalent to the S-invari-
ance of 7R. In particular, no second order conditions are required. An
analogous result is proved in [10] for naturally reductive locally 4-symmetric
spaces where again the second order conditions are redundant. We remark
that in this case S determines an f-structure [1], [8], [14] since 1 may be an
eigenvalue. The purpose of the present paper is to show that a similar
simplified characterisation holds for all Riemannian naturally reductive lo-
cally regular s-manifolds.
For general notational purposes we will normally use [5]. We write oqqp for

the algebra of smooth tensor fields with contravariant and covariant orders p
and q respectively; in particular, we write 0p Y-P and pp0 . Tensor
fields A, B 11 will often be considered as linear endomorphisms and
then composed in the usual way to give AB -11. Also, for the curvature
tensor field R we use the same symbol to denote its covariant form given by

R(X,Y,Z,W) g(R(Z,W)Y,X)

for a Riemannian metric g. Finally, for later use, we define 72S by the
relation

x, Y, Z) (v s)v z,

and then have the general formula

(V2xyS)Z (V2yxS)Z R( X, Y)SZ SR( X, Y)Z.

2. Preliminaries and statement of theorem

We first recall some basic properties of Riemannian regular s-manifolds,
most details of which can be found in [6]. Let (M, g) be a smooth, connected,
finite-dimensional Riemannian manifold and let s {Sx: x M} be a family
of isometrics of (M, g) such that each x M is an isolated fixed point of the
corresponding map sx. We call s a symmetry at x and say (M, g) is a
Riemannian regular s-manifold with respect to the given s-structure if

Sx Sy Ssx(y Sx for all x, y M.

Then M becomes a homogeneous space with respect to the group G
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generated by s. A tensor field S 1 is defined by the condition that, for
each x M, S is the differential of s evaluated at x. We call S the
symmetry tensor field on M. It follows from the definition of s that I- S is
non-singular at each point of M and S is invariant under the action of
each Sx.
A tensor field T P is said to be S-invariant if, for all wl,..., wp

and Xl,... Xq -1,

T(oJlS,... oopS, Xl,... Sq) T(oJ1,... oJp, SX1,... SSq)

where (wS)X w(SX) for w and X ,.-1. In particular P qql
and Q qq are S-invariant if and only if, for all X,..., Xq -,

SP(X,, Xq) P(SX,, SXq)

and

a(Xl, Sq) a(axl, SSq).

Thus it can be seen that the tensor fields g, R, VR, VS, VS-1 and V2S are
S-invariant. If we regard S as a field of endomorphisms on M then the
S-invariance of g is equivalent to S being orthogonal at each point of M.
Also we note that if any tensor field T is S-invariant then T is sk-invariant
for any k Z.

Because of its regular s-structure, we may consider a Riemannian regular
s-manifold (M, g) as a reductive homogeneous space with respect to a group
of isometries preserving S and we write the corresponding canonical connec-
tion [5] as 7. Then as shown in [2], V and r are related by

(2.1) VxY- xY (g(I_S)-IxS)S-1y for all X, Y -1.

We note from [5] that the homogeneous space (M, g) is naturally reductive
with V as the natural torsion free connection if and only if V and have the
same geodesics, that is, if and only if [10]

(2.2) (V(,_s)-,xS)S-X 0 for all X g-1.

Next, we consider local analogues. Thus a Riemannian locally regular
s-manifold is a Riemannian manifold (M, g) together with a family s
{sx" x M} of local isometries such that each x M is an isolated fixed
point of s, and the symmetry tensor field S, defined as above, is smooth and
locally invariant by each sx. For convenience of notation, we now make the
following definition.
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DEFINITION. A Riemannian S-manifold, denoted by (M, g, S), is a Rie-
mannian manifold (M, g) together with a tensor field S ..1 such that g
and VS are S-invariant and I- S is non-singular. We call any such S a
symmetry tensor field on (M, g) and say (M, g, S) is naturally reductive if (2.2)
is satisfied.
Riemannian S-manifolds and (locally) regular s-manifolds are related as

follows.

THEOREM 2.1 [2]. Let (M, g) be a Riemannian locally regular s-manifold
with symmetry tensor field S. Then (M, g, S) is a Riemannian S-manifold for
which V2S, R and VR are S-invariant. Conversely, any (M, g, S) for which
V2S, R and VR are S-invariant is a locally regular s-manifold with symmetry
tensor fieM S. Moreover, any complete simply connected Riemannian locally
regular s-manifoM is a Riemannian regular s-manifold.

As shown below, on any (M, g, S) distributions -0 and -i, 1,..., r
are determined by the eigenspaces of S where -0 corresponds to the -1
eigenspace of S. Since S is orthogonal an almost complex structure J is
determined on M when -1 is not an eigenvalue of S; moreover, (M, g) is
then almost Hermitian. If -1 is an eigenvalue of S then J is defined
similarly but with JX0 0 for any X0 -0. As remarked earlier, in this
latter case J may be regarded as an f-structure on (M, g) although this
notation is not used here. Our purpose is to prove the following theorem.

THEOREM 2.2. Let (M, g, S) be a naturally reductive Riemannian S-mani-

fold with associated eigenspace distributions -@o and -i, 1,..., r as above.
Then (M, g, S) is a locally regular s-manifold with associated symmetry tensor

field S if and only if

(7voR)( Xo, Yo, Zo, Wo) 0 for all Xo, Yo, Zo, Wo, Vo

and

(VxiR)( Xi, JXi, Xi, JXi) 0 for each X .i, 1, r.

From now on we consider an arbitrary naturally reductive Riemannian
S-manifold (M, g, S). The proof of the theorem depends largely on a case by
case study of the curvature tensor field restricted to eigenspace distributions
of S. In the remainder of this section we describe these distributions and
prove some lemmas for later use.

For any Q q we define Q qq by

O(Xl,..., Xq) o(sx,, SXq) O(Xl,..., Xq)
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for all Xl,... Xq ,_-1. Thus, Q is S-invariant if and only if 9 0. Then
we prove:

LEMMA 2.3. Let Q qq and suppose X1,..., Xq -1 such that for all
positive integers m,

(SmXl, amSq) (Xl, Sq).

Then Q(XI, Sq) O.

Proof For each m > 1,

a(am+lsl, am+lsq) a(amsl, Smgq)
a(asl, Sgq) a(sl,... Sq)

and by adding the first n of these equations we have

Q(S + 1X1, S + 1Xq ) Q(SXl, SXq)

nQ(SXl, SXq) nQ(Xl, Xq).

Since g is S-invariant, S is orthogonal at each point so the left hand side of
the above equation is pointwise bounded as n o and the lemma follows
immediately.
We remark that this lemma will be applied usually to the case when Q and
are replaced by R and . Next, define the connection 7 on M as in (2.1).

Then for all X, Y ,_-1,

(TxS)Y (VxS)Y- ((I_S)-IxS)Y q- S(V(l_s)-lxS)S-ly 0

since 7S is S-invariant. Thus S is parallel on M with respect to 7 and it
follows that the eigenvalues of Sx, x M, and their multiplicities are
independent of x. Since S is orthogonal its distinct non-real eigenvalues have
the form

eiOre +iO1 c d- is1, c d- iSr,

where 0 < 01,... O ( Ti" and, for brevity of notation, we write cos 0., sin 0j
as c., sy for j 1,..., r. Also, -1 is the only possible real eigenvalue since
S- I is non-singular. Then smooth disjoint S-invariant distributions
-0,-1,...,-r are defined on M by

-o ker(S + I),
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and

5.-- ker(S2- 2cjS + I) for j Jr1

where, from now on, we write {1, 2,..., r} as [r]. Clearly any X e ,..-1 has a
unique decomposition into a sum of distribution vector fields, that is X X0

+ X + +X where X0 e -@0 and X .5. for j e [r]. We remark that
the possibilities of -@0 or all .., j e [r] being vacuous are not excluded. To
avoid needless repetition, we indicate distribution vector fields by their
appropriate suffes such as X0 or Xj often without reference to the
corresponding -0 or _@.. Next define S0, S Wa by SoX SXo, SX
SXj for j [r]. Then define I,Jj by S=ciI + siJj where IiX=Xi.
Clearly

JXi -X and IjXo IX JXo JiX O

for i, j [r], 4=j. Now write J J1 + +Jr and note that j3 + j 0
and g(JXi, JX)= g(Xi, X) for i, j [r]. Since the eigenvalues of S are
constant, it follows that each I. and J. is a polynomial in S and S-1 with
constant coefficients. Hence each I, J, VI. and VJ is smooth and S-
invariant. The same properties hold for So and VS0. We also define I0 -So
since then IoXo Xo for all X0.

LEMMA 2.4. (i) Let i, j [r] and let T -2. If

T(SXi, SY.) T(Xi, Y.)
then

(a) T(Xi, Y.) O if 4= j,
(b) T(JXi, Y.) + T(Xi, JIS.) 0 if j.

Similarly, if

for all Xi, Y.

T(SXi, SY.) T(X Y.) for all Xi, Y
then

(c)
(d)

T(Xi, Y.) 0 if c q- Cj 0
T(JXi, Yj) T(Xi, J]5.) 0 if c q- cj

(ii) Let [r] and suppose given P -m
that

and Xli X2i,. Xmi D such

P( JXli, X2i, Xmi) "}- p ( Xli, JX2i, Xmi) q-

+ P( Xli X2i,... JXmi) O.

Then P(Xli X2i, Smi) O.
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Proof (i) We have

T(SXi, SYj) + T(Xi, Y.) T(S-1Xi, s-lye.)
which implies

(CiC 1)T(Xi, Y.) + sisjT(JXi, JYy) 0

and

cisyT(Xi, JXj) + cjsiT(JXi, Yj) O.

Then (i) follows easily.
(ii) The assumption on P implies that the function

R - R;t p(etJXli, etJX2i,..., etJXmi)

is constant. Hence,

p( etJSli etJS2i etJSmi ) p( Xli S2i, Smi)

and (ii) follows by choosing 0 in this equation.

Next, we consider VS which, by assumption, is S-invariant and hence
s-l-invariant. Then for i, j, k [r] and for all Xj, Y,

(2.3)

(2.4)

(CiI q- siJi)(VykS)X Ii(V(ci+s#)yS)(cjI + sJ)X,
(CiI siJi)(VykS)S Ii(V(Ckl_SkJ)YkS)(cjI- sjJ)Xj.

Addition gives

(2.5) ( C CjCk ) li(VykS)X SjSkli(jykS)JXj,

hence

( C CjCk ) Ii( jylS)JXj SjSkli( VYkS)Xj

from which

(2.6) ((C CjCk) 2 ss)Ii(VYka)g O.

Now

C CjCk) 2 2 2s,, -ci / c / cl- 2cicc,,- 1
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so is symmetric in i, j, k. If (C CjCk)2 2 2
sjsk 0 then cos Ok COS(0/ Oj)

for any permutation of i, j, k. In this case we define aijk 1 if 0 + Oj + Ok
2rr or 0k 0 + Oj and aijk --1 if 0j 0k + 0 or 0 Ok + 0j; these

are the only possible relations between 0i, Oj, Ok. Then cos 0k cos(0/+
aijkOj) for any permutation of i, j, k, where we recall that 0 < 01 < r for all

[r]. From its definition, aijk can be seen to satisfy

(i) Olijk Oljik,
(ii) OlijkOlkijOljk
(iii) Olijk Sj(Cj

=1,

CiCk)/Si(C CjCk).

Next, by subtracting (2.4) from (2.3) we have

(2.7) siJi(VykS)X SjCkli(VykS)JX q-- skcjli(VjykS)X

and from (2.5) and (2.7),

(2.8) Si( C CjCk )Ji(Yka)Sj -- Sj( Cj CkCi) Ii(VYka)JS O.

Then from (2.6) and (2.8)we obtain:

LEMMA 2.5. For any i, j, k [r] either Ii(VykS)X 0 for all Xj, Yk or
cos 0k cos(0/+ aijkOj). Moreover, if cos 0k cos(0/+ aijkOj) then

Ji( Vykg)xj -+- olijkli( Vyka)JS 0

for all Xj,

Next, we write (2.2) as

(2.9) (7xS)(I- S-1)X 0 for all X ,-1.

Then for all i, j, k [r] and for all Xj, Yk

(2.10) Ii(VrkS)((1 cj)I + sjJ)Xj + Ii(VxS)((1 Ck)I + SkJ)Yk O.

Also, the relation g(SY, SY) g(Y, Y) implies

(2.11) g(VxS)Y, SY) 0 for all X, Y e ,.-1.

Hence, for all Xi, Yj, Zk,

(2.12) sx ) + g((vz s)x , sY .) o.
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Then as a consequence of (2.10) and (2.12)we have"

LEMMA 2.6. Let i, j, k [r] and suppose g(VzS)Y.,Xi) 0 for all
Xi, Y., Ze. Then this equation holds for any permutation ofXi, Y., Z.

The remaining lemmas in this section provide information on the S-invari-
ance of the curvature tensor field R. We use, throughout, the associated
tensor field R defined above.

LEMMA 2.7. Let i, j, k, Jr]. Then the following relations hold.
(i) If Ii(7rS)X Ii(7zlS)Xi 0 for all X, Y, Z then, for all

Wi, X, Y,, Z,,

R(Wi, X, Y,, Zl) 0 if 4= j

and

R(JWi, Xj, Yk, ZI) --1- R(Wi, JXj, Yk, ZI) 0 if j.

(ii) R(X, Xi, Xi, JXi) 0 for all Xi, Xi.
(iii) If 4= j and I(VxjS)X 0 for all Xi, X then

R(Y., Xi, Xi, X) R(Y., JXi, Xi, X) 0 for all Xi, Xi, Y..
Proof (i) Since Ii(VrS)X 0 for all X., Y then

Ii(VlY:S)X .q- (Vzlli)(VykS)X .at- Ii(V<VzliDy,S)Xj + Ii(Vy,S)(Vzllj)Xj 0

from which it follows that

A corresponding property holds for Ii(V2ykZlS)Xj so, from the relation

g((VI,kzIS)X (VlYkS)Xj, SWi) R(SWi, SKi, Yk, Z,) R(Wi, Xj, Yk’ ZI)

we see immediately that, for all Wi, Xi, Y,,

R(SWi, SXi, Yg, Z,) R(W/, Xi, Y, Zl) O.

By fixing Ye and Zz we can apply Lemma 2.2 and then (i) follows.
(ii) We see from (2.9) and Lemma 2.5 that

Ij(Vsia)s Ij(VjsiS)S 0 for all Xi.
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Then the same proof as above shows that for all Xi, Xj.

(2.13) R(SX, SXi, Xi, JXi) (X, Xi, Xi, Xi) =0.

We have also

Ij(VxiS-1)Xi -S-1Ij(VxiS)S-1Xi -S-1Ij(VxiS)(ciI siJ)X 0

and, similarly, Ij(VJxiS-1)X 0. Hence, as in the proof of (i),

(2.14) (S-1Xj, s-lxi, Xi, JXi) (Xj, Xi, Xi, JXi) 0

and (ii) is an easy consequence of (2.13) and (2.14).
(iii) This follows by the argument used for (ii).

LEMMA 2.8. (i) Let i, j, k, c= [r] and suppose for all Xj, Yk, Zt and for
some non-zero a R,

and

,(vs)x + I, (VS)X o

i(v,s)x + Ii(V,S)X o.

Then for all Wi, Xj, Yk, Zz,

R( JWi, Xj, Y, Zl) aR(W/, JXj, Yk, Z,) 0

if 4=j or if =j and a -1.
(ii) Let i, j, k [r] and suppose for all Xi, Zk and for some a R,

;(vs)x, + i(v,s )Jx o

Then for all Xi, Yj, Zk,

R(JISj, Xi, Xi, Zk) aR(Yj, JXi, X Zk) 0

if 4= j or if j and a 4: 1.

Proof (i) One easily proves, as in Lemma 2.7, that

+

S)SX, + S). sx,
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with the corresponding relation also holding when Yk, Zt are exchanged. It
then follows that

R(SJWi, SXj, Yk, Z,) aR(SW SJXj, Yk, Zl)

R(W, x, Y, z,) R(W,, JX, Y, Zl).

By fixing Yk and Z and applying Lemma 2.4 (i) to this equation we obtain (i).
(ii) For all Xi, Zk, we have

(vs)x + I(Vzs )x o

and

(v,,is)x + ,i(v,,s.)x o

with the same equations holding for S-1 in place of S. We then obtain

R( SJYj, SXi, Xi, Zk ) oln ( sYj, SJXi, Xi, Zk )
R(Jj., Xi, Xi, Zk) n(Yj., JXi, Xi, Zk)

and the corresponding equation with S-1 in place of S. Then (ii) follows as
before.

LEMMA 2.9. For all X, Y ..g-1,

n((I S)X,(I S)Y,X,Y) ((I S-1)X,(I- S-1)y,x,Y) O.

In particular,

s.(1 ci)(_(Xi, J.,X,Y) + (JX,Yi, X,Y)) 0
i,j=l

where X X -[-S2 -[- -[--S and Y Y1 + Y2 + + Yr"

Proof Let X, Y, Z ,.-1. Then (2.11) implies

g((vs)z, sz) + g((vs)z, (vs)z) 0

Also, from (2.9)we have

(VxS)(I- S-1)X- (xS)(VyS-1)X O.
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Since

g((VyS)(I- s-a)Y (VxS)(I- S-1)y,s(I- S-I)x)
--R(S(I- S-1)X,S(I- S-1)y,x,Y)

-R((I- S-1)X,(I S-a)Y,X,Y),
the lemma follows easily.

Next, we show that Lemma 2.9 can be extended to higher powers of S.

LEMMA 2.10. For all X, Y -a and all positive integers m,

R((I-Sm)X,(I-Sm)y,x,Y)

R((I- s-m)x,(I- s-m)y,x,Y) O.

In particular,

sin mOj(1 cos mOi)((Xi, JYj, X, Y) + (JXj, Yi, X, Y)) 0
i,j=l

where X X + X2
q-- nt-Xr and Y Y + Y2 + + Yr"

Proof. We first show that (VxSm)(I- s-m)x 0 for all X and
for any positive integer m. Thus, by induction on m we obtain

m-1

v.s I2 s s
k=0

Then from (2.9) and the S-invariance of VS,

(xgm)( I s-m)X= ((1+s+ +sm-1)xS)gm-l( I s-m)x

(V(i+s + +sm-bxS)(I- s--l)
(I ’1- S -]- "]- sm-1)X

=0.

It follows that for all X, Y, ,_-1

(2.15) S(VixSm)(I- s-m)x (YsxSm)(I- s-m)sx.

Next, we have

g( SmZ, smz) g( Z, Z) for all Z 5v-1
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SO

g((VySm)Z, smz) 0 for all Y, Z, ,_-1.

Hence

(2.16) g((yam)z, smz) g((xsyam)az, am+lz)
The remainder of the proof depends only on (2.15) and (2.16) and is
analogous to that for Lemma 2.9.

3. S-invariance of R and Vs
We show that the curvature tensor field R siatisfies R 0 by considering

the restriction of R to all possible combinations of distributions -0 and ..i,
[r ]. Combinations which include -0 are easier to study and are left until

the end of each case. The S-invariance of 2S is proved at the end of the
section. It should be noted that R satisfies the same standard algebraic
identities as those of R, including the first Bianchi identity.

Case 1. n(..i, ..i,-i, ..i) o.
Let Xi, Yi -qi. Then from Lemma 2.9,

R( JXi, Yi, Xi, Yi) + R( Xi, JYi, Xi, Yi) + R( Xi, Yi, JXi, Yi)
"}- R( Xi, Yi, Xi, JYi) 0.

Hence, from Lemma 2.4 (ii),

R( SXi, SYi, SXi, SYi) R(Xi, Yi, Xi, Yi)

and then

R( Xi, Yi, Xi, Yi) =0

from Lemma 2.3. It follows easily that R(_i,-qi,-i,-i) O.

Case 1’. R(-o,-o,-o,--o) O.
This is obvious since SXo -Xo for X0 -0.

Case 2. R(..i,..i,_qi,.i) 0;i 4:j.
Suppose cos 0. 4: cos20i. Then_ from Lemma 2.5, Ii(VxiS)Xj 0 for all

Xi,X so, from Lemma 2.7(i), R(_i, -i,-i,-) 0. Next, suppose cos 01
cos 20i. Then 0 20 or 27r 20 and, by applying Lemmas 2.5 and 2.8 to
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the pair (Ii(TxiS)Xj, Ii(VviS)Xj), we obtain for all Xi, Y/, W/, X,

(3.1) R(JWi, Xj, Xi, Yi) olijiR(Wi, JXj, Xi, Yi) O.

Also, by writing X X and Y aY/+ bYe. in Lemma 2.9 and equating to
zero the coefficient of ab we have

si(1 ci)R( gi, JYi, Si, Yj) + s.(1 ci)R(Si, JYj, Si, Yi)
+ si(1 ci)R(JSi, Yi, Si, Yj) -1- si(1 cj)R(JSi, Yj, Si, Yi) O.

From (3.1) and the relations cos 0i
equation reduces to

COS 20 and sin 0. Olij sin 20i, this

(3.2) R( Xi, JYi, Xi, Y. ) + R( JXi, Yi, Xi, Y. ) + 2R( Xi, Yi, JXi, Y. ) O.

Next, from Lemma 2.7(ii), we have R(Xj, Xi, Xi, JXi) 0 for all Xi, X and
linearisation gives

(3.3) R ( JXi, Xi, Yi, X) + R( JXi, Yi, Xi, X) + R( JYi, Xi, Xi, X) O.

Also, from (3.2) and the first Bianchi identity,

R ( JYi, Xi, Xi, Xi) + 2R( JXi, Xi, Yi, X) 3R(JXi, Yi, Xi, X) O.

This equation and (3.3) imply

R(Yi, Xi, JXi, Xg) + 4R(Y/, JXi, Xi, Xg) 0

and by replacing X by JX we have R(Y/, Xi, JXi, Xj)= 0. It then follows
from (3.3) that R(Yi, Xi, Xi, Xg) 0 for all_ Xi, Yi, X1. From this equation
and the first Bianchi identity we see that R(.i, -i,-i, 5.) 0 as required.

Case 2’. R(.o,-o,-qo,-i) O.
Since VS is_S-invariant we have Io(VxoS)Xi 0 for all Xo, Xi, [r]. It

follows that R(SXo, SXi, Yo, Zo) R(Xo, Xi, Yo, Zo) so

(Xo,(S + I)Xi,Yo,Zo) =0

for all Xo, Yo, Zo, Xi; hence R(_0,-0,-0, -i) 0.

Case 3. R(.i,-i,--i,-) 0; 4: j.
First, suppose cos 0 4: cos 20 and cos 0 4: cos 20i. Then from Lemma 2.5,

we_ have Ii(VxiS)Y Ii(VxjS)Y 0 for all Xi, Xj, Y. so, from Lemma 2.7(i),
R(’-i, "j, "i, "j) O.
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Next, suppose cos 0 4: cos 20 and cos 0 cos 20i. Then Ij(VxjS)X 0
for all Xi, Xj so, from Lemma 2.7(iii),

(Y., xi, xix) (., sxi, xi, x) o

for all Xi, X, Y.. Hence

(3.4) R( Y., Xi, Yi, X) + R( Y., Yi, Xi, X) 0

and

R(Y., JXi, Yi, X) + R(Y., JYi, Xi, X) 0

for all Xi, Yi, X,Y. Also, since I.(Vx.S)X 0 then, from Lemma 2.6,
Ij(Vx,S)X 0 for all Xi, X1 and it fol’ows from Lemma 2.7(i) that for all
Xi,Yi, Xj, Yj,

(3.6) R(., X, Xi, Yi) + R(Y., ]X, Xi, Y) O.

Next, we apply Lemma 2.9 by writing X oliX Jr" oljXj, Y [iYi Jr J}SJ" and
equating to zero the coefficient of ceicej[3iflj. This gives

(3.7) (1 ci)s,((Xi, JYi, Xj, Yj) Jr (JXi, Yi, Xj, Yj))
+(1 ci)sj((Xi, JlSj, Xj, Yi) -Jr- (JXj, Yi, Xi,Y])

+(1 cj)si((Xj, JYi, Xi, Yj) --k (JXi, Yj, Xj, Yi)

+ (1 c,)s,((X,, JI., Xi, i) + (JXj, Y], Xi, Yi))--0.
After simplification using (3.4), (3.5) and (3.6) it follows that

si(3 c cj)(Sj, Si, Yi, Yj) 0 for all Xi, Y, X, Y.
Then R(_i, _,-i,-) 0 since si(3 c cj) 2Si(1 ci)(2 + Ci) =/= O.

Finally, suppose cos 0 cos20, and cos 0 cos20/. Equivalently, sup-
pose 20 Oj 4rr/5, since Case 3 is symmetric in and j. It follows that
Olij --OQi 1 SO, for all Xi, X,

,(v,s)x. i, (v,s )x o

and

.(v..s)xi + (v..s)xi o.
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Then it results from Lemma 2.8 (ii) that

(3.8)

and

(3.9) R(JXj, X, Xi, Yi) R(Xj, JX, Xi, Yi) O.

For all Xi, Yi, Xj, Y.. Next we consider Lemma 2.9 with X X and Y Y. to
obtain

(3.10) ciR(Xi, Ji, Xi, Y) + (1 + ci)R(JXi, Y., Xi, Yi) O.

Then by comparing (3.9) and (3.10) with X. Y., it follows that

(3.11) R( Xi, JXj, Xi, Xj) R( Xy, JXi, Xj, Xi) 0

for all Xi, Xi. Thus from (3.8), (3.9) and (3.11),

(3. (x, xi, xi, .) (x, xi, xi, .) -(., xi, xi, x)

and

(3.13) R(JXi,

for all Xi, Y/, X1, Y.. By applying (3.12) and (3.13) to (3.7) we obtain, after
some calculation,

(3.14)

where

( C "-I- 2) A + ci(4c -1- 5) B 0

and

A R(Xj,Yi, JXi,Yi) + R(X,JYi, Xi,Y. )

B R(Xy, Yi, Xi, J.) + R(JXy,Yi, Xi,Y. ).

Also, by Lemma 2.10, we may replace 0i, O by 20i, 20j in (3.7)which implies

(3.15) (cy + 2)A + c(4c + 5)B 0.

It results from (3.14) and (3.15) that A B 0. Hence, we see from Lemma
2.4(ii) that for all X, Y/, X, Y.,

R(X, SYi, SX Yi) R(SXj, Yi, Xi, SYi) R(XI, Yi, Xi, Yi)"
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This_ clearly implies R(SXi, SY,..._, SXi, SY1) R(Xi, Yi, Xi, Y1) or, equivalently,
R(smxi, smYi, smxi, smY1) R(Xi, Yi, Xi-Y1) for all positive integers m.
Consequently, from Lemma 2.1, we have R(..i, 51, -i, 5i) 0 and the proof
for Case 3 is complete.

Case 3’. R(.o,.,.o,_) 0.
Write X X0 and Y Y/ in Lemma 2.9 to obtain R(X0, JY/, X0, Y/) 0

from which it follows that

R( Xo, JXi, Yi, Yo) + R( Xo, JYi, Xi, Yo) + R( Xo, X, JYi, Yo)
+ R( Xo, Y, JXi, Yo) =O

for all Xo, Yo, Xi, Yi. Similarly, write X= aXo + bXi, Y= cYo + dYi in
Lemma 2.9 and equate to zero the coefficient of abcd to obtain, after
simplification,

(3 ci)R( So, JYi, Si, Yo) + (3 ci)R( So, Yi, JSi, Yo)

--(l ci)R( Xo, Si, Ji, Yo) (1 ci)R( Xo, JXi, Yi, Yo) O.

From these two equations we have

R( Xo, X, JY, Yo) + R( Xo, JXi, Y, Yo) 0

and then from Lemma 2.4 (ii),

R( SXo, SXi, SY, SY SYo) R(Xo Xi, Yi, Yo).

But this implies R(Xo, Xi, Y/, Yo) 0 from Lemma
R(-o,-i,-o,-i) 0 as required.

2.3. Hence

Case 4. R(_i,-1,-i,-h) 0; i, j, k distinct.
Suppose_ Ii(VxiS)X Ii(VxkS)X 0 for all Xi, Xi, Xk. Then by Lemma

2.9, R(.i, -1,-i,-k) 0. Thus, by Lemma 2.5, we may assume cos 0
cos 20 or cos 0 cos(0 + aikiOk). Similarly, we may assume cos 0h cos 20
or cos 0 cos(0 + akiO). Now since cos 0. 4: cos 0 then we must have
cos 0 cos(0 + aihiOh). Also, by Lemma 2.5, either Ii(Vx.S)X Ii(Vx.S)X

0 for all Xi, Xi, Xh or cos 0 cos 20 or cos 0h cos’20i. It follow that
we may assume either

(i) cos 0 COS(0j -[- OljkiOk) and Ii(VxjS)X Ii(Vx,S)X 0 for all
Xi, Xj, Xk, or

(ii) cos 0 =cos(O + OqhiOh) and cos 0 cos 20

since Case 4 is symmetric in j and k.



NATURALLY REDUCTIVE RIEMANNIAN S-MANIFOLDS 575

We first consider (i) and note that from Lemma 2.7 (i),

(3.16) (  xi, ri, + R( Xi, 0

for all Xi, Yi, Xj, Xk. Also, by applying Lemmas 2.5 and 2.8 (i) to the pairs

(Ij(VxiS)Xk, Ij(VYiS)Xk ) (Ii(VxjS)Xk, Ii(VxiS)Xk)’
and

(Ii(VSka)Sj’ Ii(Vsia)sj)
we have

(3.17)

(3.18)

R(JXj, Xk, Xi, Yi) jkiR(Xj, JXk, Xi, Y/) O,

R(JXi, Xk, Yi, Xj) XikjR(Xi, JXk, Yi, Xj) 0

and

(3.19) R(JXi, Xj, Yi, X) oijkR ( Xi, JXy, Yi, Xk) O.

We apply the first Bianchi identity to (3.17) and use (3.18) and (3.19) to
obtain

R(X, JYi, Xi, Xk) R(X, JXi, Yi, Xk)
R( Xj, Yi, JXi, Xk) + R( Xj, Xi, JYi, Yk) O.

Then from (3.16), this reduces to

(3.20) R(X1, Yi, JXi, Xk) R(Xj, Xi, JYi, Xk)

and from (3.18)we also have

(3.21) R(X, Xi, Y, Xk) R(X, Y, Xi, Xk)

for all Xi, Yi, X, Xk. Clearly (3.21) implies

(3.22) R(..i, -i, ., ..k ) =0.

Next, we write X aiX + ajXj and Y iYi .4- kYk in Lemma 2.9 and
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equate to zero the coefficient of aiOljflik. This gives

(1 Ci)Sk(Si, JXk, Sj, Yi) " (1 ci)sj(JSj, Yi, Si, Sk)
+(1 Ck)SiR(JXi, Xk, Xj, Yi) q- (1 cj)siR(Xj, Ji, Si, Sk) O,

where we have used (3.22). A further simplification follows using (3.18)-(3.22)
to give

((1 Cj)S -]- Oijk(1 Ci)S "[- (1 Ck)S "]" aikj(1 Ci)Sk)
R( Xj, JYi, Xi, Xk) =0

and this in turn reduces to

(sin1/2(Oiotijk + 0j)sin -Oj + sin-(OiOlik nt- 0)sin 0)
R(Xj, JYi, Xi, Xk) =0.

From the definition of a_/jk and Oikj, the left hand side of this equation is just
_+ 2 sin 1/20j sin 1/20kR(Xj, JYi, Xi, Xk) so it follows that

R(Xj, JYi, X, X) =0.

Thus R(_i,-j,-i,-) 0 as required.
Next, we consider (ii) above and note from its conditions that cos Ok

cos 30i. Thus Ii(Vx,S)X 0 for all Xi, Xk. Then by applying Lemmas 2.5
and 2.8 to each of the pairs

and

we have

( V. S ) Xi, v is ) xi )

(3.23)

(3.24)

R(JYi, Xk Xi, Xj) OikjR(Yi, JXk, Xi, Zj) O,

R(JXy, Xk Xi, Y) %kiR(Xy, JXk, Xi, Yi) O,

and

(3.25) R( JXi, Xi, Xi, Xk ) oijkR( Xj, JXi, Xi, Xk ) 0



NATURALLY REDUCTIVE RIEMANNIAN S-MANIFOLDS 577

for all Xi, Yi, X, X. Clearly (3.24) and (3.25) imply

(3.26) R(JX, Xi, Yi, X) R(JX, Yi, Xi, X)
gejkiR(Xj, Xi, Yi, JXk) at- gejkiR(Xj, Yi, Xi, JXk) 0

and

(3.27) R(JXi, Xi, Yi, X) + R(JXI, Yi, Xi, X)
ceijkR(Xj, JXi, Yi, Xk) XijkR(Xj, JYi, Xi, Xk) O.

By adding (3.26) and (3.27) and using (3.23)we obtain

(3.28) 2R(JXy, Xi, Yi, X) aiyR(X, Xi, JYi, X)
+ aiyR(Xy, Yi, JXi, X) aiR(X, JXi, Yi, X)
aiyR(Xy, JYi, Xi, X)=O.

Now write X oziX + ajXj and Y iYi -b- kYk in Lemma 2.9 and equate
to zero the coefficient of aiOjik to obtain

(3.29)
(1 Ci)SiR( gi, JYi, gj, gk) q- (1 ci)siR(Jgi, Yi, gj, gk)

+(1 cj)si(Xj, JYi, Si, Sk) -Jr- (1 ci)sj(JXj, Yi, Xi, Sk)
+(1 cj)slcn(Xj, JXlc, Xi, Yi) + (1 Cl)Sjn(JXj, Xlc, Xi, Yi)
@ ( 1 Ci)Sk(Xi, JXk, Xj, Yi) -- (1 Ck)Si(JXi, Xk, Xj, Yi) --0.

By choosing Y/= X in (3.29) and using (3.23), (3.25) and the first Bianchi
identity we have

(3.30) ((1 cy)s + (1 Ci)Sjijk)(Sj, JSi, Si, Sk)-- ((1 Ck)S + (1 Ci)SkOlikj)(Sj, Si, JXi, Sk) O.

It is easily verified that if any 0, 0, 0 are related by cos 0 cos(0o +
aowuOw) then

(3.31) (1 co) s + (1 cw) sa 4A sin 0 sin 0 sin -Ow
where A -1 if 0 0 + Oo and A 1 otherwise. Hence, (3.30) simplifies
to

R( Xj, JXi, Xi, Xk) -t- R ( Xj, Xi, JXi, Xk) O,
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or equivalently,

(3.32) R(Xi, JXi, Yi, Xk) + R(XI, JYi, Xi, Xk) + R(X, Xi, JYi, Xk)
+ R(Sj, Yi, JSi, Sk) 0.

Then from (3.28) and (3.32)we obtain

(3.33) R(JXj, Xi, Yi, Xk) + ijkR(Xj, Yi, JXi, Xk) 0

for all Xi, Yi, Xi, Xk.

Next, we use Lemma 2.10 which implies that (3.29) remains valid with
Oi, 0,0k replaced by mOi, mOy, mO for any positive integer m. Then it
follows from (3.23), (3.32) and (3.33) that the generalised form of (3.29)
reduces to

(3.34)

where

AmR( Xj, JYi, Xi, Xk) + BmR( X1, Yi, JXi, Xk)
--CmR(Xj, Xi, JYi, Xk) 0

A 2(1 cos mOi)sin mO + (1 cos mOj)sin mOi,

B 2(1 cos mOi)sin mO + (1 cos m0)sin mO

-I- Olikj(1 COS mOi)sin mOk -t- aikj(1 COS mOj)sin mOk

+ aiig(1 cos roOk)sin mOi,

Cm aiki(1 COS mO)sin mOk + aik(1 COS mOk)sin mO

+ aiig(1 cos mOi)sin mOi.

We note that for any 0a, Ob, Oc, the relation cos 0a cos(0b + abcaOc) implies
that, for m as above, cos mO cos(mOb + OtbcamOc) and then

(1 COS mOb)sin mO d- teabc(1 COS mOa)sin mOb

4Am sin -mOa sin 1/2mOb sin -mO

where A --1 if 0 0b -’l- 0c or if 0 + 0b 2t- 0 2rr and m is even, and
otherwise A 1. From this, it follows that A B -C for all m so
(3.34) becomes

(3.35) Bm((Xj, Yi, JXi, Xk) -}- (Xj, JYi, Xi, Xk))
Cm((Xj, Xi, JYi, Xk) -I- (Xj, JYi, Xi, Xk) O.
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Also, by writing Xi, Yi as JXi, JYi in (3.35) and using (3.32) we obtain

(3.36) nm((Sj, Yi, JSi, Sk) -[" (Sj, JYi, Si, Sk))
+ Cm((Sj, Si, JYi, Sk) + (Sj, JYi, gi, Sk) O.

Now it is easy to verify that

(3.37)
1

B 2(1 cos mOi)sin mO + 81 sin mO sin 1/2mO sin -mOk

and

(3.38) C Olijk(1 COS mOi)sin mO + 4A sin -mO sin -mO sin -mOg

where A -1 if 0 Oj --[- Ok or 0 .-[-. Oj --[- Ok 27r and m is even, and
otherwise /m 1. Then B 0 only if 1 1 in which case 01 2zr 20
and 0k 30 2,n-. It follows from (3.37) that B 0 only if cos 0 -3/4.
In particular, zr/2 < 0 < zr. Hence if B --B2 0 then h 2 1 which is
impossible since 0 0 + 0k. Similarly, C 0 only if 0 0 + 0k and then
COS0/---1/3. Hence rr/2 < 0 < and C --C2 "--0 only if Olijkl,2--1
which is impossible since 0 0 + 0k. It now follows from (3.35) and (3.36)
that for all Xi, Yi, X, X,,

(3.39) k Yi, Sxi, + JYi, Xi, o

and

(3.40) R( Xi, Xi, Yi, Xk) + R( Xi, Yi, Xi, Xk) O.

Then from (3.27), (3.39) and (3.40)we obtain

(3.41) R(Xi, Xi, Yi, Xk) R(Xi, Yi, X, Xk) 0

and (3.40), (3.41) imply R(..i, -i,-i,-k) 0. This completes the proof for
Case 4.

Case 4’. R(.0, -i, -0, -’) 0; =/= j.
First suppose c -’[- C =/= O. Then I0(Vx S)X 0 from Lemma 2.4(i). Also,

Io(VxoS)Xi 0 and it follows easily tha "(-0,-i,-0,-i) 0. Next, sup-
pose c + c 0. By Lemma 2.4(d),

Io ( S ) JXi Io ( S ) X, o
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Also, Io(VYoS)JX Io(VYoS)X 0 which gives us

R( SXo, SJXi, Yj, Yo) R(Xo, JXi, Yj, Yo) R(SXo, SXi, Jj, Yo)
+ R( Xo, Xi, JIj, Yo) =0

for all Xo, Yo, Xi, Yj. This implies

R(Xo, Xi, JYj, Yo) R(Xo, JXi, Y, Yo).

Next, write X aXo + bXi, Y cYo + dXj in Lemma 2.9 and equate to zero
the coefficient of abcd to obtain

(3 ci)R(So, Jj, Si, Yo) + (3 + ci)R(So, Yj, JSi, Yo)
-(1 + ci)R(Xo,JSi,Yj, Yo) (1 ci)R(So, Si, Jj,Yo) O.

From these two equations we have R(_0, -i,-0, @) 0 as required.

Case 5. R(i, j" "k, "1) O; i, j, _k, distinct.
For any given i, j, k, l, we show that R(.i, _j,-k,-t) 0 for all permu-

tations of i, j, k, l; equivalently, we show that

R(..i j .k _t) R(.i .k ..qj .. ) =0.

In this way the number of apparently different cases is considerably reduced.
First note that if

o

for all Xj, Xk, X then, by Lemma 2.7(i),

R(_i 5j -qk ..l ) R(.i _k .j ..t ) =0.

On the other hand, if there exist X, Y, X,, Y, Z, Xl, Yt, Zl, such that
Ii(VxkS)X, Ii(VytS)X, Ii(VvS)Y and II(Vz,S)Z are non-zero then, by
Lemma 2.5,

COS 0 COS(0j -I- OgjkiOk) COS(0k -]- OlkliOl) COS(0/-- OgljiOj)

and

COS Oj COS(0k -]- OlkljOl)
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which is easily seen to be impossible. Thus, because of Lemma 2.5 and the
symmetry properties of R, we need consider only the two cases where

(i) cos 0 cos(0/+ aijlOj) cos(0. + a,iO, )
and

Ii(Vx,,S)X Ii(7xlS)X, 0 for all X, X, X,

or

(ii) COS 01 COS(0/-1- ijlOj) COS(0j -[- OljklOk) COS(0k -]- OlkilOi)

and

Ii(Vx,S) Sj 0 for all X., Xk

We first assume (i) and note that R(i, .k, _,c.,-l) 0, from Lemma
2.7(i). Hence,

(3.42) R( Xi, Xj, Xk, Xt) + R( Xi, XI, Xj, Xk) 0

for all Xi, Xj, X,, Xt. Next, we apply Lemmas 2.5 and 2.8 to the pairs

(Ii(Vx+,S)Xj, Ii(Vx,SlXj), (Ij(gxiSlX], Ij(Vx,SlXk,),
(Ii(Vxka)gl, Ii(Vxja)gl) and (Ik(Vxia)gl, Ik(Vxja)gl)

to obtain

and

R(JXi, Xj, Xk, Xl) ogijlR(Xi, JXj, Xk, Xl) O,

R( JXi, Xk, Xi, X,) OljklR(Xj, JXk, Xi, Sl) O,

R( JXi, X,, Xj, Xk) OdiljR( Xi, JXI, Xj, Xk) O,

R(JX, Xt, Xi, X) olcljn(Xl JXl, Xi, Xj) O.

Then from (3.42) and the above four equations,

(xi. x. x. x,) .i,(xi. Jx. x. x,)
.l.lR(Xi. X. JX. Xl)
ijljklkljR(xi, Xj, Xk, JX,)
ijljklkljiljR(Jgi, gj, gk, gl)

jlijlkR(JXi, Xj, Xk, X,).
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It_ is easily seen by inspection_ that OZjliajlk --1 in all possible cases. Hence
R(JXi, X., Xk, Xt) 0 and R(_qi, 5.,-k,-t) 0 as required.

Next, consider (ii). We may assume 0 < 0j < 0k and it then follows from
the cosine equalities in (ii) that

(3.43)
27/"

0j + 0k + 0 2rr, 0 0 Oi, Ok 0 -.]- Oi, 0 3

Also, by applying Lemmas 2.5 and 2.8 to the pairs

(Ij(VxiS)Xk. Ij(VxlS)Xk )

and

and using (3.43), we have

(3.44)

(3.45)

(3.46)

R(JXi, X, Xk, Xt) R(Xi, JX, Xk, Xt) 0,

R(JX Xk Xi, Xt) + R(X JXk Xi, Xl) O,

R( JXy, Xk, Xi, X,) R( Xy, JXk, Xi, XI) O.

We now use Lemma 2.10 by writing X oliX + oljXj and Y akXk + atXl,
and equating to zero the coefficient of ceiajakat. It follows that for all
xi, x,,

(3.47) (1 cos mOi)sin mOkR(Xi, JXk, X, Xt)

+(1 cos m0k)sin mOiR(JSi, Sk, Sj, St)

+ (1 cos mOi)sin mOtR(xi, JXt, Xj, Xk)

+(1 cos m0t)sin mOiR(JXi, Xt, X, Xk)

+ (1 cos m0)sin mOkR(X, JXk, Si, Sl)

+(1 cos mOk)sin mOR(JX
+ (1 cos m0j)sin mOlR(Sj, JSl, Si, Sk)

+(1 COS mOt)sin mOjR(JXI, Xt, Xi, Xk) O.

Since 0 2rr/3 we replace m by 3m + 1 in (3.47). Then, using (3.44)-(3.47)
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and the first Bianchi identity we obtain, after some calculation,

(3.48)
cos(3m + 1)Oi(2(Xi, JX, Xj, Xt) 2K(Xi, JXt, Xj, X,)

+ 4R(X., JX,, Xi, X,) + R(Xj, JXI, Xi, Xk)

+ 3(JXj, XI, Xi, X))
v/3 sin(3m + 1)Oi(2K(Xi, JX,, Xi, Xt) 2K(JXi, Xt, X, X,)

+ (x, +x,, x, x,, )

--(JXj, Xl, Xi, Xk) )
2((Si, JXlc, Xj, Xl)

-e(xi, x,, x, x)
-x,, x, xi, x,) x,, Jx,, xi, x)) o.

We consider (3.48) for m 0, 1, 2 and note that

1 1 1
cos 0i cos 4 0i cos 70i
sin 0 sin 40 sin 70

2 sin 30g- sin 60 4 0

since if sin 30 --0 then 0 "--rr/3 or 27r/3 which is impossible by (3.43).
Hence, from (3.48), we have

(3.49) 2R(Xi, JXk, X, XI) 2R( Xi, JXt, Xj, X) + 4R(X./, JX, Xi, XI)
--[-R ( Xj, JX,, Xi, Xk) .-1- 3R(JX, Xl, Xi, Xk) O,

2R( Xi, JXt Xj, Xl) 2R(JXi, Xl, Xj, Xk) -[- n ( Xj, JXl, Xi, Xk)
-R( JXj, XI, Xi, Xk) =0,

and

n( Xi, X, X, X,) n( Xi, X,, X, X) R(X, JX, Xi, X,)
-R( Xj, JSl, Si, Xk) 0.
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Now replace Xk, X by JXk, JX in (3.51) to obtain

(3.52) R(Xi, X,, XI, JX) R(Xi, X, Xj, JX) R(X, X,, Xi, JX)
-R(Xj, Xl, Si, JXk) O.

Then from (3.51) and (3.52),

(3.53) R( Xi, Xt, Xj, JXk) + R( Xi, JXt, Xj, Xk) 0

and

(3.54) R(Xi, X,, Xj, JX) R( Xi, JX,, Xj, X).

Using (3.53), (3.54) and the first Bianchi identity, (3.49) and (3.50) reduce to

(3.55) 3R( Xi, JX,, Xj, Xt) 2R( Xi, X, JX,, X) + R( Xi, Xg, JX, Xt)
=0

and

(3.56) 5R(Xi, JX,, X, Xl) + 2R(Xi, JX, X,, Xt) R(Xi, &, JXj, Xl)
--0.

We now replace X., Xk by JX, JX, in (3.55) to obtain

(3.57) 3R(Xi, X,, JX, X) 2R(Xi, JX, X,, Xt) + R(Xi, JX,, X, X)
=0

and then by adding (3.55) and (3.57)we have

(3.58) 3R(Xi, JX, X, Xt) + R(Xi, X,, JX;, Xt) O.

But then from (3.58),

(3.59) 3R( Xi, X,, JXj, Xt) + R(Xi, JX,, X, X) 0

so,_ from (3.58) and (3.59), R(..i,,,...,_t) 0. Hence, from (3.57),
R(..i, 5, .,-t) 0. This completes the proof of Case 5.

Case 5’. R(-0, -i, 5., .) 0; i, j, k distinct and 4= 0.
If Io(Vx,S)X Io(VxjS)X Io(VxiS)X, 0 for all Xi, X, Xk then, fol-

lowing the proof of Lemma 2.7(i), we obtain
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Hence, from Lemma 2.4(c) and the S-invariance of VS, we must assume
cj + ck 0. Then

(3.60) Io(TxjS)X Io(Tx,S)X 0 for all Xi, Xj, Xk,

from which

(3.61)

We note that (3.60) is true for any permutation of i, j, 0 or of i, k, 0. Then if
Ii(7xS)Xk 0 for all Xg,_Xk, we use the relation Ii(7xog)Xk--0 and
Lemma 2.4(i) to obtain R(..,o,..j,..i,.k) --0. Thus, we may assume

Ii(VxjS)Xk 0 for some X, Xk and then

COS Ok COS(0/ -]’- OlijkOj)

by Lemma 2.5. From this and the above relation cj + ck 0, we may also
assume 0 20j 7r, Ok rr 0. and 0 > rr/2. Next, we note that for all
X+,X,,,

Ji (xkS ) Sj .-{- ol ijk li ( xtcS ) JSj Ji (xoS )gj .-I.- ol ijk li (xoa)JSj O,

where aijk --1 since
2.8, we, obtain

0 + Ok. Then, by following the proof of Lemma

R( JXi, X, Xk, Xo) + R( Xi, JX, Xk Xo) O.

Now write X Xo + aXj, Y bX + cX, in Lemma 2.9 and equate to zero
the coefficient of abc. After some calculation using the above relations, this
gives

R(Xo, X, JXk, Xi) + cR(Xo, JXj, X,, Xi) 0

for all Xi, Xg, Xk. Since c 4: 1, it follows that (-0, _5., .g,-i) 0 and
this together with (3.61)proves Case 5’.
The above five cases together with the first Bianchi identity are clearly

sufficient to establish that R 0 so the proof that the curvature tensor field
R is S-invariant is complete.

Finally in this section we prove the S-invariance of V2S. Thus, from (2.9)
we have

(72yxS)(I S-’)X (VxS)(VyS-1)X 0 for all X, Y ,.-1.
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Also, from the relation (VxS)(I S-1)Y + (VyS)(I S-1)X 0 we obtain

(V2xxS)(I- S-1)Y + (V;yS)(I- S-1)X- (VxS)(VxS-1)Y
-(VS)(VS-’)X O.

Hence

(V2xxS)(I S-’)Y + R(X,Y)(S I)X- SR(X,Y)(I S-1)X
+(VxSI(VyS-1)X (VxS)(VxS-1)Y (VyS)(VxS-1)X O.

By linearising this equation and noting that )yS VxS can be expressed
in terms of R, it follows that V2S is S-invariant.

4. Conditions for the S-invariance of VR

For convenience of notation, we define A 21 by .AxY A(X, Y)=
(V(I_S)-xS)S-1y for X, Y -1. Then from (2.1), VxY= VxY-AxY
where we regard Ax as a derivation. Since VS and V2S are S-invariant, we
know that A and VA are S-invariant so, from [2], TA 0 and the curvature
tensor field / of r satisfies

t(X Y,Z W)(4.1) g(l(Z W)Y,X)
def

R(X,Y,Z,W) + g(A(W,Y),A(Z,X))
-g(A(Z,Y),A(W,X))
+ 2g(A(Z,W),A(Y,X))

where we have used (2.2) and (2.11) for simplifications.
As noted in {}2, 7S 0, so

and

k( SX, SY, Z, W) 1( X, Y, Z, W)

(vt)( SX, SY, Z, W) (vl)( X, Y, Z, W)

for all X, Y, Z, W, V ,_-1. We now define P by

(4.2) P(X,Y,Z,W,V)

sz, sw) z,

(esvR)(SX, SY, SZ, SW ) (vR)(X,Y,Z,W).
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Because of the S-invariance of R and A we also have

(4.3) P( X, Y, Z, W, V) (TsvR)(SX, SY, SZ, SW)
-(TvR)(X,Y,Z,W).

Clearly P satisfies all the Riemannian curvature identities including the
second Bianchi identity. Moreover,

(4.4) P( SX, sY, z, w, v) x, Y, z, w, v)
for all X, Y, Z, W, V

and it follows easily that P(Xh, Yi, Zj, Wk, V) 0 unless Xh, Yi, Zj, Wk,
V -0 or X, Y, Z, W, V .p for some p [r ], where, for the latter case,
we use Lemma 2.4(a). Now suppose 7R is S-invariant, that is P 0. Then
clearly. (V0R)(_0, -0, -0, -0) 0. Also, since R and 7R are S-invariant
then 7R 0 [2]. Hence 7xR AxR for all X 1. In particular, for all

[r] and for all X

(VxgR)( Xi, JX, Xi, JXi) (Ax,R) ( Xi, JX, Xi, JXi) 0

as follows from (2.2) and Lemma 2.5. Conversely, suppose

(VoR)(-o,-o,--o,-o) 0 and (Vx,R)(Xi, JXi, Xi, JXi) 0

for all [r] and all Xi. From Lemma 2.4(b) and (4.4),

(4.5) p ( ]Ji, , zi, mi, vi) p ( x, Yi, Zi, Wi, Vi)

for all Xi, Yi, Zi, Wi, Vi. Also, by assumption,

(4.6) P( Xi, ]Xi, Xi, ]Xi, Xi) 0 for all Xi.

Then, as is well known, (4.5) and (4.6) imply P(-i,-i,-i,-i,-i) 0 [11].
Hence P 0 and VR is S-invariant. Theorem 2.2 now follows as an immedi-
ate consequence of Theorem 2.1.
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