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SYMMETRIC CLOSED OPERATORS COMMUTING WITH
A UNITARY TYPE I REPRESENTATION OF FINITE
MULTIPLICITY ARE SELF-ADJOINT

BY

Erik G.F. THOMAS!

Introduction

In the first part of this paper we prove the following:

THEOREM. Let 7 be a type I unitary representation of a group G whose
direct integral decomposition has (a.e.) finite multiplicity. Let (T, D;) be a
densely defined symmetric operator such that 7(x)9; = D, and v(x)If =
Tr(x)f forallx € G and f € D;. Then T is essentially self-adjoint.

In [1] van der Ban proves a similar result about selfadjointness for
symmetric spaces of semisimple groups “filling some gaps in the argument of
[4]” and proves the finiteness of multiplicities in the corresponding represen-
tation and on more general symmetric spaces. The two parts of the paper are
independent; thus our result can be used with the second part of [1] to get
the main theorem in the first part of [1].

For another application of the theorem see [2], where invariant differential
operators occur in connection with nilpotent groups and induced representa-
tions.

In the second part of the paper we analyse commutative algebras of
unbounded invariant operators such as occur in the papers [1] and [2].

In [7] we give an example of a left invariant symmetric differential operator
on the Heisenberg group which fails to be essentially selfadjoint. (If X,Y, Z
is the usual basis of the Lie algebra the operator X* + Y? is such an
example). This shows that even in the case of an invariant symmetric
differential operator on a homogeneous space the assumption of finite
multiplicity in the above theorem is essential.

If 7 is multiplicity-free (so that the commutant of 7 is abelian) the above
theorem is easy to prove: Since the closure of T is invariant we may assume
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T to be closed. Let V = (T — iIXT + il)~! be the Cayley transform of T
extended by 0 on the orthogonal complement of the domain of (T + i)~
Then V and V* commute with 7, and hence VV* = V*V. Since V*V is the
projection on Ker(T* — il)* and VV'* is the projection on Ker(T* + il)*
we must have Ker(T* — il) = Ker(T* + iI). Therefore both spaces are (0)
and T is selfadjoint. (This argument is found in [6] where it is also shown that
in the case of the hyperbolic spaces such as those considered in [4] the
situation is multiplicity free). The more general result above also uses Cayley
transforms, but requires more argument.

I should like to thank Larry Corwin for mentioning the problem in [2], for
the hospitality at Rutgers, and for helping to transform a letter into the
present paper.

Section 1

We begin with a summary of results about direct integrals as they apply to
direct integrals and partial isometries. All operators we deal with will be
closed, but need not be densely defined; the domain of an operator T will be
denoted by 9, and #; = #(T) will denote the image T(Z;).

Suppose that A: #— F is a partial isometry in the Hilbert space &%, so
that 4*4 and AA* are orthogonal projections. Let V = A|ker4y L . Then
V: 9,— & is an isometry, with I, = Z(A*A) and £, = R(AA*).
Conversely, if V: 9, » # is an isometry (9, c H#) we get a partial
isometry A = V on & by defining V' to be VV on 9, and 0 on 9, . Notice
that 1 is not an eigenvalue of V iff it is not an eigenvalue of V.

Now let (T, ;) be a closed symmetric operator, not necessarily densely
defined (that is, we assume (Tf, g) = {f, Tg) for all f, g € D;). The Cayley
transform V = (T — il XT + i)™" is an isometry with 9, = Z(T + i) and
R, = R(T —il), and 1 is not an eigenvalue of V. The correspondence
T — V is bijective since

(1) T=i(I+V)YI-V) "

Clearly V determines V. Thus we get a bijection between closed symmetric
operators T and partial isometries V' that do not have 1 as an eigenvalue.
(This is all standard; see e.g. [5, 13.19].)

Suppose 7 is a unitary representation of the group G on #; let T, V' and
V be related as above. It is easy to check that the following are equivalent:

@ 1(x)9; = D, and 7(X)T = T7(x), Vx € G.
(®) 9, and &, are r-invariant and 7(x)V = V7(x), Vx € G.
©) Vr(x) =r(x)V,Vx € G.
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Now assume that #'= [®#, du(A), 7 = [®7, du()) is a standard direct
integral decomposition of &% giving a primary decomposition of 7. Let &7,
&, be the commutants of 7,7, in &, #, respectively. Then (see [3, Ch II,
§3D) &= [®Z, du()), that is, the bounded operators commuting with 7 are
precisely those of the form

(2) A= ["4,du())

with A, € &/, and ||All = esssup, ||4,]| < c.

The operator A is an orthogonal projection iff A, is an orthogonal
projection for a.a. A. Since A*A = [®A%A4, du(A) and AA* =
[®A4, A% du()) we see that A is a partial isometry iff 4, is a partial isometry
for a.a. A. We also have

(3) Kerd = [°Kerd,du(r); (Kerd)*= [(KerA)* du(n).

Suppose that (7) is a family of closed operators with appropriate measura-
bility properties (one property that suffices is that the V, are a measurable
family). Then we define an operator T = [®T, du(A) as follows:

={f=(F):fi€ Drpaa d, A= f, A = T f, arcin 12},
If = (T, f))-

The operator T is closed since its graph G equals [®Gy du(A). If A4 =
[®A, du()), the A, being bounded injective operators such that
esssup, 14,1l < o, then A= [®°471du()) (even if the A, have domains
that are proper closed subspaces of the 5#,).

Now let T be the given densely defined symmetric operator commuting
with 7. Without restricting the generality we may assume that T is cloged.
Then if V is its Cayley transform the corresponding_ part1al isometry V is
bounded and commutes with 7. Therefore we have V = [®V, du(A) where
the K are partlal isometries commuting with 7,. Let V, be the isometry
corresponding to V Then 9, = (®*9, v, du(A) from (3), and

@ V= ["naun), I-v)"= [T -V ().
Now (1) immediately gives
©) Tc [T, du(d)

where T, = i(1 + V)1 — V)™
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In the case of interest to us 7 will turn out to be self-adjoint (as will the
T,), and we will get equality in (5) because self-adjoint operators are maximal
symmetric. But it does not seem to be obvious whether equality generally
holds in (5).

In the theorem, 7, is a finite multiple of an irreducible representation r,.
Thus #, = %, ® C" and 7, =m, ®[,, while the commutant o7, =
I, ® M, (C). We write a typical element A4, € &, as I, ® a,; then A} =1,
® af and A, is a partial isometry if and only if a, is. It is also clear that
Ker(4,) = I, ® Ker(a,). Let T,, V, and V, be as above. Then we have
Vv, =1, ®0,,0, being a partial isometry in C", and V, = I, ® v, where
U, = U)lkers, L . Since 1 is not an eigenvalue of V), (or 17)\), it is also not an
eigenvalue of v,. Let ¢, be the symmetric operator in C"* whose Cayley
transform is v,. Then

Dy, =R = V) =H,® R(I, 1)) =#, 8 7,

and T, =1, ®t,. The domain %, being a closed subspace of %,
[® Dy, du(}) is a closed subspace #,, of #. From (5), I C . Since T
is densely defined, %}, = # and 9, = #, fora.a. A. Thus 9, = C™ and
v, is unitary a.e. Therefore V, is unitary a.e. and V' is unitary. But this means
that T is self adjoint.

We have also shown that the 7, are bounded self-adjoint operators
commuting with the 7, and that if T is closed,

(6) T = j“’TA du(Rr).

Section 2

In this section we first prove:

THEOREM 2. Under the assumption of finite multiplicity in the primary
decomposition T = [®1, du(A), any densely defined closed operator T commut-
ing with T has an essentially unique representation (6), the T, being bounded
operators commuting with the ,.

Proof. Consider the operators B = (I + T*T)™' and C = T +
T*T)~!. These are bounded operators and they determine T as follows: Let
T, be the restriction of T to the domain of the self-adjoint operator T*T.
Then Ty = CB™! and T = T, It is sufficient to prove the last statement. Let
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(f, Tf) be an element of the graph of T orthogonal to the graph of T,. Then
(f. 8>+ (If,Tg) =0 forall g € Iy,

that is, (f, g + T*Tg) =0 for all g € Dy«p. Thus [ + T*T being self-
adjoint and one-to-one, its range is dense and f = 0.

Now if T commutes with 7 clearly B and C commute with 7. Consequently
we have

(7 B=["Bidu()); C=["Crdu(n)

where B, and C, commute with 7, and so are of the form I, ® b, and
I, ® c, respectively. Now B being one to one, B, and therefore b, is one to
one for a.a. A. Let t, = ¢,b;" and T, = I, ® t, = C,B;'. (Note that B, is
bounded and invertible). It follows that (7)) is a measurable family of
bounded operators and that T, € [®T, du(A); hence

(8) Tc [T, du(r).

To prove the reverse inclusion let A, = {A: IB7'|l <n}. Let S, be the
operator S = [®T, du(A) restricted to the set of fields which vanish on the
complement of some set A,. Then S, € T. In fact §, € T, for if f belongs
to I, we have f € Dp-1, B~'f = [®B;'f, duw()) and so f € Dy, and

Tof = CB™'f = ["C,BI'fy du(X) = Sof.

It remains to show that S is the closure of ;. If f € Z the field f, =
14,f = fa, converges to f and Sf, converges to Sf. Thus § = SocT,ie., we
have proved the existence of a representation (7). The essential uniqueness
of the family (7)) is fairly obvious. It will also follow from the proof of
corollary 2 below.

CoroLLARY 1.  Under the assumption of Theorem 2 we have
9) T* = [T du()).

Proof. Let S = [®T du(A). The inclusion S € T* is obvious. Let f —
P, f = 1,f be the spectral projection corresponding to the measurable set A.
If A=A, ={x: |IT,I| <n}, TP, is bounded and P,T* c (TP,)* = T*P,. If
T§ is the restriction of T* to the set of fields vanishing off some set A = A,
Tyf=T*f = [2T¥f, duw(d) = Sf. Thus T§ € S. But T* equals T;. In fact
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if f belongs to Dy« and f, = P, f, f, converges to f and T*f, = T*P, f =
P, T*f converges to T*f. Thus T* C §.

Remark. If T is symmetric the operators 7, are obviously symmetric a.e.
and so T = T*. Thus we recover the first theorem from Theorem 2.

CoRrOLLARY 2. Let S and T be densely defined closed invariant operators
such that S C T.Then S = T.

Proof. We have S = [®S, du(A) and T = [®T, du(A). Using cutoff sets
A, ={A: Tl <nand |S,]l <n}

it is easy to see that S ¢ T implies S, € 7, a.a. A. Thus S, and 7T, being
bounded, S, = 7, aec.and S =T.

CoroLLARY 3. Let T be a closed invariant densely defined operator. Then if
9 is a dense invariant subspace contained in 9 and T, is the restriction of T
to 9 we have T = T,

Let 2 be a dense invariant subspace of -#. Let &7 be a set of invariant
operators T, defined on 9, such that Ty(2) c 2 and such that for each
T, € & the domain of its adjoint contains & and T§| 4 belongs to o7. We
assume that &7 is closed under addition and products. Thus & is a
*-algebra of operators commuting with 7.

THEOREM 3. Let & be a *-algebra of invariant operators as described
above, which is moreover commutative. Then:

(1) The closure T = T, of each operator T, € & is normal.

() IfT, and S, belong to o their closures T and S commute strongly, i.e.,
they have commuting spectral resolutions.

(3) In the primary decomposition of r, H'= [®H, du()), with H#, =
J¢, ® C" it is possible to choose the coordinates in such a way that for
every T, € & the closure T has an expression (6), where T, = I, ® t,,
with t, a diagonal matrix.

Proof. (1) The domain of T§ is dense because it contains 2. Therefore
T, is closable. Let T be its closure. Then T is invariant and so T =
[®T, duM). If S, € & we similarly have S = [®S, du(A). Now STf = TSf
for all fe 2, implies T,S, f, = S,T,f, for all f € Z and almost all A. A
standard argument using the separability of 5# shows that this implies
ST, =T,S, for a.a. . If S =T|o we have S € T* and so § = T* by
Corollary 2. Thus (Cor. 1) S, = T;¥ a.a. A, which implies that 7, is normal
for a.a. A. We obviously have

T*T ¢ [“TFT, du(a),
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but T*T being closed and invariant we actually have equality:
3]
T*T = ["TFT,du(r) (Cor.2).

Similarly TT* = [®T,T;¥ du(A). Thus T*T = TT*, i.e., T is normal.

(2) If ®: C — C s a Borel function it is clear that ®(T) = [®®(T,) du(A).
In particular, if ® is bounded this implies that ®(7") commutes with ®(S),
which implies that T and S strongly commute.

(3) This involves some separability property of the algebra 7. Because &
does not have any topology we sketch an indirect method. Let .# be the
von Neumann algebra generated by the bounded operators TP, (cf. proof
Cor. 1). Then # being separable .# is weakly separable. The operators
A € # have expressions (2) with A, = I, ® a, and a, normal for a.a. A.
Also, if B € .#, a,b, = b,a, for a.a. A.If (4,), < is a sequence in .# which
is weakly dense, we can find a null-set N such that for A € CN the matrices
a, , are normal and commute. Now choose the coordinates so that these
matrices are diagonal. Then for all A € .# a, is diagonal for a.a. A, and after
an appropriate modification a, is diagonal for all 4 and A. But then ¢, is
diagonal for all T, € &7 and all A.

Note added in proof. 1 should like to thank Dr. N.P. Landsman for kindly
pointing out that the main result of this paper can also be deduced from a
theorem of I.LE. Segal [8] (Theorem 5), according to which a closed symmetric
operator affiliated with a finite von Neumann algebra is essentially self-adjoint.
However the proof of the fact that we are in the case of a finite von
Neumann algebra seems to be essentially equivalent to our direct proof,
which may therefore still be of interest.
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