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SYMMETRIC CLOSED OPERATORS COMMUTING WITH
A UNITARY TYPE I REPRESENTATION OF FINITE

MULTIPLICITY ARE SELF-ADJOINT

BY

ERIK G.F. THOMAS

Introduction

In the first part of this paper we prove the following:

THEOREM. Let " be a type I unitary representation of a group G whose
direct integral decomposition has (a.e.) finite multiplicity. Let (T,-r) be a
densely defined symmetric operator such that r(x).r -r and -(x)Tf
T-(x)f for all x G and f -r. Then T is essentially self-adjoint.

In [1] van der Ban proves a similar result about selfadjointness for
symmetric spaces of semisimple groups "filling some gaps in the argument of
[4]" and proves the finiteness of multiplicities in the corresponding represen-
tation and on more general symmetric spaces. The two parts of the paper are
independent; thus our result can be used with the second part of [1] to get
the main theorem in the first part of [1].
For another application of the theorem see [2], where invariant differential

operators occur in connection With nilpotent groups and induced representa-
tions.

In the second part of the paper we analyse commutative algebras of
unbounded invariant operators such as occur in the papers [1] and [2].

In [7] we give an example of a left invariant symmetric differential operator
on the Heisenberg group which fails to be essentially selfadjoint. (If X, Y, Z
is the usual basis of the Lie algebra the operator X4+ y2 is such an
example). This shows that even in the case of an invariant symmetric
differential operator on a homogeneous space the assumption of finite
multiplicity in the above theorem is essential.

If - is multiplicity-free (so that the commutant of r is abelian) the above
theorem is easy to prove: Since the closure of T is invariant we may assume
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T to be closed. Let V (T-//)(T +//)-1 be the Cayley transform of T
extended by 0 on the orthogonal complement of the domain of (T +//)-1.
Then V and V* commute with -, and hence W* V* V. Since V*V is the
projection on Ker(T* -//)+/- and W* is the projection on Ker(T* +//)+/-
we must have Ker(T* -//) Ker(T* +//). Therefore both spaces are (0)
and T is selfadjoint. (This argument is found in [6] where it is also shown that
in the case of the hyperbolic spaces such as those considered in [4] the
situation is multiplicity free). The more general result above also uses Cayley
transforms, but requires more argument.

I should like to thank Larry Corwin for mentioning the problem in [2], for
the hospitality at Rutgers, and for helping to transform a letter into the
present paper.

Section 1

We begin with a summary of results about direct integrals as they apply to
direct integrals and partial isometrics. All operators we deal with will be
closed, but need not be densely defined; the domain of an operator T will be
denoted by -T, and ..@. .@(T)will denote the image T(.).
Suppose that A: --+ o is a partial isometry in the Hilbert space off, so

that A*A and AA* are orthogonal projections. Let V AI(KerA)_L. Then
V: -v is an isometry, with .v ,.2(A*A) and @.v .@(AA*).
Conversely, if V: -v--+ or,g’ is an isometry (--@v c off) we get a partial
isometry A 1? on og by defining [? to be V on -v and 0 on .+. Notice
that 1 is not an eigenvalue of V iff it is not an eigenvalue of
Now let (T, _@) be a closed symmetric operator, not necessarily densely

defined (that is, we assume (Tf, g) (f, Tg) for all f, g .). The Cayley
transform V (T-//)(T +//)-1 is an isometry with -v .@(T +//) and
-@v .@(T-//), and 1 is not an eigenvalue of V. The correspondence
T V is bijective since

(1) T i(I + V)(I- V) -1.

Clearly V determines V. Thus we get a bijection between closed symmetric
operators T and partial isometrics V that do not have 1 as an eigenvalue.
(This is all standard; see e.g. [5, 13.19].)
Suppose r is a unitary representation of the group G on a(’; let T, V and

V be related as above. It is easy to check that the following are equivalent:

(a) 7"(X)..T ..rT and r(x)T T’(x), Vx G.
(b) .-T and T are z-invariant and r(x)V Vr(x), Vx G.
(c) Vz(x) ,-r(x)17", Vx G.
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Now assume that o=f d/z(A), z f’x d/z(A) is a standard direct
integral decomposition of giving a primary decomposition of -. Let

be the commutants of z, zx in , respectively. Then (see [3, Ch II,
3]) sO’= f*zc d/x(h), that is, the bounded operators commuting with z are
precisely those of the form

(2) A fA d(;t)

with A and IIA II ess sup IlAx < .
The operator A is an orthogonal projection iff A is an orthogonal

projection for a.a. A. Since A*A f*A*Ax dtz(A) and AA*
f *A,A’ d/x(A)we see that A is a partial isometry iff A is a partial isometry
for a.a.A. We also have

(3) Ker A f * Ker Ax d/x(A); (Ker A) +/- f* (Ker A) - d/x(1).

Suppose that (Tx) is a family of closed operators with ap.propriate measura-
bility properties (one property that suffices is that the Vx are a measurable
family). Then we define an operator T f*Tx dl(A) as follows"

f ( f)" f _@r,/z a.a. &, f, & Txf are in L },
rf (LL).

The operator T is closed since its graph Gr equals f*Gr d/z(h). If A
f*A, d/x(A), the A being bounded injective operators such that
ess supx IIAx < , then A -1 f*A; d/z(A) (even if the A have domains
that are proper closed subspaces of the ).
Now let T be the given densely defined symmetric operator commuting

with z. Without restricting the generality we may assume that T is closed.
Then if V is its Cayley transform the corresponding partial isometry 12 is
bounded and commutes with z. Therefore we have 12 fl? dta,(h)where
the V are partial isometries commuting with zx. Let Vx be the isometry
corresponding to V. Then -v f*-v d/z(h) from (3), and

(4) V= fvx dtz(A), (I- V) -1= f(!, V) -1

Now (1) immediately gives

(5) T
_
f*T d(X)

where Tx i(I + V)(I- VA) -1.
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In the case of interest to us T will turn out to be self-adjoint (as will the
T), and we will get equality in (5) because self-adjoint operators are maximal
symmetric. But it does not seem to be obvious whether equality generally
holds in (5).

In the theorem, z is a finite multiple of an irreducible representation r.
Thus =JU (R)Cn and ’ =rr (R)In, while the commutant

I (R) Mn(C). We write a typical element A as I (R) a; then A] I
(R) a and A is a partial isometry if and only if a is. It is also clear that
Ker(A) I (R) Ker(a). Let T, V and V be as above. Then we have
V I (R) , being a partial isometry in C", and V I (R) v where

v Ir) _L Since 1 is not an eigenvalue of V (or V), it is also not an
eigenvalue of v. Let t be the symmetric operator in C whose Cayley
transform is v. Then

and T I (R) t. The domain -T being a closed subspace of

f-T d(A) is a closed subspace 0 of o. From (5), -T c o0. Since T
is densely defined, 0 o and -r o for a.a.A. Thus -t C and
cA is unitary a.e. Therefore V is unitary a.e. and V is unitary. But this means
that T is self adjoint.
We have also shown that the T are bounded self-adjoint operators

commuting with the - and that if T is closed,

(6) T- d/z(h).

Section 2

In this section we first prove:

THEOREM 2. Under the assumption of finite multiplicity in the primary
decomposition - f- d/z(A), any densely defined closed operator T commut-
ing with " has an essentially unique representation (6), the T being bounded
operators commuting with the -.
Proof Consider the operators B (I+ T*T)-a and C- T(I+

T’T)-1. These are bounded operators and they determine T as follows: Let
To be the restriction of T to the domain of the self-adjoint operator T* T.
Then To CB-1 and T 00. It is sufficient to prove the last statement. Let
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(f, Tf) be an element of the graph of T orthogonal to the graph of T0. Then

( f,g) + (Tf, Tg ) =0 for allg_T0,

that is, (f, g + T* Tg) 0 for all g -T*T" Thus I + T* T being self-
adjoint and one-to-one, its range is dense and f 0.
Now if T commutes with r clearly B and C commute with r. Consequently

we have

(7) B

where Ba and Ca commute with % and so are of the form Ia (R) ba and
Ia (R) ca respectively. Now B being one to one, Ba and therefore ba is one to
one for a.a.h. Let a cab[ and Ta Ia (R) a CaB[ 1. (Note that Ba is
bounded and invertible). It follows that (Ta) is a measurable family of
bounded operators and that TO

_
fTa d/z(A); hence

(8) T c_ fTa dz(a).

To prove the reverse inclusion let A {A" lIB,-ill n}. Let So be the
operator S f*Ta dlz(A) restricted to the set of fields which vanish on the
complement of some set An. Then SO

___
T. In fact SO

_
T0, for if f belongs

to -So we have f DB- B-if-- f*Blfa d/x(A) and so f DTo and

Tof CB-lf fCBZlf d(h) Sol.

It remains to show that S is the closure of S0. If f -s the field fn
la,f fA converges to f and Sfn converges to Sf. Thus S S0_ T, i.e., we
have proved the existence of a representation (7). The essential uniqueness
of the family (Ta) is fairly obvious. It will also follow from the proof of
corollary 2 below.

COROLLARY 1. Under the assumption of Theorem 2 we have

(9) T* f* r* d/z(,).

Proof Let S f*T d/z(a). The inclusion S
___
T* is obvious. Let f

Paf laf be the spectral projection corresponding to the measurable set A.
If A A {/" IIT _< n}, TPa is bounded and PaT*

_
(TPA)* T*Pa. If

T is the restriction of T* to the set of fields vanishing off some set A An,
Tf T*f fTfa d(A)= Sf. Thus T

___
S. But T* equals 00. In fact



556 ERIK G.F. THOMAS

if f belongs to DT, and fn eanf, fn converges to f and T*fn T’PAnf
PanT*f converges to T*f. Thus T* S.

Remark. If T is symmetric the operators Tx are obviously symmetric a.e.
and so T T*. Thus we recover the first theorem from Theorem 2.

COROLLARY 2. Let S and T be densely defined closed invariant operators
such that S c T. Then S T.

Proof We have S fSz dtz(A) and T f*Th dlz(,). Using cutoff sets

A {/" IIT _< n and IIS _< n}
it is easy to see that S

_
T implies Sx Tx a.a.h. Thus Sx and Tx being

bounded, Sx Tx a.e. and S T.

COROLLARY 3. Let T be a closed invariant densely defined operator. Then if
_

is a dense invariant subspace contained in 5r and TO is the restriction of T
to

_
we have T- To.

Let . be a dense invariant subspace of o. Let be a set of invariant
operators TO defined on ., such that T0(_)c

_
and such that for each

TO z the domain of its adjoint contains . and T 12 belongs to ’. We
assume that " is closed under addition and products. Thus ’ is a
-algebra of operators commuting with r.

THEOREM 3. Let " be a ,-algebra of invariant operators as described
above, which is moreover commutative. Then:

(1) The closure T o of each operator To s" is normal.
(2) If TO and SO belong to " their closures T and S commute strongly, i.e.,

they have commuting spectral resolutions.
(3) In the primary decomposition of ’, =f d/z(h), with

(R) Cn it is possible to choose the coordinates in such a way that for
every TO the closure T has an expression (6), where Tx I (R) x,

with x a diagonal matrix.

Proof. (1) The domain of T is dense because it contains _. Therefore
To is closable. Let T be its closure. Then T is invariant and so T-
f*Tx dlz(A). If So x we similarly have S f*Sa dtx(A). Now STf rsf
for all f _, implies TSf STf for all f

_
and almost all . A

standard argument using the separability of o shows that this implies
SxTx TxSx for a.a. ,. If So T’I we have S c__ T* and so S T* by
Corollary 2. Thus (Cor. 1) S T* a.a. ,, which implies that T is normal
for a.a. ,. We obviously have

T* T TT dlx( A )
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but T*T being closed and invariant we actually have equality:

T*T f*TT d(,) (Cor. 2).

Similarly TT* fTAT d/x(h). Thus T*T TT*, i.e., T is normal.
(2) If : C C is a Borel function it is clear that (T) f*d(Tx) d(h).

In particular, if is bounded this implies that (T) commutes with (S),
which implies that T and S strongly commute.

(3) This involves some separability property of the algebra e’. Because ’does not have any topology we sketch an indirect method. Let ’ be the
von Neumann algebra generated by the bounded operators TPa (cf. proof
Cor. 1). Then being separable / is weakly separable. The operators
A have expressions (2)with A Ix (R) a and a normal for a.a.h.
Also, if B /{, axbx bxax for a.a.A. If (An)nr is a sequence in ./which
is weakly dense, we can find a null-set N such that for , CN the matrices
an, are normal and commute. Now choose the coordinates so that these
matrices are diagonal. Then for all A a is diagonal for a.a. ,, and after
an appropriate modification ax is diagonal for all A and ,. But then x is
diagonal for all TO " and all A.

Note added in proof I should like to thank Dr. N.P. Landsman for kindly
pointing out that the main result of this paper can also be deduced from a
theorem of I.E. Segal [8] (Theorem 5), according to which a closed symmetric
operator affiliated with a finite von Neumann algebra is essentially self-adjoint.
However the proof of the fact that we are in the case of a finite von
Neumann algebra seems to be essentially equivalent to our direct proof,
which may therefore still be of interest.
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