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QUASICONFORMAL MAPS

M.K. VAMANAMURTHY AND M. VUORINEN

1. Introduction

The special function (cf. (2.1))

(1.1) CPK( r ) iz-l( iz( r)/K),

where K (0, oo), r (0, 1), is closely related to geometric properties of
quasiconformal mappings. Some examples of such geometric properties are
the quasiconformal Schwarz lemma [LV, p. 64] and the study of the
Beurling-Ahlfors extension of quasisymmetric functions [AH], [L], [LV]. We
first recall two earlier explicit estimates for the function qr(r) and then give
our main results, which yield new identities and inequalities for this fre-
quently occurring function. The basic inequality

(1.2) rl/K < qK(r) < 41-1/Krl/K

for K (1, oo) and r (0, 1), has been known for more than thirty years. This
inequality was recently sharpened [AVV3] to

(1.3) 1 1 < qK(r) < th(arth r + (K- 1)/x(r’)),

for K (1, ), r (0, 1)with r’= X/1 r 2

1.4. THEOREM. For K (0, oo), let f: [0, 1] - R, be defined by

1 (l/K(r)
f(r)

(l-r) 1/Ic for O < r < 1,

and f(1) 81 1/K. Then f is strictly increasing if K > 1 and strictly decreasing
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if K < 1. In particular, for K (1, ), r (0, 1),

(1)

(2)

1- (l-r)r<qr(r) < 1-81-r(1-r) r,
1 81-1//((1 r) 1/K < ql/K(r) < 1 (1 r) 1/K.

This theorem answers affirmatively a question raised by R. Kiihnau (see
the remark in Section 2 following the proof of Theorem 1.4). Applying C.G.J.
Jacobi’s formulas we obtain an infinite product expansion for qK(r). This
expression for qK(r) follows immediately from Jacobi’s work, but has appar-
ently been overlooked in the literature.

1.5. THEOREM. For K > 0 and 0 < r < 1 we have

(1) K(r) 4exp(-(r)/K) 1-[ 1 + q.,/K 4

n=l 1 q- q(2n-1)/K

(2) qK(r) I-I (th((Zn 1)K/x(r’))4)
n=l

1 1-’I (th((2n- 1)tz(r)/K)8),
n----1

where q exp( 2/x(r)).

The functional inequality

(1.6) qK( ab) < qK( a)qK( b)

for K > 1, a, b (0, 1) was proved in [AVV1, 3.13]. Our next theorem gives a
majorant for the right hand side of (1.6).

1.7. THEOREM. Let K >_ 1, a, b (0, 1). Then

(1)

(2)

oK(ab) < qK(a)PK(b) < qK(V)2

qK( a)qK( b) < qK( al/K)qK( b) 1/K
< OK:(ab),

< oK2(ab),

with equality when K 1.

1.8. THEOREM. For K > 1, r (0, 1) the function

defined by

f: (0, oo) --) ( rl/K, 1)

f(p) (qK(rP))1/p,
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is strictly decreasing. In particular,

 r(r <_ p, p >_ 1,

> p 11.

Theorems 1.5, 1.7, and 1.8 together give interesting and perhaps new
inequalities for infinite products. We shall give various applications of the
function q/c(r) to quasiconformal mappings. By the quasiconformal counter-
part of the Schwarz lemma [LV, p. 63] the function qr(r)r measures the
deviation of a Kquasiconformal automorphism of the unit disk from the
identity map. For this function we obtain an explicit majorant in Section 3
and correct an error in an earlier result of the same kind in the literature.
The boundary correspondence of a quasiconformal mapping of the upper

half-plane onto itself can be characterized as a homeomorphism of the real
axis onto itself that satisfies the Beurling-Ahlfors p-condition [BA], [AH].
The p-condition is frequently used in the theory of Teichmiiller spaces [L]
and it has been extensively studied in its own right by W.K. Hayman and A.
Hinkkanen [HH], [HI].

P. Tukia [T] showed recently that such homeomorphisms, often called
quasisymmetric functions, can change the Hausdorff dimension of a set in a
very peculiar way. We show here with a quantitative estimate that quasisym-
metric functions approach linear maps when p 1. This result improves the
qualitative estimate in [L, p. 32]. See also the interesting recent results of F.P.
Gardiner and D.P. Sullivan in [GS]. Our results also complement and
improve the earlier growth estimates of these maps in [HH] and [HI]. Our
proof makes use of the quasiconformal extension of such a map and the
function pr(r). For integer values of K the function pr(r) occurs also in
number theory, namely in the study of modular equations [BB, pp. 102-109],
[BE1], [BE2] and singular values associated with complete elliptic integrals.
Bounds for the function qr(r), such as those in Theorem 1.4, also yield
bounds for such singular values. An example is the following corollary to
Theorem 1.4 (2).

1.9. COROLLARY.
admits the estimate

The pth singular value kp (for definition see 3.18 below)

(1 l/vf)1/7 < 1 -kp < 8’-’/7(1 1/1/’)1/v/"

for p 1, 2, 3,

Some conjectures concerning the function pr(r) are given at the end of
Section 2.



FUNCTIONAL INEQUALITIES AND JACOBI PRODUCTS 397

Acknowledgements. We are indebted to R. Kiihnau for suggesting the
question concerning Theorem 1.4 and to G.D. Anderson, J.M. Borwein, and
J. Pfaltzgraff for useful remarks and discussions. The research was completed
during the first author’s visit to Michigan State University and the second
author’s visit to the University of Michigan under a grant from the Academy
of Finland and the U.S. National Science Foundation, Grant NSF-DMS-
9003438 of Prof. F. W. Gehring.

2. Proofs

The notation and terminology will be as in [LV]. The hyperbolic cosine and
tangent and their inverse functions are denoted by ch, th, arch, and arth,
respectively. The function /x(r), 0 < r < 1, in (1.1) is given by [LV, (2.2), p.
60]

7r JU’(r) JU(r) f01 dx
(2.1) /x(r) - JU(r) V/(1 x2)(1 r2x2)

where

JU’(r) JU(r’), r’ /1 r 2

We shall need the following differentiation formula from [AWl, 3.27]

(2.2) d- K
r(r’)2jU2(r)

where s qa/r(r), K (0, oo), r (0, 1), r’ V/1 r 2 s’ V/1 s 2

2.3. Proof of Theorem 1.4. We need only prove the result for K (1, oo),
since the other case follows by inversion. Differentiating and using (2.1) and
(2.2), we obtain

K. (l r)l+/IC, f,(r) (l s)[l s(I + s)jU’2(s) ]r(1 + r)jU’2(r)

which is positive since tjU’2(t) is an increasing function of on (0, 1) and
0 < s < r < 1 [AVV2, 2.2(3)]. Finally, it follows from [LV, p. 65] and [AVV1,
(3.4)] that limr_ f(r) f(1). r
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Theorem 1.4 is related to the conjecture [LV, p. 68] that a K-quasiconfor-
mal automorphism of B2 with f(0) 0 satisfies

(*) If(x) f(Y)] _< 16-’/rlx yll/r.

For K > 1, r (0, 1) let g be the extremal K-quasiconformal mapping [LV,
p. 65] with gB 2 B 2, g(0) 0, and g(r) ql/r(r), g(1) 1. If x r,
y 1, then

Ig(x) g(Y)l 1 ql/r(r) < 81-1/r11 xl 1/.

Hence in this case (.) holds even with a smaller constant.

2.4. Proof of Theorem 1.7. (1) The first inequality is (1.6). To prove the
second one we show that for a fixed a (0, 1) the function

f(x) log qtc(a2) + log qr(x2) 2log qr(ax)

is increasing on (0, a) and decreasing on (a, 1), so that f(x) < f(a) 0 for all
x (0, a) td (a, 1). If we write s qr(x2), t qr(ax), u qr(x) and use
the differentiation formula in [AVV2, Lemma 2.1] we get

2
f’(x) --(g(x2) g(ax))

with g(x)= (1 -u2),filfff(u)2/((1 -x2),’-:ff(x)2). Since g(x) is decreasing by
[AVV1, Lemma 3.12] it follows that f’(x) > 0 for x (0, a) and f’(x) < 0
for x (a, 1). The third inequality follows from (2).

(2) The proof of part (2) will follow from Theorem 2.22. r3

In connection with the study of quasisymmetric functions of the real line
and their extension to quasiconformal mappings of the plane [BA], the
function

(1)
2

#K - K>O,(2.5) A(K)=
(l/g (1)__

has found many applications [L], [LV]. We now consider the following
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generalization of A(K):

(2.6) IK(X)=A(Kr)=[CPK(r)]2,,
ql/K(r’ )

for 0 < K < , 0 < r < 1, r’ V/1 r 2 and x (r/r’)2. S. Agard [A]
introduced this function in the study of quasisymmetric functions of the real
axis.

2.7. THEOREM. (1) For K [1, ), and r [1/x/-, 1), r’= v/1 r 2

A(K) 7 <A(K,r) <A(K) 7

with equality if and only if K 1 or r 1/x/.
(2) For K [1, ), r (0, 1), r’= V/1 r 2

(r)2A(K,r) > K4 -r
with equality if and only if K 1.

(3) For K [1, oo), r(0,1) let S qK(r), r’ /1-- r 2, and fl(r)=
rs’/(r’s).
Then f is decreasing from (1/v-, 1) onto (0, 1/V/A(K) ).

(4) For K [1, ), [1, o) let r /t/(1 + t) s qr(r), let

fz(t) (r/K(t) --t)/t (r’s)2rs 1,

Then f2 is increasing from (1, oo) onto (A(K) 1, oo). In particular,

q( t) > h( K)t.

(5) For K [1, o), t (0, o) let fa(t) lr(t)/t r. Then f3 is decreasing
from (0, ) onto (16r- 1, ). In particular,

for all t (0, oo).

K(t) >_ 16K- ltK,

Proofi Since the cases of equality in (1) and (2) are obvious, we only need
to prove the strict inequalities. With s qK(r), using (2.1) and (2.2), we
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obtain

a (s’)() K(’)’()
dr - r( r’)2r2( r) r( r’)2,’2( r)

whence

for 1 < K < , 0 < r < 1. Now let 1/V< r < 1. Then/x-a(Tr/2K) < s <
1. Hence

f dt f
r dt

r t,)2 < K
(-)t( /v t(t’) 2

which yields

so that

S__ r

and the upper bound in (1) follows.
Next, for the lower bound in (1), let f(r) (sr’)/(s’r). Then differentia-

tion gives

r(r,)2f’(r) 1 [ (s’)2/2(s)f(r) - 2(r) +

()’()
(r)’(r) -1>0,

since (x)’(x) is increasing on [1/ x/, 1] and 1/ V- < r < s < 1 [AVV2,
Theorem 2.2(8)]. Hence f(r) > f(1/x/) X/A(K), and the lower bound in
(1) follows.

For (2), from the above argument, using the facts that x%/(x)2 is decreas-
ing and x"(x)2 is increasing on (0, 1) [AVV2, Theorem 2.2 (3)], we get

S )2 ds 1 ss’K <-d- < Krr,.
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Hence

For (3) we obtain

A(K, r) 7

f(r) l r(s 1) ds+
)2fl(r) r (r’ (S,)2 7

1 1 1 s(s’)2dU(s) z

r(r’) 2 s(s’) 2 K r( r’)2drd( r) 2

r(r’)2K
K

o,(r)2

1 [ dU’(r) deal(s)
r(r’)2K dr-d(r)dU’(s)

r(r,)2KdU,(s)dU(r) 2 [drd(r)dU’(r) df--U(s)dU’(s)].

Since s > r it follows from [AVV2, 2.2 (8)] that f(r) < 0 on (1/x/-, 1). The
limiting values of fl are clear.

Part (4) follows easily from (3).
Finally, for the proof of part (5), let g(r) (r’)Ks/(rKs’). Then

g’(r) 1 (s’)2sded(s) 2 K
g(r) (s,)2s Kr(r,)2dg’(r)2 r(r,) 2

Kr(r’)2 J(r

Thus f3 is decreasing from (0, oo) onto (16r-1, oo). 3

The second inequality (1) in Theorem 2.7 is reversed if r (0, 1/x/-].
Moreover, since A(1/K, r’)A(K, r)= 1, one can obtain an analog of 2.7 for
K (0, 1].

In terms of the notation r(s)= rr/t,(1/V’I + s), s > 0, the function
A(K, r)can also be written as

qK(r)2 ( )r(s) r 1 + sa(K,r)
1 qK(r)2 7’-1 1 s
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This alternate form of the function h(K, r) is sometimes used in the litera-
ture.

2.8. COROLLARY. For 1 <_ K < we have

(1)

(2)

(3)

(1 )A( K)s < "r-1 .-’r( s)
_
( K)sK forl<s<oo,

A(K)(1/s) <_ 1/z-(K’(s)) <_ A(K)(1/s) K for 0 < s <_ 1,

(1 )K4t < .-1 "-’l’(t) for 0 < <

Proof The result follows immediately from Theorem 2.7.

2.9. THEOREM. For each r (0, 1), let f: [1, o) - R be defined by

f(K)
log(h( K, r )( r’/r ) 2)

K-1

ifK > 1 and

4
j/( r)JU’(r).f(1) -Then f is strictly decreasing and

f[1 oo)=( 7rJV(r) 4
JU(r) JV’(r)]

In particular, for K [1, oo), r (0, 1),

(2.10) exp(r(K 1)JU(r)/JU’(r))

(r’)2 (4(K-1)JU(r)JU’(r))< h(K,r) 7 <exp
,rr

with equality if and only if K 1.

Proof From (2.1) and (2.2), with s qK(r), we obtain

ds 4 2,2
-d-g ,n. ZK 2 p’ ( r ) s( s’ ) ( s )
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and

Hence

ds’ 4 2S,b/2rZK21(r)s (s).

dK log s dK s’ dK

4/x(r) U2(s)
7r.2K 2 /z(r)

Thus (d/dK)(log(s/s’)) is positive and decreasing on [1, oo), hence log(A(K, r))
is increasing and concave on [1, oo). Hence by the Monotone l’Hopital’s Rule
[AVV3, Lemma 2.2] f(K) is decreasing. Finally,

and

2jU’2(s)
lim f(K) lim
K’-I s--)r Iz(r) -d’(r)dU’(r),

2jU’2(s)
lim f(K) lira
K-) s-)l /(r)

7rJU(r) D

2.11. COROLLARY (cf. [BA], [AVV1, Theorem 1.1]). The function
log A(K)/(K- 1) is strictly decreasing from (1, ) onto (r, a), where a
(4/’rr)2(l/x/) X(1) 4.37688... In particular,

e(r- 1) < X(K) < ea(K- 1),

for l <K<oo.

Proof. Put r 1/- in (2.10). D

The constant a in Corollary 2.11 can also be written as F(41-)4/(4,r2). This
constant occurs also in connection with the sharp form of the Schottky
theorem due to J. Hempel [HA, p. 702].

2.12. THEOREM.
function

For each K (1, oo), let s qr(r), 0 < r < 1. Then the

$ r
g( r) s’ r’

is strictly increasing from (0, 1) onto (0, oo), where r’ V/1 r 2 s’ V/1 s 2
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Proof Differentiation with respect to r yields

1 s(s’)2ded2(s) 1
g’(r) (s’)3K r(r’)2d2(r) (#)3

1 [sd(s)d’(s) s’

s’(#)2 rdg’(r)d’(r) r’ >0,

since 0 < r < s < 1 and since the function xd’(x) is increasing on (0, 1)
[AVV2, Theorem 2.2(3)]. Finally, the limiting values are obvious, t3

2.13. COROLLARY. For each K (1, oo), with notation as in (2.6), the
function h(x) IK(X) X is strictly increasing from (0, oo) onto (0, oo).

Proof With x (r/r’)2, S K(r), we have

h(x)= 7 + 7 s’ r’

hence the result follows from Theorem 2.12.

In a recent work [VVW] on quasiconformal maps in Rn, n > 2, certain
special functions have found application to the geometric study of quasicon-
formal mappings. In the plane case these functions coincide with the one in
Corollary 2.13.

2.14. Proof of Theorem 1.5.
product formula [J, p. 146]

For the proof of part (1)we use Jacobi’s

)k 4V/ 1--I 1 +q2n 4

n=l 1 + q2n-1

with q exp(-Trd’(k)/d(k)) exp(-2/z(k)) and 0 < k < 1. If we write
y =/z(k), this identity yields

-l(y) 4exp(-y) I-I
n=l

1 + exp(-4ny)
1 + exp(-(an 2)y)

Part (1) follows on putting y I(r)/K.
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For the proof of part (2) we use another formula of Jacobi [J, p. 146],
namely

k’ I-[ 1--q2n-1 4

n=l 1 + q2n-1 n--ll-I (th((2n- 1)/(k))) 4

so that with/x(k) y we have

-l(y))2 I-’I th4((2n 1)y).
nl

Since K(r)2 q ql/K(r’)2= 1 both equalities in 1.5 (2) have been estab-
lished, u!

In view of the definition (1.1) of qK(r) a remarkable feature about
Theorem 1.5 is that the infinite products involve only the function/x(r) and
not its inverse. Theorems 1.4, 1.5, and 1.7 together with (1.2), (1.3)yield an
interesting series of sharp inequalities for infinite products. We can derive
further functional inequalities for tPK(r) if we use the sharp inequality

B(cP/K( r), P/K( S) )
< qK(B(r,s)) <B(CPK(r),qK(S)),B(r,s)

r+s
l+rs’

for K > 1, r, s (0, 1), or other inequalities from [AVV1]. The composition
property q.(qB(r)) p,B(r), A, B > 0, together with the fact that q2(r)
2V-/(1 + r) enables one to evaluate 02n(r) by recursion. Thus for K 2n

we obtain explicit evaluations of the infinite products in 1.5(1) and (2) in
terms of algebraic functions. We give such a formula for n 1 at the end of
Section 3 in 3.17.
Theorem 1.5 immediately yields

(2.15) V/1 (th(tz(r)/K)) 8 < pr(r) < (th(K/(r’))) 4

for K > 0, 0 < r < 1, which seems to be a new inequality. Note that (2.15) is
not sharp when K 1, whereas (1.3) is sharp in this case. Computer
experiments together with (2.15)when K-- 1 yield the approximate identity
for r (0, 1)

1 < (th(/x(r))) s + (th(/x(r’))) 8 < 1.006.
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For our next result we recall from [AVV3, Theorem 1.11(1)] that

(2.16) qg(r) < th(2arth(21-1/KA(r)1/K)), r
A(r)= l+r"

for K > 1 and for r (0, rr) with rr 22-K/(1 + 41-K).

2.17. THEOREM. For K (1, ), r (0, 1),

(1)

(2)

qK(r) < th(K241-1/K arth(rl/r)),

ql/K(r) > (th(K-241/K-1 arth r))g.

Proof. We need only prove (1) since (2) follows from (1) by inversion.
Denoting c(K) K241-1/r, s qr(r), let

f(r) arth(s) c(K)arth(rl/K).

Then f(0) 0 and for 0 < r < 1,

f’(r) sJK2(s) c( K)r/r

Kr(r’)2j2(r) Kr(1 r2/r)
<0

iff

s
c( K) > 1/K

,r2 2/K
K2 (s) 1-r

ord’Z(r) 1- r z

which is true by (1.2). Thus f is strictly decreasing and f(r) < f(0), hence (1)
follows, t

2.18. Proof of Theorem 1.8. The limiting values follow from l’Hopital’s
rule. Let s f(p), u rp, v sp. Then/x(v) I(u)/K, v > u, and

Now

dv v(v’)2d2(v) du
dp Ku( u, )Z,2( u ) dp

du
u log r,

dv sP log s + psp_l dS ( p ds )- =v logs + 7-
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Hence,

p ds (v’)2dU2(v)log r
log s + 7 - (u,)2dU2(u)K

( v’)2J/(v)J/’( v)log r

/z( v)log r

Writing m(r) (2/rr)(r’)2aU(r)aU’(r) this yields

pds 1
s dp m(u)

1 1

so that

p2 ds
sdp

1 [m(u)log(1 v log( 1
m(u) -)-m( ) )] <0,

since m(x)/log(1/x) is increasing on (0, 1) [AVV2, Lemma 4.2 (2)].

2.19. Conjectures. For K [1, oo) and r (0, 1), the inequality

(2.20)

where

th(c(K)arth(rl/K)) > oK(r ) >_ th(d(K)arth(rl/K)),

c(K) max{K, 41-1/K}, d(K) min{K,41-1/K},

holds, with equality iff K 1 or K 2. The two particular cases K 1 or
K 2 are clear with equality in (2.20) for all r (0, 1). Our computational
experiments suggest that

(2.21) q(r) >_ th(22-1/g arth(A(r)l/K)),
for K > 1 and r (0, 1) where A(r) r/(1 + r’) is as in (2.16). If (2.21)
indeed holds, then it is very close to the upper bound in (2.16).

2.22. THEOREM. For K, L > 1, a, b (0, 1),

(1) qK(al/L)(qL(b))1/K

(2)

< qK(al/LOL(b) ) < qK(OL(ab) ) OKL(ab),
n

I-I og,( a) <_ qg( a),
j=l

where a al... an, K K1... Kn, a . (0, 1), K >_ 1.
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Proof. The inequalities in (1) follow from the fact that qr(a)/a/r is
decreasing [H] while (2) follows by induction.

The next theorem shows that the inequality (2.20) holds for certain values
of K.

2.23. THEOREM. For p 1, 2,..., K 2, and for all r [0, 1],

(1) qr(r) < th(K arth(rl/r)).

For K > 2, and for all r, u (0, 1) we have

(2)

(3)

qr(r) < q/cz(r2),

qic( r)qr(u) < tPK2(ru) 2.

Proof For (1) recall first that qAB(r) qA(PB(r)) and that [LV, p. 64]

2Vq2(r) 1 +r th(2 arth(f-)),

so that the result is true for p 1. Next, suppose that the result holds for a
certain integer p. Then

q92p+1(r ) q2(q2.(r)) th(2arth(v/o2.(r ) )) < th(2arth(q2.(f)))
2-P-1< th(2p+l arth(r )),

as desired. In the second last step the inequality (1.6) was applied.
For (2), let s qr(r), t qr:(r2). Then Ix(s)= IX(r)/K and Ix(t)=

Ix(r2)/K 2. By [AVV2, 4.3 (4)] the function Ix(r)/log(1/r) in increasing, and
thus Ix(r 2) < 2ix(r). Hence

ix(t) < 2ix(r)/K 2 2ix(s)/K < ix(s),

and thus > s as desired.
For (3)from Theorem 1.7 and (2)we have

qic ( r ) qI( U) < qr(vr)2
< qic ( ru) 2
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2.24. Remark. From the proof of Theorem 1.5 one can read off various
identities and inequalities for z-(y) and/x(r). For instance we see that for
y>0,

/-1(y) 1 I-I thS((2n 1)y).
n=l

The identities

/x(r)/z(r’) 7r2/4 and
1 r) ,n.2/2(r)/z 1 + r

imply that

(2.26) (/-1(y))2 + /-1 "-
,

(2.27)
1 .-- /-l(y) -1

1 + /.L-l(y) /2, ""
for y > 0. Now (2.25) and (2.26) yield the following Pythagorean type identity
for y > 0,

(2.28) 1--I thS((2n 1)y) + Plths (2n- 1)- 1,
n=-I

whereas (2.25) and (2.27)yield

(2.29) I-I:= th8((2n- 1)y) H th4((2n -1)-).
1 + 1-I= th4 (2n- 1)T

We also get

(2.30) V/1 thSy </z-l(y) < th4

and

(th/z(r)) 4 > r’
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which yields

(2.31) arth(r’1/4) </z(r) <
4 arth(r 1/4 )

3. Some applications

3.1. COROLLARY. Let f be a K-quasiconformal mapping of the unit disk B2

onto itself with f(O) 0 and let x B E. Then

(1)

(2)

ql/r(lxl) -<lf(x)l-<

81-K(1 --Ixl) 1 -If(x)l 81-1/K(1- Ixl) 1/r

Proof. Part (1) is the quasiconformal Schwarz lemma [LV, p. 64, (3.4)],
while (2) follows from Theorem 1.4. rq

Our next application deals with the function pr(r) r, K (1, oo), r
(0, 1) for which P.P. Belinskii [B, p. 16, formula (19)] gives the inequality

(3.2)

qr(r)--r<r 7 1 < 1- rlog 7 <(K- 1)rlog 7.

The first inequality in (3.2) follows from (1.2). But the second inequality is
false, since by [LV, p. 65]

lim
qr(r) 41_1/K

r-O r1/K

We now obtain a corrected form of (3.2) which also sharpens a result of J.
Zajac in [Z].

3.3. THEOREM. For K (1, oo), t (0, 1), and t’ v/1 t 2 we have

(1)
K i t(r+ 1)/(2K) log(l/t)K

<qr(t)-t<min(t’ 1}(K 1)4(K-1)/Ktl/K log(4/t)

(2)
(t) < (K- 1)4-/Kt(t’)/K’log(4/t).(K- 1)t(K+l)/2 log(i/t)
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In particular, if 1 < K < (log 8)/2, then

qr(t) --t < (K- 1)(log4)(41-1/r)t’t 1/(4K).

Proof. We only prove (1), since the proof of (2) is similar. Fix (0, 1)
and let s f(K) qr(t). Then/x(s) tx(t)/K by (1.1), and by differentiat-
ing with respect to K we get

ds 41z(t)s(s’(s))2

dK (,n.K) 2

By the mean value theorem there exists a number Ko (1, K) such that

s f(K) f(1) + (K- 1)f’(Ko).

We now estimate f’(Ko). We have

f’(Ko)
4/z( t ) So( S’oJ/( So))2

(,rrKo)2

where so f(Ko) and s /1 So2. Note that t < so < s.
Since x’J(x) is decreasing [AVV2, Theorem 2.2 (3)], we get

f’(Ko) < 41z(t)s(t’Jr(t)) 2 4(Tr/2)J’(t)s(t’J(t)) 2

7r
2 7r2Jf’(t) sm(t),

say. Then

4
s--t=qK(t) --t= (K- 1)f’(K0) < (K- 1)sm(t) < (K- 1)st’log7

by [AVV2, Lemma 4.2 (5)]. By (1.2) s < (41-(1/K))t 1/K, hence the first upper
bound in (1) follows.
Now for the second upper bound in (1), we have

qK(t) t < 4(r-)/rtl/r-

1/K t )(K-1)/K--4(K-1)/Kt (1 (- )
(4)(K-1)/K< 4(r-1)/rt 1/r log -=4(K_I)/K K-ltl/Klog(4)K- 7"
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Next, for the lower bound in (1)we have

qK(t) > 1/K- t= tl/K(1 1-1/K)

>tl/Kt(K-a)/(2K)K--IK log(I)?
K 1 t(K+ 1)/(2K) log 7K

Finally, if 1 < K < (log 8)/2, then h(t) (t3/(4g))log(4/t) is increasing on
(0, 1], so that h(t) < log 4, and the result follows. D

In [B, p. 80, Lemma 12], P.P. Belinskii gives the inequality

(3.4) h(K) < 1 + 12(K- 1)

for K > 1 close to 1. Because the incorrect part of the inequality (3.2) was
used in the proof of (3.4) the proof given in [B, pp. 80-82] for (3.4) is not
valid. We observe that Corollary 2.11 yields the following improved form of
(3.4).

3.5. COROLLARY. For all K (1, oo),

(3.6) 1 + 7r(K- 1) < A(K) < 1 + a(K- 1)exp(a(K- 1))

where a 4.37688...
1/(2a)), then

is as in Corollary 2.11. In particular, if K (1, 1 +

(3.7) A(K) < 1 + 8(K- 1).

3.8. THEOREM. For t (0, 1), t’ X/1 2 and K (1, oo), we have

qK(t) < (t’) 2 th((K- 1)/z(t’)) < (K- 1)(t’)210g(4/t’).

Proof. The first inequality follows immediately from the upper bound in
(1.3). Since (th x)/x is decreasing on (0, oo), the second inequality is a
consequence of the well known property [LV, p. 64, (2.10)] that /z(t’)<
log(4/t’). A slightly different final estimate follows if we use the inequalities
in Remark 2.24.

3.9. The p-condition. In [BA] Beurling and Ahlfors characterized the
boundary correspondence of quasiconformal automorphisms of the upper
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half plane H2

tion
as those homeomorphisms f: R R that satisfy the p-condi-

(3.10) --1 < f(x+t)-f(x) _<p
P f(x) -f(x- t)

for all x R, > 0 and for some constant p (1, oo). The boundary values
of a K-quasiconformal map satisfy (3.10) with the constant p A(K) which is
sharp for each K >_ 1 [L, p. 34]. For each p _> 1 let us denote by K(p) the
smallest constant K such that each homeomorphism f: R R satisfying
(3.10) has an extension to a K-quasiconformal mapping of the whole plane
R2 which agrees with f on the real axis. It is well-known by [BA], [AH] and
by later results of M. Lehtinen [L, p. 34] that

K(p) < min{2p- 1, p3/2}.

It seems to be an open problem whether this inequality is sharp for any
p>l.
W.K. Hayman and A. Hinkkanen have extensively studied functions satisfy-

ing (3.10) independent of quasiconformal extension [HH], [HI]. They ob-
tained sharp bounds for the growth of a function satisfying (3.10) and
normalized by the conditions f(0)--0, f(1)= 1. That these conditions are
mere normalizations follow from the fact that along with f also h f g
satisfies (3.10) with the same p whenever h, g are similarity maps.

Alternatively, growth estimates for the functions satisfying (3.10) can also
be derived by using quasiconformal extension together with the result of
Agard [A] that a K-quasiconformal map f: Rz Rz satisfies

for all distinct x, y, z R2

follows that
with Ix- y I/Ix- z l. From (3.11) it also

If(x) f(Y)l
If(x) f(z)l A l/K,

t

3.12. THEOREM. Let f: R - R be a homeomorphism satisfying the p-con-
dition (3.10) and let K K(p). Ill(O) 0 and f(1) 1 then for y > 2,

f(y) 1 < h(K,/(y- 1)/y) < h(K)(y- 1) K.

Proof Apply (3.11) with z 0, x 1, and use Theorem 2.7.
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As pointed out in [L, p. 32] it follows easily by normal family considera-
tions that normalized functions satisfying (3.10) approach the identity when
p 1. We now show that a quantitative majorant for the "speed" of
convergence can be found if we use the Beurling-Ahlfors extension, the proof
of 3.12 and Corollary 2.13.

3.13. THEOREM. Let h: R - R be a homeomorphism satisfying the p-con-
dition (3.10) normalized by h(0)= 0, h(1)= 1, and h()= . Then with
K K(p) we have

(1) (1- K)41-1/Kxx/x- 1 1og(16x)

<_ h(x) x <_ (K 1)42K-1-1/Kx K-1/(2K)( x 1)1/(2K)log(16X)

for all x >_ 1 and

(2) (1 K)41-1/Kx(1 X)1/(EK)log(16/X)__
(Pl/K(V)2

X

__
h(x) x_

q)K(V/)2 X

_
(K- 1)41-1/Kx1/(2K)I/1 --X 1og(16/X)

for x (0, 1) and

(3)
4x
---(K 1)J/(V/[X[/(1 + [x[))Jf(1/V/1 + Ix[ )<x- h(x)

4(g- 11 K-_< (16(Ix[ + 1)) 1,fle/(lx[/(1 + [x[))
J(1/V/1 + Ix[ )Ix[ 1/K

forx < O.

Proof. (1) From the definition of K(p) it follows that f has an extension
to a K-quasiconformal mapping of R2. Using the fact that modulus of a curve
family is quasi-invariant under a quasiconformal mapping applied to the
family of all curves joining the segment [0, 1] with the set [x, oo) we get

1
-=-’(x 1) < ’(h(x) 1) < K’(x 1)

1 +’r-(Kz(x- 1)) <h(x) < 1 +z- -z(x- 1)
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Thus

1/2(1/v) _< h(x) < 1/x/r(1/v),
1/(r) r-2 _< h(x) x < 1/qx2/r(r) r-2

where rz= l/x, 0 < r < 1. Now we estimate both the bounds by using
Theorem 3.3. First,

1/q12//c(r) r z
r ) r 2 (r I/K( r))(r + a/(r))

2r
< (K 1141-1/Kr log(4/r)61-Kr2K+Z ,r’,1/

(K- 1)42K-1-1/KxK-1/(2K)(x- 1)1/(2K)log(16X).

Next,

-2 1l/q2K(r)= q(r)r2(qK(r)- r)(qK(r ) + r)

< 2(K 1) 41_1/Kr,r/K log(4/r)
r 2 + 2/K

(K- 1)41-1/Kv/x lx(K+I)/2K 1og(16X)

< (K- 1)41-1/Kx/x- 1 Iog(16X).

(2) The proof of (2) is similar to the proof of (1) and the details are
omitted.

(3) For (3) we argue as in (1) but with the curve family joining [x, 0] with
[1, oo). Thus we get the following equivalent inequalities. _< ,r

h(x)l < K"r .
1 1

q/K( r ) 2 qtc(r) 2

_< Ih(x)l _<
qK(r’) 2 r’) 2O1/K(
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with r V/Ixl/(1 + Ix I), The last inequality can be rewritten as

(3.14) (1)A ,r _<lh(x)l _< A(K,r).

To find more explicit estimates let f(K)--A(K, r)= (s/s’)z and g(K)=
M1/K, r) =(t/t’)2, where s qK(r), t ql/K(r). Then

f’(K) 2(3.15) f(K)
l ds s ds ]72-R + )2( s’ dK

2 ds

s(s’) 2 dK
2 (4)S(St)2’g/(S) 2

s(s’) 2 Kz

8 ---(s)2/x(r) < --/(r) (r)rr2g 2 ’/7"

/x(r)

since dU’(s) < dU’(r). Next,

g’
(3.16) (K) 1 dt

g(K)
2 7 + dt

(t,) 2 dg
2 dt

t(t’) 2 dK

8 dU(t)2/x(r) > dU(r) (r)
7r

2

Hence by (3.15)

f’(K) < -f(K)dU(r)JU’(r) < 16K-1/K 4dU(r)dU’(r)Tr r2/K

r,)2K

Then by (3.16)

4
-g’(K) < 4jU(r)dU’(r)g(K) < --dU(r)JU’(r)

r ) 2/K

By the mean value theorem there exists K (1, K) such that

A( K, r) ( r/r’) 2 =f(K) -f(1) (K- 1)/’(K1)

4(K 1) 16Kl_l/K1Jr.(r)dU,(r)
r2/K1

t) 2K1

4(K- 1)<_ 16K-1/KJU(r)’(r)
r2/K

r )2K
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Similarly, there exists K2 (1, K) such that

Thus we get

zr ( K 1)JU(r) (r)
r 2

4(K- 1) d,lh(x)l- Ixl 16K-1/KJU(r) (r)
r2/K

(r,)2K"

That is,

x-h(x) < 4(K- 1) 16K_1/KJu(/IX[/(1 + [X[))JU(1/V/1 + [xl)
x (Ixl + 1) K-I/KIx IlK

4(K- 1) K-

7r
(16(1 / Ixl)) 1/K(IxI/(1 + Ixl))

Xdff(1//1 + Ixl )[xl 1/K

and

x-h(x) > 4x(K- 1)jU(x/lx]/( 1 + ]xl))JU(1/V/1 + Ix])

for all x < 0. t3

3.17. Modular equations.
of the form

For integer values of p, solutions of equations

W’(r) ’(s)
d/(r) =P ,X/(s)

are given by the function l/p(S) r. This equation is called the modular
equation of degree p. It has been extensively studied in number theory [BE1],
[BE2], [BB, pp. 103-109]. S. Ramanujan and others have found dozens of
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identities satisfied by the solutions of the modular equation of degree p with
p 3,5, 7, 13, 17 [BE1], [BE2], [BB]. Thus for instance the function q3(r)
satisfies the following identity for r (0, 1), s q3(r) [BB, pp. 103-109]:

rVt}- + /r s’ =1.

We can solve this equation for q93(r) if we use a symbolic computation
program, and thus we can obtain formulas for q3(r), n 1, 2, Further,
using this formula together with the relations

2vr )2 r,)2q2(r)-- 1 + r qK( r + q,/K( 1

for K > 0, 0 < r < 1, one can obtain formulas for instance for q3/2(r), q6(r).
This last relation together with 1.5 (2)yields, for r (0, 1),

2v/7 1-I (th((4n 2)/x(r’))) 4

l+r n=

3.18. Singular values. Given a positive integer p 1, 2,... there exists a
unique number kp (0, 1) such that

,rrd"(k)
/x(kp) 2---d(kp) V.

The number kp is called the pth singular value (or also singular modulus)
[BB, p. 139, 296]. A. Selberg and S. Chowla have proved [SC] that for several
values of p, Jeg(k) can be expressed in terms of the Euler F-function. Since
/(1/x/) r/2 we see that

kp -1(V/-/(1/1/)) 1/v/--(1/I/- )

and thus further by (2.5) we get

1/a(V-)(3.19) a(1/gt) 1 k2

for p 1, 2,... The known values of kp, p 1, 2,..., 9 [BB, p. 139] yield by
(3.19) algebraic expressions for a(V/-), p 1,2,...,9. The numbers a(p)
play also a crucial role in the multimillion decimal place calculation of rr
[BBB, Theorem 3, (5.13)] and [BB, Ch. 5].
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