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BOUNDED POINT EVALUATIONS
FOR CERTAIN P'(u) SPACES

THOMAS LEN MILLER, WAYNE SMITH AND LIMING YANG

ABSTRACT. The setof bounded point evaluations for P’ (1) is determined for certain measures u supported

in the closed unit disk in the complex plane. Here P’ () denotes the closure in L’ (1) of the polynomials
inz.

1. Introduction

For a positive measure u with compact support in the complex plane C and for
1 <t < 00, let P'(u) denote the closure in L’(u) of the polynomials in z. A point

w in C is a bounded point evaluation for P’(u) if there exists a constant M > 0 such
that

lp(w)l < Mplle

for each polynomial p. We denote the set of bounded point evaluations for P'(u) by
bpe(P' ().

The existence of bounded point evaluations and mean polynomial approximation
have received a great deal of attention, culminating in a result of Thomson [27]: either
P'(n) = L'(n) or P"(u) has bounded point evaluations. In the latter case, P'(u)
admits a structure related to that of bpe( P'(u)). If P’ (1) is irreducible, i.e., if P'(u)
does not split into the direct sum of nontrivial spaces P'(u;) and P'(u,), then the set
of bounded point evaluations for P’(u) is a simply connected region whose closure
contains the support of u.

Thomson’s dichotomy does not enable one however to determine the bounded
point evaluations for an arbitrary measure p; indeed, such a characterization seems
generally out of reach. Nevertheless, for some natural classes of measures, it is
possible to study the structure of the bounded point evaluations, and much interesting
analysis has resulted. The canonical result in this vein is of course Szeg6’s Theorem,
which characterizes the set of bounded point evaluations for a measure 1« with support
on the unit circle dD. In the case that u is weighted area measure restricted to
a bounded region, we mention work by Carleman [9], Keldy§ [19], DZrbaSjan and
§aginjan [13, p. 158], Havin [15], Havin and Maz’ja [16], [17], gaginjan [24], Shapiro
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132 THOMAS LEN MILLER, WAYNE SMITH AND LIMING YANG

[25], and Brennan [6], [7]. Akeroyd [1], [2], [3] has dealt with harmonic measures
for some crescent-like sets, and Hruscev [ 18], Kriete [20], Trent [28], Vol’berg [29],
[30], and Kriete and MacCluer [21] are among those who have contributed in the case
that  consists of weighted Lebesgue measure on the unit circle and weighted area
measure inside the unit disk. More recent work by Akeroyd [4], [5] is also relevant
in this setting. The literature in this area is extensive, and our references above are
by no means complete.

In the present paper, we continue the study of bounded point evaluations for u of
the form du = hdm + W dA|p, where m and A|p respectively denote Lebesgue
measure on the unit circle and area measure on the unit disk D. Before stating our
results, we need to introduce some notation.

Let K be a compact subset of the unit circle D and let { J, } denote the components
of 3D \ K. For each n, let I, denote the chord in the closed unit disk D with the
same endpoints as J,. Denote by G, the region with boundary J, U I,; let I" be the
rectifiable Jordan curve K U |J,{/,} and U the interior of T

Ja

K

Define the measure u by
dpu=hdm|x + WdA|ug,

where h is a nonnegative integrable function satisfying |, xloghdm > —oo and W
is a positive continuous function on each G, such that W e L' (Alug,)- It follows
that G,, = bpe(P'(WA|g,)). We should mention that if the function A is not log-
integrable over K, an argument similar to that in [5, Theorem 2.2] yields

P'(n) = P'(WdAlug,) ® L' (hm|k).
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In this case, zero is not a bounded point evaluation for P’ (u).

For simplicity, in this section we just give our characterization in the case that the
weight W is identically 1. It will be stated and proved for more general weights in
the next sections. Let zo € U and let w be the harmonic measure for U at zo. Denote
by |1,| and |J,| the lengths of I, and J,, respectively.

THEOREM A. Define the measure . by dpp = hdm|x + dAlug,, where h is a
nonnegative integrable function satisfying |, x loghdm > —oo. Then the following
conditions are equivalent:

(a) zo is a bounded point evaluation for P'(11);
(b) bpe(P'(i1)) = D and P'(u) is irreducible;
(¢) P'(u) does not split;

(d) Y2 o) log 7 < oo.

We note that the convergence of the series (d) is independent of zo € U, since
w is comparable to harmonic measure at any other point z; € U. We remark that
the convergence of this series is very sensitive. An example was shown to us by
F. Nazarov for which the addition of a single point to K changes the series (d) from
convergent to divergent.

Condition (d) is related to the well-known Carleson condition (introduced in [10])
on the set K, which is that

% 1
[ x| 1o < 00.
; VA

Notice that w (1) < C|I,| and thus the Carleson condition implies that bpe( P’ (u)) =
D for the measure p in Theorem A. We will present an example showing that the
Carleson condition is in fact strictly stronger than this.

THEOREM B. There is a compact subset K of the unit circle withm(K) > 0 such
that K satisfies Theorem A (d) but

>0 1
|Jn| log = 00.
2 nlloe 757

Sufficient conditions for P’ () to be irreducible will be stated and proved in §2, and
the case that P’ () splits will be considered in §3. Theorem A will be an immediate
consequence, as the hypotheses for these theorems will be satisfied when the weight
W is identically 1. Theorem B will be proved in §4.
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2. P'(u) is irreducible

Let I,, J,, G, K and U be defined as in the introduction. Define the measure u
by
du =hdm|x + WdA|yg,

where & is a nonnegative integrable function satisfying || xloghdm > —ooand W is
a positive continuous function on each G, such that W € L! (Alug,)- Leta; ,(A) be
the norm of the kernel function of P'(W A|g,) corresponding to » € G,; i.e.,

1

ar,n(K)=SUPIP()~)I(f IPI'WdA) ,
G"

where the supremum is taken over all nonzero polynomials. For an open set G, we
use 8¢ (z) to denote the distance of z from the boundary of G.

THEOREM 2.1.  Suppose that K satisfies

e 1
> w(l)log — < o0 @1
i 1,1

and that 1 <t < o0 is such that for some s, C > 0,
o a(A) < Cég,(M)7*
for everyn > 1 and A € G,. Then P'(u) is irreducible and bpe(P'(w)) = D.

Recall that w is harmonic measure for U at a point zo € U, and that convergence
of the series (2.1) is independent of the choice of zo. A typical example of a weight
W to which the theorem applies is given by W(z) = (1 — |z|*)%, where « is greater
than —1; see Corollary 2.3 below.

Aregion G is said to satisfy a 9-wedge condition if there exists» > Oand 6 € (0, 1)
such that, for every w € 3G, a closed circular sector of radius r and opening 67 lies
in G, with vertex at w. In particular, it is clear that U satisfies a § —wedge condition
for some 6 > 0. We now fix such a 6.

Let J; C U \ G, be the arc of the circle connecting the endpoints of I, and at the
angle 6/2 to I, at each endpoint. We now fix zo € U such that J, separates z( from
I, for all n. Choose a Riemann mapping ¢ from the unit disk D onto U such that
¢(z0) = 0, and let ¥ be the inverse of ¢. We will denote by C or ¢ absolute constants
that may change from one step to the next. Similarly, C(zo) will denote a quantity
that depends at most on z, etc.

LEMMA 2.2. For each n, there exists a smooth curve y, in G, that joins the
endpoints of J, such that

1 1
lo doy < C -0 2w(l,) log —.
f,, e Rt LA
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Here V is the region bounded by y, where y =, y» U K and wy is the harmonic
measure for V at zy.

Proof. Leta, =¥ (I,)and B, = ¥ (J,). Leta,, b, be the endpoints of J,, and
set A, = ¥ (a,) and B, = ¥ (b,).

Claim 1.
8p(@) = cmin{lz — A%, |z = B,?),  z € B
Since U satisfies a 6-wedge condition, from Theorem 1 in [22] we get
lo(21) = ¢(22)] < Clzs — 22/’ 22)
On the other hand, since U is convex, ¥'(z) is bounded [23, p 225], so

|21 — 22| < Clo(z1) — ¢(22)]. (2.3)

Now let z € B,, and assume without loss of generality that |z — B,| < |z — A,|.
Then, using (2.2) and (2.3), there exists z; € d D such that

8p(2) = lz— 21l = clo@) — e@DI'? > cdy (p(z)"*
> cl@(2) — bal*? > clz — B,|*°.

Claim 2. There exists a C2 curve I', C ¥(G?), where G? is bounded by J! and
1,, that joins A, and B, such that " = [T, U ¥ (K) is a C? curve and

Sya(@) = cmin{lz — A, 7%, |z — B,*?}),  zeT,.

To see the claim, let F| be a Riemann map from D to the upper half plane Ri with
F{(0) =i and F| mapping the middle point of ; to co. Forn > 2, let a;, = F(a,)

and B, = Fy(B,). Let A, = F|(A,) and B, = F;(B,). Then it follows from Claim 1
that

Sg2(2) = cmin{lz — A, 1,1z — B}, zef,.
Let
: - (@ — A (B, —0)*° ,
rn={z=x+ly'y=c (;;'_B’/'n)2/0 anSxSCn}'
It is easy to check that I'' = ;’22 rUF@K)Ua isa C? curve and r, C

F, (1//(G2)). LetT", = F,_' (T',). Let F, be another Riemann map from D to Ri with
F>(0) = i and F, mapping the middle point of d D \ | to 0co. Using the same method
as above, we can construct F; as above such that I'j U F,(3D \ «;) is smooth. Let
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I =F'(T)andlet T = [J2, T, Uy(K). Clearly, I satisfies the conditions of
the claim.

Let M, = ¢(I'y). Let y, be the reflection of M, with respect to I, and y =
U ¥« U K. From the construction, y C D U K. Let V be the region bounded by .
By the Schwarz reflection principle, we see that ¢ extends to a Riemann map from
V to ¥ (V) where the boundary of ¢ (V) is the reflection of I" with respect to the unit
circle. Hence the boundary of ¥ (V) is a C2 curve.

Claim 3. For z € D we have

1 1
c-0lo <lo < Clog ——.
850 — Eaue@) 850

To see this, let z; € 3D such that §p(z) = |z — z1|. Using (2.2) and (2.3), we have
3p(2) = clp(@) — p@DI"? = cdyw)"?,

and similarly, 8y (w) > ¢8p(z). Taking logarithms gives the claim.

Claim 4.
c-0Olog < log ! < Clog —— ]
w(ly) nl — w(l,)’
In fact, using (2.2) and (2.3), we get
clog < log = log l <C-07"log ] .
[ w(1y) lota| [

Let wy be the harmonic measure for 2 = (V) at zero. Let z* be the reflection
of the point z with respect to I, and I'? be the reflection of I', with respect to the unit
circle. Now

1 1 1
lo dw 5C/ lo dw sCf log —————dwy,
/ e Rl M WP Sl Ml S

where the last step is from Claim 3. Using Claim 2, we see that

1 | 1
log ———d C-O"/(l 1 )d :
f N R W VBT — Al T @) — Byl ;":
@4

Now, working with just the first term of this last integral, we estimate

1 1 1
log ————dw SCf log ——m8MM8— f log —————dwy,
fy,, Bl — a4, log e a4 B A,
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where the change of variable w = ¥ (z) was used. Since the boundary of  is C?,
we see that [w — A, | is comparable to the arc length s(w) from A, to w on I, and
dwy is comparable to ds. Therefore,

1 ! !
log————dwy < C/ lo ds(w) < C|A, — Byllo
[, e s = € [ g g = cva - s L

< Cla,

1
Ianl'

But |a,| = w(I,) and so from Claim 4 and the last two displays we get

1 1 1
log ————dwy < Cw(l,)lo <C-6- a)(I,)lO
/y,, S — A, & oy DV ORTT

Clearly the same estimate applies to the term in (2.4) involving B,, and hence

1 1
lo dowy < C -0 2w(l,)log —,
fy,, 8. " A

as required.
Proof of Theorem 2.1. Define

he = 86, (2), forz e y,
=1 min(1,h), forzeK.

Since V C D, foreach A C K we have
wy(A) = wy (20, A) < wp(20, A) < c-m(A)/(1 — |zo]).

Then using Lemma 2.2 we get

/loghodwv = tsZ/ log g, dwy +/ log h dwy

Kn|h<ll

v

Cts Y () log Iy + —— loghdm

1 - |Zol Knih<l)

= Cis ) o) log|h| + 1_|ZO|/K‘°g’“”"‘ 1—C|zo|/hdm

> —00,

By Szegt’s Theorem [14, p. 136], there is a constant C > 0 such that for each
polynomial p,

Pl < C f Ipl'hodwy.
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On the other hand, we are assuming that

s (w)lpw)|" < C/G Ip()I'WdA(2) < CLIP(Z)I'dM

for w € y,. Therefore,

/ Il hodewy

IA

CZ/

Y

¢ [ iptdu+c [ ipthday

D

Cc f Ipl'du. 2.5)
So zg is a bounded point evaluation for P'(u).

Since, for every A € V, harmonic measure for V at A is comparable to wy, by
Szegd’s Theorem we have

IpI'8¢, dwy + C/ Ipl'hdwy

IA

IA

PO =€) [ 1plhodor.
Thus from (2.5) we see that V C bpe(P'(u)). Since G, = bpe(P'(WdA|g,) C
bpe(P' (1)), we conclude that
D C bpe(P'(n)).

Now suppose that P'(u) is not irreducible. By Thomson’s theorem [27], there
exists E C K with m(E) > 0 such that L' (u|g) is a summand of P'(u). Since
wy(E) > w(E) > 0, from (2.5) we see that the characteristic function of E is a
nonzero element of P’ (hodwy). Hence,

P'(hodwy) = P'(hodwy|g) & P (hodwy |ge).
This is a contradiction since, from Szeg6’s Theorem,

bpe(P' (hodwy |£)) = bpe(P' (hodwy |g:)) = 0.

COROLLARY 2.3. If K satisfies the condition (2.1) and W(z) = (1 — |z|»)® for
some o > —1, then P'(i) is irreducible and bpe(P'(n)) = D.

Proof. Assume without loss of generality that « > 0. Since |p|’ is subharmonic
for each polynomial p, for A € y, we have

lpMI" < Ip@)I dA(z)

‘%,.()‘) lz—A<38c, ()
C

S Sres D' —1z))* dAz).

T fcnlp( (= 12P)* dAG)

Thus a;,,(A) < C85°, with s = 2=,
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3. P'(u) splits

THEOREM 3.1.  Suppose that W € L7 (A|yg,) for some p > 1. If K satisfies

al 1
w(l,)lo = 00,
; ST
then

P'(u) = L' (ulx) ® (@P'(ulg,))-

If m(K) = 0, the proof of Theorem 3.1 will be similar to that of Theorem 5.7 in
[7]. However if m(K) # 0 the Cauchy transform that we will use is no longer in a
Sobolev space, and therefore some other ideas will have to be used.

Recall that ¢ is a Riemann map from D to U such that ¢(0) = z¢. Define

20— ¢
1 —Zoz

JZ() (Z) =

LEMMA 3.2. There exists a constant 0 < ¢y < % such that for each r sufficiently
close to 1,r < 1, there exits a smooth function t,,0 < 1, < 1 on C satisfying

0 iflzl>1,
@) =1 1 ifzee@D)\(loy ()| < 2o},
O l:fIO'Z()(Z)| < €0,

and such that

C(Zo)

‘——(z)

1
—lzl’

where C(zy) is independent of r.

Proof. Let r be close enough to 1 so that o,, o ¢(rD) contains 2coD. From
Schwarz’s lemma, we see that o;, o ¢(r D) C rD. Let t be a smooth function on R'
suchthat0 <t <1,t(x)=1forx > 1,7(x) =0forx <0,and0 < t/(x) < C.

Define
:Jﬂ if |z] > r
O(Z) if2¢o < |z| <r
‘t(2|Z| 2¢) if |z] < 2cp.
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= T=0

It is easy to check the function 7, = 10 o 0, has the required properties.
Forg > 1 and f € L9(A), recall that the maximum function of f is defined by

1
M R — dA(2),
10 =300 200 Jou, T PNA@

where O (A, r) is the disk with center A and radius r. It is well known that f +—> M,
is bounded on L7(A); see for example [26, p. 5]. For ¢t > 1, let t' be the conjugate
exponent of ¢, so that : =1,

LEMMA 3.3. Suppose that | < t and that g € L" () annihilates P'(u). Define
k on C by klug, = gW xug,- Let H: U — C be given by

u)—i N+1 k()
H(w)=/( ;") 2 4ae),
I— Z—w

where N is a positive integer. Then, there is a constant C(N) so that for all w € U,

(w— ‘)f+'
|H(w)], ‘ / — k(@) dAR)| < CN)M(w)(1 — |w]),

forall j=0,1,2,...,N
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Proof. Since the proofs of the two inequalities are similar, we show only that
|H(w)| < C(N)Mg(w)(1 — |w]). Forw € U, let$, = |w — +| and write

w

w_ L\ @
Hw) = / ( ]”) z dA(2)
{le—wl<38,) \ 2~ 5 z—w

w — 1 N+1 k( )
+ [ i = dAG)
(le—wl>380) \ 2= 5 Z-w

= 1L+ b.

The lemma is established by the following estimates for /; and /5.

o [\ N+

L k
5 / 2 @ 44w
=t | F3susie-wi<gq ) \2—F Z—w

o0 2](
C(N) —f lk(z)| dA(z)
;‘Sw ‘#35,,.

<|z—w|< F=T L35, }

C(N)M(w)(1 = w]),

|1

IA

IA

IA

and

IA

0o w — N+1 k@)
-1 z
Ll < > f 0 dA(z)
k=1 |V (2138, <lz—w|<2¢38,) \ 2 — & I—w

1
< ) s
= 2NHPR8y Jia-135, <lz—wi<2438,)

CM(w)(1 — |wl).

3

|k(z)| dA(z)

IA

Suppose that g and H are as in the previous lemma. Let g satisfy

/

r'p /
1<g < ——m— t
_q_t,+p_1(< )
and let " satisfyf'—,+,—',7 = é. Then
_lt//
=" .,

q
Since W € L?(Al|yg,) and g € L' "(w), it follows from Holder’s inequality that

-

="
g WllLocae,) < N8NLr (f W +|dA)
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Hence gW e L9(A|ug,). From now on, we fix such a ¢ with 1 < g < 2 and
1 + = 1.

F(;]r O<r < 1, let w, be the harmonic measure on U, = ¢(r D) evaluated at z,
i.e., w, 0 ¢ = 5—d6. By a change of variables,

(¢v™'@)
[ fdor = 2nir /;U,_ f(2) v (2) 9z,

for all f continuous on dU,.

LEMMA 3.4. With the notation above, for each €, 0 < € < #, there exists a
constant C(N, z9, 4) > 0 (depending on N, zo and ) so that

H(z)|
0<r<|/ (1 —|z])¢ dw(z) < C(N, 2, M)“gllu'(u)‘

Proof. Let0 < € < & and let 7, be the smooth positive function constructed in
Lemma 3.2. Using Green’s formula [14, p 26], we have

H@I @ = 1 / It ()H )| (9~ (2))’ iz
(I=lzhe 2rir Jou, (1—12D)¢ ¢~ '(2)

_ 1 a(lt,(z)H(z)I)(tp"(z))'

wr =1z ) ¢~ '(2)

dA(2).

Since the function —@% is bounded on the set {t, > 0} N U, we conclude that

|H(2)| f
———dw, <C
(= @ =¢],

for some constant C.
For a compactly supported finite Borel measure v, the Cauchy transform of v is

defined by
1
d(h) = ]
z —

The function ¥ is locally integrable with respect to area measure. Let

L @IHQ)
J————| dA
a—rp | 94@

. dv(z).

kr(w) = 7 (w)k(w) — —kA( )%

It is well known that k,A(w) = ‘L’,(w)kA’(E); see for example [11] or [14, p. 50
Lemma 10.1]. Hence, the functions &, and k, A each have compact support and are
each members of L9(A). Therefore, by the Calderon—Zygmund theorem ([8] or [26,
p- 35D

ligrad(k, A)ll, < Clik,lly,
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where grad f denotes the weak gradient of f. Thus k,A is in the Sobolev space
W/ = {u € LY(A) : |grad(u)| € LY(A)}. Notice that for w € D,

i & fw=1) - Ly
= = ) 3.1
z—w z—éf;(z_%) +(z___)N+IZ_ G.D
We write
LW HwW) = 5, WkAw) — 1,(w) f k@) TAAQ@

-1
- [ 22 Z(w_ '”) dAQ)

1
wj— w

= krA(w) + F(w)t, (w).

From the construction of t,, it follows that 7, F is in Wf’, and therefore sois 7, H. On
the other hand, by Lemma 3.3, we get

- 1

[0F (w)| < C(N)My(w)  for |w| > 7
It is easy to check that
- — 0 - — - _
i(t, H) = —mkr, +kA(w)5t—u_: + dFt, + F(w)dt, = —mkt, + 0Ft, + H(w)dT,.

Using a theorem from [26, p. 77] , we have

_ B 0
"a(TrlHI)"q = _(ltr + _(ltrHl)
dx {9y a
< Lam| +|Lam
ax ay q
=< C"é(trH)"q
Now using Lemmas 3.2 and 3.3, we see that
|H (2)| 13 (z, | H )| f 7 |H|
———dw,(z) < C ——dA@)+C ———dA®R)
(1= |z])e v, (1 —lz])e u, (1 —|z])i+e
3 1 7, |H|
< Clo(z |HDlg | ————— +Cf —dA(2)
“Ja =Tl ™ (1= lzh™e

IA

(/la(t,H)l"dA) +C(N)fl(-zﬂl"|()z7)d,4(z)
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< C(M)klly + ClldT, Hll

+ C(N)|IT,dF llg + C(N) It M|l
C(N, z0)llkll,

C(N, zo, u)llgllu/(m.

=
=

Here we used the fact that the Maximum Operator is bounded on L9(A). The lemma
is now established.

LEMMA 3.5. Suppose that | <t < ooand g € L' (w). Ifg L P'(1), then there
is a constant C so that

sup [ 180(2)1dor @ < COV.z0lglur

O<r<lI

Proof. Using (3.1), for g L P'(u) we get

_ 1 LAY R
gh(w) = / -— L) |s@du
tTW o z-F i\t Ty
1 | N o fw-41 !
= Hw) +/ - -y T g(@)du
K I—w Z— 5 j=0 Z— 5
= H(w) + G(w).
First, notice that
v~ 5

where P, (z) is the Poisson kernel for w. We bound G as follows.

N
IGw)| < fK Pu@Ig@Ih() dm(2) + f 5 dmeo)
Kj=

|_1|+l

IA

f Po(2)1g(@)Ih(z) dm(z)

fi T o

i
lz = zllz—

2N / Py,lglhdm
K

= 2Vu(w),

lz i \ lg(@)Ih(z) dm(2)
—wz

IA
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where u(w) is a positive harmonic function. By Lemma 3.4, we may conclude that

[lg’ﬁ(w)ldwr < /IH(w)ldwr+2Nfu(w)dwr

C(N7 20, ”’)"g"LI’(“) + 2Nu(0)
C(Ns 20, M)"g”L’/(ﬂ)'

A

INIA

Now we fix N such that ﬁ < 0. Let /% be the midpoint of J, and let

5, = {z c D’—ljznl | Jnl

+0n+|1n|N Sarg(Z) < +0n_|1n|Nl
and let
[y =X, Noe(rD).

LEMMA 3.6. Let G be as in the proof of the previous corollary. Then there exists
an absolute constant C(N) > 0 such that for w € T',,| we have

IGw)| <= C(N)Uulligllyr

(n)*
Proof. From the definition of G,
w= 3" g@h@
-3 2)|h(z
O e dz]
K -3 lz — w|

where g € L" (). Since for w € I'yy and z € K we have |w — £| < C|J,llz — 1|,
and |z — w| > ¢|J,|", the desired estimate is obtained.

Proof of Theorem 3.1. Let g € L"(u) be an annihilator of P'(u) and € <
min(%, %). Fixing an M, we have

/loglgﬁldwr < [, togigmida, + [ igaldo,
Uiz Tir

Igal
< log ———— dw
/r S0 =1

+€/ log(1 — |z]) dw, +/I§ﬁldw,.
U:'er""

Hence, by Lemma 3.5 and the subharmonicity of log |gfi|, we get

Vi (= lz)*
+ C(N, zo, W8I L 10)-

log g7 (z0)| < f og 8% 4, 1 ¢ ] log(1 — [z]) de,
U,M=|F,~,.
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Thus, from Lemma 3.4 and letting r — 1, we see that

R |G(2)|
| _16@)1
og|gri(zo)| < fu{‘i,ﬂ-n (1 —|z)¢

+ C(N, zo0, WIIgN L7 -

do+ ef log(1 — |z|) dw
umM i

i=l
On the other hand, using Lemma 3.6 and the inequality Ne < 1, we have

[ 16D, < SN a ) gl < CODIg g
U,.'LF“ (] - |Z|)€ i=1

Hence,

A

log |§R(z0)| < e f log(1 — lzl) de + C(N. 20, gl o
Uinilr“

IA

M
C(N, 20, Wigll Ly + CN) D w(Ti) log I1;].
1

From our construction, we see that
o(I; \Ti1) < Czo)|; \Ti1| < C@o)lLiI".

On the other hand, U satisfies the 6-wedge condition. Using Theorem 1 in [22] and
(2.2), since N > %, we conclude that

o) = c@)ILIF = 20 \ T,
for i sufficiently large. Hence, for such l s
o(l) < 20w(yy),

and therefore,

M
log |87i(z0)| < C(N, 2o, WIgll L7y + C(N) Y w(I) log | ;1.
1

Now, letting M — oo, we see that

gi(zo) = 0.

The same method shows that gii(A) = O for each A € U. Thus 2—17 € P'(w).
Therefore, no point of U is a bounded point evaluation for P'(i1). Now the theorem

follows from Thomson’s theorem in [27].

Theorem A is a direct conclusion of Corollary 2.3 and Theorem 3.1, with the
weight W identically 1.
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4. Proof of Theorem B

In this section, we will construct an example for which the Carleson condition fails
but

Zw(l )logm < 00.

Let {E,} with |E,| = 2,, be a sequence of arcs in the unit circle and {E,} be the
corresponding chords whose positions will be chosen. Let { F,,} be another sequence of
arcs such that F,, has an endpoint in common with E,,. Let {F, } be the corresponding
chords with

|Fyl = |E, P15
Now we can choose the positions of {E,} and {F,} such that
(E,UF)N(E,UF,)=0 ns#m.

Choose an integer N, such that

<2.

IF T
We divide F, into N, equal pieces denoted by {F,;}1<j<n,. Let {F i}1<j<n, be the
corresponding chords. Let U be the region bounded by UE; U F,; ’ U (@D \ UE),).

LEMMA 4.1. Let U be as above and w be the harmonic measure for U at zero.
Then the following conditions hold:

(@)

|
F’ — =
51, o e =

n=1| j=I

that is, 9D \ (UE, U F,) does not satisfies the Carleson condition, and
(id)

Nu
izw(%)‘og +Zw(E )IOg—lT < o0.

n=1 j=I I "]' n=| ' "l

Proof. Since

Ny

ZI Fyyllog 7

it follows that (i) holds.

N,
> c|F, llogI |_

n;l
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Let G, be the region bounded by F! and F,. Let U, = U \ G,. Let », be the
harmonic measure for U, at zero. We claim that

wn(F,) < CIF||Ey.

Let S, be the sector with center at the common endpoint of E, and F, and radius
2 such that F, U E, C 35,.

Fn

Ea

Let wg, be the harmonic measure for S, at zero. Since U, C S,, w,(F,) < ws, (F}).
Let d,, be the common point of E, and F,. Then

¢(2) = (z — dy) TR

is a Riemann map from S, to a half disk with radius between 2 and 3. Hence,

ws,(F;) < C|F,|=mm < C|F)||F)|® < CIF,||E,l,

and the claim is established.
Clearly,

w(Y; M Fp) < wn(Fy)) < C|F)||E,|.

On the other hand,

w(FL)log —— < (UM, F) log L < C|E,||F)) log - <
Z ’glFl =15 08 T ]

Therefore, condition (ii) holds.
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The following theorem is an immediate consequence of Theorem A and Lemma4.1.

THEOREM 4.2. Let U be as in Lemma 4.1 and let the measure | satisfy the
hypotheses of Theorem A. Then

> 1
2 illog = = oo
P 1]

and bpe (P'(u)) = D, for1 <t < oo.

Acknowledgment. 'We would like to thank James Brennan for pointing out an error
in an earlier version of this paper. It was in correcting this error that we constructed
the counterexample in Section 4 and we came to the final formulation of Theorem 3.1.
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