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1. Introduction

In [1] the following two results were proved: If is a real number and the
fractional parts of three different positive integral powers of are equal, then
to some positive integral power is a rational integer; if the fractional parts

of two different powers of are equal for infinitely many pairs of powers,
then the same conclusion follows. Here we give different proofs of these
results, but the main purpose of this paper is to generalize the second result
to complex numbers, and to apply this generalization to problems in dio-
phantine equations.

2. The real case

We begin with a new proof for the real case. If the fractional part of
0m equals the fractional part of 0n, then om 0n a 0 for some rational
integer a, and conversely. We hereafter assume m > n, > 1, so that
a > 0. The case < -1 is similar. Observe that an equation
x x a 0 with m > n, a > 0, has exactly one positive root, and
this root is greater than 1. Also, the set of roots of this equation of largest
absolute value is readily seen to be r }, r (m, n), r} the set of r rth roots
of unity. We now prove Theorems 1 and 2 together.

THEOREM 1. The fractional parts of three different positive integral powers
of a real number are equal only when is the qt’ root of a rational integer for
some positive integer q.

THEOREM 2. The fractional parts of two different positive integral powers of
a real number 0 are equal for only a finite number of pairs of powers unless 0 is
the q root of an integer for some positive integer q.

Proofs. We assume that we have such a not the q root of a rational
integer and arrive at a contradiction. Let (> 1) satisfy f(0) 0, where
f(x) x - a,_x- - ao,arational integers, O -< i_-< p 1, iS
the monic irreducible equation satisfied by over the rationals. (We have
integer coefficients because 0 is an algebraic integer, satisfying as it does at
least one equation 0 0 a 0, a a rational integer.) Since itself is
not rational, p 1. Now since f divides the polynomial x xn a, a a
rational integer (because 0 0 a 0), we conclude by the remarks
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preparatory to these two theorems that the set of roots of f of largest absolute
value is contained in the set sr 0}. Thus, by replacing 0 by a power of , we
may assume that is the unique root of f of largest absolute value. Also, f
has no root of absolute value =< 1. For in Theorem 1, we have

0m- 0n- a 0, 0m- 0- b 0,
m > n > l; a, brationalintegers. Theniff() 0, ]] 1, wehave
_

n__ a 0,-- -- b 0. Thatis, we would have three points
inside or on the unit circle on the same horizontal line an integral distance
apart. Since 0 because f is irreducible, two of the three powers of co-
incide, and the same must therefore hold for 0. Thus 0 would be a root of
unity. In the case of Theorem 2, let g( O) 0 0nl ci O, ci rtional
integers, m > n, mi+l > mi, i 1, 2, .... Since f is irreducible, f(x)
divides g(x) for every i. If f() 0 and < 1, then c 0 since n can
be assumed to get arbitrarily large (by Theorem 1; or, if n n, i > j, then
0 0 c c, and m gets arbitrarily large). Thus n; and
so 0 would be a root of unity. If, finally, f() 0 and 1, then f(x)
would be a reciprocal polynomial, - would be u root of f, and we would be
again in the previous case. We have proved that all the algebraic conjugates
of 0 exceed 1 in absolute value.

Consider the p-dimensional real algebra B with basis , , , - with
() 0 defining multiplication. Let M denote the real linear transforma-
tion from B onto B given by Mu .u for u in B. The characteristic poly-
nomial of M is (--1)f(h), all of whose roots are distinct since f is irreducible.
Let

denote these p roots of f, where is real, 1 i g, and 2e g p. Write
the vector space direct sum B W1 W W, where W is the
invariant subspace of B corresponding to the characteristic root . Thus
W is 1-dimensional, 1 i g, and 2-dimensional, g 1 i e.
Put an orthogonal structure on B so that the W are orthogonal, and choose

an orthonormal basis of B consisting of g vectors in the W, 1 i g, and
of 2(e g) vectors in the W, g 1 i e, so chosen that on W, g 1
i 2e, M acts as the 2 X 2 matrix

(Re (0) -Im (0))Im (e) Re ()
Let r(u) for u in B denote the length of the projection of u on W, 1 i e.
Then [u[] =(r(u)), r(Mu) 0]r(u), 1 i e,

Let (u) denote the direction cosine of u in the W direction, so that

((Mu)) (,l(U)) ]e,/o
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Since 0/01 < I if i 1, (Mu) > (u) unless rl(u) 0, i.e., unless
u is in V W2 We, or unless ri(u) 0 whenever i 1, i.e., unless
u is in W1. Continuing, for ]c a positive integer,

((Mu)) ((u)). (= Ode I(,(u)) )-,
so that I(Mu)] pproches 1 monotonically as pproches infinity,
unless u is in V or W. The vector i however is neither in V nor in W,
since {i, , , -} {[, MI, M-I} spans B and p 1. We
my choose the bsis for B so that r (i) > 0; then r() > 0, k 0, nd
so () increases monotonically to 1 s k pproches infinity. Thus the
ngle between nd W pproches zero monotonically with k.

If, s we re ssuming in Theorem 1, 0- 0 a 0, 0 0 b 0,
then n a 0 in B, -- b 0 in B. Let Lbe the 1-dimen-
sional subspce spanned by i in B. Then ’, are both in L.
But for 1 i e, r() 0 r(i), for ll nonnegtive integers k;
furthermore, no r(i) is zero since {1, , , -} spns B. So

r(*) < r() < r(), 1 i e.

Nowi,* are in the same plane. Since p > 1, we cun project
this plane onto the two- or three-dimensional subspace W W, with pro-
jections v, a, , say. None of these four projected vectors are in W or
W,sincer([) 0,1 i e, andthusr() 0, 1 i e,k 0,1,
2,..-. First assume W is one-dimensional. We shall prove that v and
a are on opposite sides of W, and also a and . For a makes smaller
angle with W than v does, whereas makes a smaller angle with W than a

does. Yet r() > r(*) > r([), so that the W-component of exceeds
that of a, which in turn exceeds the W-component of v. In Figure 1, if a
and v were on the same side of W, then the endpoint of would be on the
line A parallel to v, and would have a smaller W-component than v has.
To prove that a and are on opposite sides of W, consider Figure 2. If

Figure 1 Figure 2
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A

Figure 3

were on the same side of W1 as , then again/ would have a smaller W2-
component than . This proves that the relative positions of v, ,/ are s
in Figure 3. Then , which mkes still smller angle with W thn mkes,
lies between nd . We reach similar component contradiction. The
proof is essentially the sme in cse W is two-dimensional, nd is omitted.
Theorem 1 is proved.
To prove Theorem 2, we must prove that cnnot be in L for

infinitelymnypirs (m,n). Nowm- n m- n,i j. Forif
m- n m-- n sy, then0( 1) c, 0( 1) c,so
that 0-= cc is rtionl, with n n, contrary to ssumption. Since
m n never tkes the sme vlue twice, m n pproches infinity with i.
Since M- < 1 (because ll the characteristic roots of M re greter
thn 1 in bsolute vlue), we have

M-(=’-"’)ll (1/ll M-x II)"-"’;
this approaches infinity with i. But since the endpoints of bm and bn lie
on a line parallel to L, and make an arbitrarily small angle with
W1, bin’ bn II-1 approaches 1. Thus Theorem 2 is proved.

3. The complex case

The rest of this paper is devoted principally to the case when 0 is not real.
We first note that Theorem 1 can be false for 0 complex. In fact,
0 (1 -t- %/-11)/2 satisfies 0 0 -3, 0 0 15, but is not the
qth root of a rational integer for any q. But it does follow from known results,
without using Theorem 4, for 0 not a qth root of a rational integer, that 0 0
is a rational integer for only finitely many m, given 1. For by the next
theorem, if 0 0 is a rational integer infinitely often, then 0 is imaginary
quadratic for some r dividing every such m and 1. We thus may assume
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0 itself to be an lgebmic integer in n imaginary quadratic field. Write
A Bx/--D, D positive and squre-free, A, B rtionl integers

(both integers or both hlves of odd integers if D 3 (4)), j 0, 1, 2, ....
LetQ 10] sotht 101 A +DB Q. If now0- 0 isr-
tionlinteger, thenIm(0 0) 0, so thtB B. LetDB C
sy" C is not zero, for then B would be zero, 0 A would be rtionl. We
hve A + C Q; by [2, Stz 698, p. 65], the lrgest prime divisor of the
polynomial x + C, C # 0, tends to infinity with x, so that A + C Q is
stisfied for only finitely mny A, and hence only finitely many m. If
D 3 (4) nd B is hlf n odd integer, we obtain the sme conclusion from
(2A) + 4C 4Q’*. This proves the ssertion. (This result will not be
used in the sequel.)
The following theorem generalizes Theorem 2 and is used in the proof of

Theorem 4, which is the min result of this paper.

THEOREM 3. Let 0 be a complex number satisfying equations I0 JO A,
m > n nonnegative integers, I, J, A rational integers depending on m and n, for
infinitely many pairs m, n. Let

]0- 1 and 0 J hi, ]log[h]] o(m--n).

(Here I0[ denotes the maximum of the absolute values of the algebraic conjugates of
0.) Then for some positive integer r dividing all such m and n, 0 is rational
or imaoinary quadratic. Conversely, if 0 is imaginary quadratic, and not the
q root of a rational number for any positive integer q, and the positive integer
k is 9iven, as well as the positive number e, then 0 satisfies infinitely many equa-
tions 10’+ JO A, 1, J, A rational integers, 0 J hi,

Ixi <1.

Proof. Since 0 satisfies n equation IO" JO" A, 0 is lgebric. We
my ssume in fact that 0 ], since ny lgebric conjugate of 0 stisfies
the same equations with rtionl coefficients that 0 does. We prove in fct
that 11 the conjugates of 0 hve the same bsolute vlue that 0 hs. For if

" is conjugate of 0 with ]’] # ]0], write " uO; ]u] < 1
since]0] ]0--]. ThenI0"- JO" I"-J",or 0- 0" ’- k",
0 . ,(0 n), , (0 .)(0 .n)-a since 0 ’ # 0 be-
cause ]’[ < ]0],n # 0. Thus

0(1 #m)(on(1 #n))-- Ore-n(1 U)(1 U")-x.

Now ul < land [0[ 1, so [logl),[[ isO(m-n) but noto(m-n).
Thus I1 0[ for every algebraic conjugate " of 0.
From now on, we ssume only that 0 satisfies one equation IO" JO" A,

and that ll the lgebric conjugates of 0 hve the sme bsolute value that
0 has. If is such a conjugate, nd IO" JO A, then I J’" A.
We conclude that I" IO’, J’ Jo’, or else I" IO, J" JO". For
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there are only two horizontal line segments in the complex plane (only one if
0 is real) going between the circles of radius 110ml and [J0n[ such that
the difference of the endpoint on the former circle and the endpoint on the
latter circle is A. Thus differs from 0 or by multiplication by a root of
unity. Let r be the least common multiple of all the orders of the roots of
unity which occur, so that r divides m and n. We shall prove that 0 is
rational or imaginary quadratic.

Let p(x) be the irreducible polynomial for 0 over the rationals, and let
q(x) be the polynomial whose roots are the rh powers of the roots of p(x).
Then q(x) has rational coefficients; furthermore, q has one or two distinct
roots, namely 0r, and if 0 is not real. Thus the irreducible polynomial
h(x) for 0 over the rationals, which divides q(x), has one or two different
roots. Since h(x) has distinct roots, h(x) is of degree one or two. If h(x)
is of degree one, 0 is rational; if h(x) has two distinct roots, they are 0 and
’, and so 0 is imaginary quadratic. This proves the first part of the theorem.
To prove the converse, let 7 u -t- iv, v 0, be an arbitrary nonreal com-

plex number, and consider Is - it > 0 and (1 e)t < Im (Ts) < t}.
This is the region of the upper half plane where (1 )t < ut -- , t, that
is, where (1 ) u wit 1 u. This region isanontrivialcone
K(7; e) in the upper half plane.
Now given the imaginary quadratic number 0 not the qh root of a rational

number for any positive integer q, let 7 0k, a nonreal complex number.
Since 0q is never real, arg 0 is an irrational multiple of 2r. Then 0 is in
K(7; ) for infinitely many n. If we let I1 Im (0), J1 Im (0+k), then
1-- < J/I < 1, andIm(I0+k- J0) -0, sothatI10+k- J0
is real, hence equal to rational number A. Putting I, J, A1 over a
common denominator completes the proof of Theorem 3.
We remark that Theorem 3 is false if we replace o(m n) by either o(m)

or O(m n). For if 0 is real quadratic but not the square root of a rational
number, we can obtain for every m as above an equation I0 J0- A,
I, J, A nonzero integers. By symmetry, assume 0 has an algebraic conjugate
with 0, ]1 < 1. Then as before, J hi,

X 0"(1 g’) (0m-(1 t’-x))- 0(1 g)(1 ]m--1)--1,
[log] II o(1) O(m n) o(m),

where n m 1. This is the required counterexample. We also remark
that if 0 is an algebraic integer, the condition 101 i may be dropped, for if
all the conjugates of 0 have absolute values 1, then 0 is a root of unity [3, p.
137, Theorem 11.5]. The same comment applies in Theorem 4, which we are
now ready to consider.

THEOREM 4. Let o be a complex number satisfying infinitely many equations
of the form I Jo A, m > n, I, J, A rational integers not all zero de-
pending on m and n.
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Furthermore, let lw[ 1, log J/I [I o(m n), log[J o(m n)
(or even log J o(m) if is imaginary quadratic, in which case the condi-
tions ]oo 1, log J/I II o(m n) may also be dropped). Then is a
qh root of a rational number for some positive integer q.

Proof. We use Theorem 3 to conclude that 0 may be assumed to be im-
aginary quadratic over the field of rational numbers. (This is the only use
made of the additional conditions.) Let 0 OF-1, 0 an algebraic integer, F a
positive rational integer. Let 0 P0 + Q 0, P, Q rational integers with
p2 4Q < 0.
We shall prove that 0 to some positive integral power is a positive integer by

proving that arg is a rational multiple of 2. This shall be done by con-
structing rational approximations to (arg 0)/ which are too good. To do
this, we shall show that if d (m, n), then Im (0m) is not much bigger than
Im (0d), by proving that Im (0m)D-/2 practically divides Im (d)D-12.
Then sin arg 01 is not much bigger than Im ()D-/2Q-’/2, and therefore
not much bigger than Q-(-)/2, which implies that m arg 0 is too small rood 2r.
We may assume that 0 is an element of , the ring of algebraic integers in

the field obtained from the field of rational numbers by adjoining /P 4Q,
of smallest absolute value satisfying infinitely many equations

I, J, A rational integers not all zero depending on m, n, and 0, F independent
of m, n, but not of O, J e(m), such that no positive integral power Of is
a rational integer. Then if the rational prime p divides P and Q, P does not
divide Q. For then Op- would be in (C), satisfying as it does

Op-) pp-) Op-) Qp-2,

and would also satisfy the equations

(p’I) Op-) JF’-npn( Op-1) AF,.

Then pn divides AFm in (C), hence in the ring of rational integers.
(p, F) 1. Then pn divides A, and

(pro-hi) (0p-l) jF,-n(0p-) (Ap-,)F,,

First let

Ap a rational integer, contradicting the minimality of
divides F, let F pG, G an integer. Then

(pmi) (Op--)m jGm-npm-npn(Op-) Ap,G,,

I(Op-) JG’-(Op-) AG",

If however p

again contradicting the minimality of 0]. This proves the assertion about
the common prime divisors of P and Q.
WriteF- ...pT p, p,. -,p distinct primes, a, a2, ,a

positive integers. By cancelling these p as much as possible from the I, J, A
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in I0"- JFm-nO= AFm, we conclude that 0 satisfies infinitely many
equations

HOrn_. jp{lpg2.., plon 12Ap2 ""p,
0 a(m-- n), H a rational integer prime to p if > 0. Then
p,[ HO in , p (HO) (HO), p HQ, p Q if , > 0.

For any (positive, negative, or zero) integerj, write 0 A B --D,
D positive and square free, D 3 (4), A, B rational integers (the case
D 3 (4) is similar and will not be discussed further). Then

A+ A A, DB. B, B+ A. B. + A, B.
since 00 0+. Also,

A_ A 0-, B B Q-,
0 2 Q.since - ()- and A + DB ( )

We know that HB J p since Ira(H0) Im(Jp pon).
Letd (m,n),d rm- sn. We treat the case r, s 0;thecaser, s <0
is similar. We have

B B,m_. A,B_.. + B,mA_.. (--A,mB., + B,mA..)Q-’.

Let Q Q’Q", (Q’, P) (Q’, Q") 1, Q" (Q, P) a product of distinct
primes. We shall show that Brm is a multiple of (Q")m(r-1)mBm, B,, of
(Q")v(’-)mB,. We first prove that At and B are multiples of (Q,)m,

0, 1, 2,- .. The equation 0= PO- Q shows that Q"IO in ).
Then (Q’t)[/2llOz in 3, and so (Q,t)[/21 divides At and B, since D # 3
(4). Let p be a prime dividing Q" (it can be proved that pt(+)m divides
At if p is odd, but we shall not use this fact). We know that pmm divides
Am, but suppose first that pt(m+)/2 dividesAm. Observe that Btm is a mul-
tiple of ptm(t-)mB,, if 1; assuming the result for Bm, we prove it for
B(t+l)m NOW B(t+l)m B’ Am + A(Bm B-). Here pIm/ divides
Atm, whereas Am(BtmB’) is an integer divisible by pt(m+).pt,n(t--)m by
the induction hypothesis and the assumption that pt(m+) divides Am.
Since [(m + 1)/2] + [m(t- 1)/2] _-> [tm/2], we have proved that Btm
is a multiple of ptmt-)Bm, 1, 2,..., in case pt(m+)/l divides A.
Now consider the ease in which pt(m+)/l does not divide Am. Such an m
is odd, since ptmm always divides Am Since Am+DB= Qm, Am. +DBm
is divisible by pro. Now Bm is divisible by ptm-1)/, but if Bm were divisible
by p(m+)., then B would be divisible by pm+, so that A would be divisible
by pro, and Am by p(m+).. This contradiction shows that Bm is not divisible
by p(m+)/. The proof that Btm is a multiple of ptm(t-)mBm when p(m+)m
divides A shows that Btin is a multiple of B in any case. But since Bt
is a multiple of pttmm, and Bm is not a multiple of p(m+)/, Bt,, B is a mul-
tiple of pt,mm-(m-)/, and so of ptmt-)m. Thus Btm B- is a multiple of
ptm(t-)m for every prime p dividing Q", and so of (Q)tm(,-)m, since Q"
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is a product of distinct primes. This proves the assertion about Brm, and
similarly about B.

Consider Bd Arm B, q- Bm A,) (QP) (QtP)-’. Here A
multiple of (Q) /+[(-)/]B, BA of (Q’) t/+t(-)/B. From

pthe equation HB Jp pB we conclude (Q (Q Jp B
sn/ff [(m--(rm--sn) +1)/2]jis a multiple of (Q) (+’n--)/JB (Q’] u p B

is a multiple of B, (Q’)’(Q")(-+)/Jp pB is a multiple of B.
We shall need to know that (Q’, B) 1. Let the prime p divide

and U then p[Q A + DB, so that p]A, p]O in . Let

0 R0+ S, j 1,2,...,

sothatR 1, S 0;R P, S -Q. Wehave

R+I RP- S, S+ -RQ.

Thus piss, hence p[ROin . Thus p[RA, p]RB.. Ifp does
not divide R, then p Ax, p B, p 0 in . Let k be the least integer such
thatp]R+x,sothatk 1. Nowp[S,p]R+ RP- S,p]RP,
p]R or p]P. Since p does not divide R by the minimality of k, we con-
clude p]P. But P[Q so p[Q" and not Q’. Thus the assumption that
p]R must be retracted, and we have instead p[O. But then

op-) P op-) Q,
P, Q rational integers, so that 0= (Pp)O- p, Pp P, Opt= Q by
the uniqueness of P and Q. This however contradicts the fact that Q"
is the product of distinct primes. This contradiction proves that

(Q’,B) 1.

Then (Q")r(-a+)/Jp... piBa is a multiple of B, where
unless p]Q’, in which case 0. Let m ed, e an integer >1, so that
in turn B is a multiple of (Q")a(-x)/:Ba. These two facts taken together
imply B I(Q")J pI pBa, e 0 or 1, J] J, , 1 i l,

0ifp]Q’. If> 0, thence> 0andp]Q, butnot Q’, sopQ".
We will obtain an upper bound for p pT. We have

FalHO JpX p W A p
Let > 0 so that p divides Q". Observe that the right-hand side of this

[n/2] Fequation is divisible in by p+’/ since 0 is divisible by pC by
p. Thus p+/]HO in , pa+’/]HQ. Recalling (pC, H) 1,
we conclude that p+/:Q. Since pQ", and Q" is the produc of
distinct primes, p divides Q, but no higher power of p,: divides Q. This
means

2[ + n/21 m, [(m n + 1)/2] [(m d + 1)/2],

=< [(m-- d-I- 1)/2]
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unless ’i 0. Since pilQ" if / > 0, we conclude

pl p < (Q,)

which is the required upper bound.
Thus our previous relation between Bm and B yields

To prove arg 0 a rational multiple of 2r, consider the argument of
0 mod 2r: For a suitable positive integer s, an even one if 0 is in the
first or fourth quadrant, odd if 0 is in the second or third quadrant,

]rg 0 s ]m s 2 sin ]mO s

2] B ]Q-/z 2(Q")/ J ](Q")(-)/:l BI bQ-/

2(Q") /[ J ](Q’) (-)/Q/Q-/
since B] Q/. So

me s < 2(Q") :] J I(Q/Q")-(-)
2(Q") /2 j [(Q,)-(-)/ < 2(Q") /2[ j ](Q,)-/

since dim and d < m.
First let Q’ > 1. Then

2,j[(Q,,)(Q,)._/ exp ( logQ’ 3
4 m+o(m)+log2+logQ"

since J e<m>. Thus, for large m, [me sl < e-c, C a positive con-
stant, since log Q’ > 0. But by a theorem of A. O. Gel’fond [4, p. 34, Theo-
rem IV], if [me s[ < e-c for an infinite number of integers m, s with C
a positive constant and the argument of an algebraic number, then is a
rational multiple of (2)v. The theorem is proved in the case Q’ > 1.

There remains the case Q’ 1. That is, Q[P, so that Q [P [. But
P < 4Q, Q < 4Q, Q < 4, Q 1,2, or3. Since Q must divide P, andyet
P must be less than 4Q, we find that 0 must satisfy one of the following
six equations"

0: 0@ 1 0; 020@2 0; 0 30 3 0.

Thus 0 1, 0 -4, or 0 -27. This completes the proof of Theo-
rem 4.

Remarks. We recall that if is imaginary quadratic and q is rational for
q a positive integer, then q 2, 3, 4, or 6. Also, in Theorem 4, o(m n)
may not be replaced by O(m n), nor may o(m) be replaced by O(m), as
arguments similar to the one following Theorem 3 show. The special case of
Theorem 4 wherein 0 is an imaginary quadratic integer and n 1 for all
m says that [B > e-c for all m, C a positive constant, unless of course 0
is the q root of a rational integer.
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4. Applications to diophantine equations

We apply Theorem 4 to prove the following two theorems.

THEOREM 5. Let bz+2 Pbz+l- Qbz, P, Q rational numbers, bo---O,
be a linear recurring sequence of order two with the property that there is no posi-
tive integer q such that bnq O, n O, 1, 2,.... Then if L is suciently
large, those b with > L are all different.

Proof. Consider the two-dimensional algebra B over the rationals spanned
by 1, h with 2 p Q. In B, define z Pz Q, P, Q rational
numbers, P0 0, Q0 =-1; P1 P, Q =-Q, l= 0,1,2,.... Then

b+ P qb P(P Q) Qz (PP Q) Pq,

so that
Pl+i PPz- Q, Q+, P, Q.

Thus
P+. PP+ Q+I ppz+ Qp,,

and the P satisfy the same linear recurrence that the b satisfy. Further-
more, P0 0. Since b 0 because the sequence {b} does not consist of
all zeros, the sequence {Pz} differs from {bz} by multiplication by a constant,
so that P P if b bn. If P Pn with n > say, then

4- Q Q is zero in B, which is just another way of saying that
the polynomial x x a (a Q Q,) is divisible by x Px - Q.

First assume the equation x Px + Q 0 has two real roots with dis-
tinct absolute values, the absolute value of the larger, say 0, not being 1.
We find, by the same order of magnitude argument as used in Theorem 3,
that x Px + Q does not divide x X a, a rational, n > l, if is
large enough.

If the absolute values of the roots of x Px Q 0 are distinct but
the absolute value of the larger root is 1, let be the other root of

x- Px + Q O,

so that 0, I1 < 1. As in Theorem 3, we have this time

1 0"-(1 /’) (1 )-.
If 0 4-1, we have 1 - 1 , , n landnotn> 1. If
0 -1 and n- is even, we reach the same contradiction; if 0 -1

l) --1andn-- lisodd,-1 (1 ) (1 ,/z 1 1 ,/

2, contradicting < 1.
Next assume x Px -4- Q 0 has distinct real roots opposite, in sign;

then P 0, x Q O, b+2 -Qb, b2 O, O, 1, 2,..., which
case has been ruled out by the hypothesis of this theorem.
Now assume the equation x Px + Q 0 has a double root r, which is

of course rational. Ifr 0, thenx 0, b2 0, 0,1,2,..., which
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has been ruled out. Let r 0. If x-x- a is a multiple of

x Px+Q,

then the equation x x a 0 has r as a double root. So the equation

-(x’-x --a)

has r as a root, whereupon nrn-1 lr- O, or r- l/n. Since n > l,
r[ < 1;let s 1/Irl, s > 1. Then sn--= n/l; since n > l, n-- => 1

and s- >>- s, n/1 >- s, <= n/s, n-- >- n-- n/s 3n say, > 0. So
again n/1 s- >= s. Now s > n if n is sufficiently large, since > 0.
Thus nil > n if n, and so l, is sufficiently large, which leads to the contradic-
tion 1, a positive integer.

Finally, let 0 be a nonreal number such that 02 P0 Q. Define

so that P0 0, Q0 -1; P P, Q Q. As above, if b bn with
n > 1, thenP P,t- 0- a 0, arational. By Theorem 4, if this
happens for arbitrarily large l, then 0q b, b rational, for some positive
integer q. Then b+q bb, 0, 1, 2,.., so that bq 0, n 0, 1, 2,

which has been ruled out by the hypotheses. (Recall q 1, 3, 4, or 6
here.) This proves Theorem 5.

THEOREM 6. If the positive integer y is suciently large, the equation

2m+2 7y x

has at most one solution in positive integers x, m.

Proof. By [5, p. 663], 2m+:- 7y:= x if and only if

+/-(x :e

where (1 + %/-7)/2. If also 2+- 7y= x, m > n, then

t :t: 0 is a rational integer. By Theorem 4, however, t t is not a
rational integer if m is sufficiently large, since 0 is not the q root of a ra-
tional integer for any positive integer q. This proves the theorem.
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