
ON COMPLEMENTARY AUTOMORPHIC FORMS AND
SUPPLEMENTARY FOURIER SERIES

Dedicated to Hans Rademacher
on the occasion of his seventieth birthday

BY

MawN ISADORE KNOPP AND JOSEPH LEHNER

1. Let F be a discontinuous group of linear transformations of the upper
half-plane 3C on itself. If F, G are automorphic forms belonging to F, we
say that F and G are complementary forms provided FG is a differential, i.e.,
provided

{r, -2,

where by {F, --r, } we mean the complex vector space of automorphic
forms of dimension -r belonging to F and the multiplier system v. If
F e F, -r, v}, G e F, -r’, ’}, then F is complementary to G if and only if

(1) r + r’ 2, v’ 1.

In particular, assume r < 0, a positive integer, and let F(r) be that form
in {F, -r, v} which is regular in , has a pole of order at , and has the
Fourier expansion

e(--r/k)f,(r) t-" + _oat, t= e(r/k),(2)

where
e(z) e2.

Here , are defined in (3), (4). That is, we assume such a form exists.
Petersson has defined a system of forms belonging to the complementary
class IF, -r’, v’l, namely, the Poincar4 series G(r, -r’, v’, ) G, ;cf. (8).
In 3, Theorem 1, we shall exhibit a connection between F and G: If there
exists a form F e{F, --r, } satisfying (2), then G_ =- 0 when > 0 and
G, =- 0 when O. This result is applied to the modular group in 4 (cf.
Petersson [3, p. 432]).

If F, e {F, --r, v}, the coefficients a have convergent series representations
given in (5). But a can be defined by (5) whether F is an automorphic form
or not. Write

a, am(g, --r, v)

to express the fact that am is determined by the data in parentheses even
though there may not exist a form of type F.

In 5 we restrict -r to positive integral values. We regard F as a Fourier
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series with the expansion (2) and make no assumption whatever about its
automorphic character. We define a new Fourier series , called the series
supplementary to F,, by setting

+
with

d, am(t’, -r, v’)

and K’, u’ defined in (7) and (15), respectively. It turns out that F does
belong to {F, -r, v} if and only if/,, -= 0 when K > 0 and if and only if
/, d0 when 0 (6, Theorem 3).
From these results we can deduce easily 8, Theorem 4) that F e F, -r, v}

if and only if G_I 0 ( > O) or G, =- 0 ( 0), provided we keep the
requirement that -r be a positive integer. This is a strengthening of
Theorem 1.
We owe the idea for the present investigation to a paper of Rademacher

[5] in which he considers the partition coefficients p(n) for negative n.

2. It is doubtless possible to treat rather general groups by the methods
of this paper. We prefer to restrict the group as well as the automorphic
form. Let I’ be a group which is discontinuous in , is not discontinuous at
any point of the real axis, and contains exactly one class of parabolic trans-
formations, namely, translations generated by an element of period X, say
(X > 0). 1 has a fundamental region with a cusp at and no other real
cusp. We represent F as a 2 )< 2 unimodular matrix group. For convenience

-I (-10 O-- )isassumedtbelngt r;thematrices=i=V’ V bd)
are identified with the transformation Vz (az b)/(cz A- d).
Automorphic forms on such groups have been treated in a previous paper

[2]. We shall make use of the results of that paper. The notation used there
is the notation of the Rademacher school, whereas forms of negative dimension
have been elaborated extensively by Petersson in a different notation (cf.
[4], for example). In order to make a comparison, it is necessary to settle
on one notation. We shall rewrite the results of [2] in Petersson’s notation
since we have already used it in 1.

Notice particularly that Petersson calls the dimension of a form -r, rather
than r, as in [2]. A form F e {F, --r, v} has the transformation equation

for each M e F.

F(Mr) v(M)(cr A- d)rF(r),

We require v(M) 1 and set

--r < arg(cr + d) =< .
Let

),>0,



100 MARVIN ISADORE KNOPP AND JOSEPH LEHNER

generate the cyclic subgroup of r consisting of these elements that fix
Define K by

(4) e() v(V), 0 _-<

F(r) has the Fourier expansion

e(--r/X)F(r) Y’:=-oo a, e(mr/X) f(t), e(r/X).

Suppose now F is a form of dimension -r > 0, and F is regular in 3e but
admits a pole of order t at with principal part t-". We write F
then the above expansion reads:

(2) e(--Kr/X)Fu(r) f(t) t-" + -’,=oa,t’,
the series converging in 5C, i.e., for Im r > 0 or It] < 1. We write more
explicitly

a a(u, -r, v).

The Fourier coefficients a are given by Theorem 1 of [2]. When we tran-
scribe this formula in the new notation, we get

(5) am(, --r, v) e(--r/4)(2r/X) cc+ c-lWc(m, -, v)L(m, ,, -r,

where

{ (:) }C+= c i r,c>O

We(m, ,, v) -) O(M.)e{[(m + )d + (, + )a]/cX}, c O,

Lc(m, ,, r, ) + I+ (, )/(m + )/ m+O.

Here L(z) is the Bessel function

I(z) e(--r/4)J(iz) (z/2)+
=0 p! r(r + p + 1)"

For each integer m we have from (2),

ff(t) dr,a=
C being a circle interior to the unit circle and enclosing the origin. It follows
that

a 0 for m < 0, m -g.

Now an examination of the proof of Theorem 1 in [2] reveals that it does
not depend on the nonnegativity of m. That is, (5) holds for all integral m.
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Hence we obtain the remarkable identity"

(6)
a_,(tt, --r, v)

e( r/4) (2r/k) cc+ -1c Wc(--m, --I, v)Lc(--m, , r, K) 0

for m > 0, m u. This may be called an expansion of zero.

3. We are now going to compare the expression for a_m with the Fourier
coefficients of certain Poincart! series G (cf. [4, p. 469 ft.]) belonging to
IF, -r’, v’}. Since we want G to be complementary to F, we shall choose
r’ and v’ as in (1). Now vl 1, so v’ v-1 . Defining
K’ by e(K’) v’(UX), 0 =< K’ < 1, we see that

e(’) (u) e(-) e( );
hence

K’ l--K,
(7)

K’ 0, K 0.

Let

where r’ > 2, t -> 0 is an integer, and M runs over a complete set of matrices of
F with different lower row. G is an automorphic form in {F, -r’, v’} and is
regular in 3e. If t -t- ’ > 0, G vnishes t ll pmbolic cusps of F, in other
words, G is n entire cusp form. Furthermore, G, hs the Fourier series

e(-’r/X)G 2e(r/h) + +’>0c e(m/h).

The Fourier coefficients c, which we write more explicitly as

c c(,--r’, v’)
ure found in [4, p. 474]"

v’ -1 v’ r’, g’c(, --r’, (2r/h)e(--r’/4)[ c+ c W(m,, )M(m,,,

+ c+ e(r’/2)c-W-(m, ,, v’)M(m, , r’, ’)},
with

M(m, ,, r, ) , J,_ ( + ) (m + )

cO,m+O.
Since, for c > 0,

W_c(m, , v) e(-r’/2)Wc(m, , v),

the above expression reduces to

(9) c,(t,-r’, v’)
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Consider cm-l(t 1, -r’, v’). Recalling (1) and (7) we note’

(Mc(m- 1 ,- 1 r’,K’) -e r.- 1 --_m..+_ Lc(--m, g,--r,,)
2 /\ l--

and
W(m I, i, v’) W(-m, -, ).

Since L(--m, , -r, ) is real for m, 1, we get

’ >0,tt > 1, m >_- 1,

(llb) c,(m, -r’, v’) 2e(r/2)a_,(tt, -r, v),

We apply formulas (10). Since in F, we have a_,
and a_, 1, it follows that for ’ > 0,

c(/z 1, -r’, v’) 0,
(12a)

c,_l(g 1, -r’, v’) 2e(r/2)(- 1)-r+l

For K’ 0 we have
c,(, -r’, v’) O,

(125)
v’c,(tt-r’, )--2.

Hence we have proved

THEOREM 1. lfF,, e {F, --r, v}, r < 0, t -->- 1, and has the expansion (2), then
G(r, -r’, v’, t 1) is identically zero when ’ > 0, and G(r, -r’, v’, tt) is
identically zero when ’ O. Here G belongs to {F, r 2, v-1} and is defined
by (8).

g >= 1, m => 1,’ > O,

m > O, ’ =0.

Oform> O,mg,

m > O,m g 1,/ >_- 1,

2.

m>O,mg,

4. We present an application of the above theorem to the modular group
F(1). The function

(13) (r) e(r/24) IT:=1 (1 e(mr)), r e3C,

is the well-known Dedekind modular function; it belongs to {F(1), --1/2, v0},
where v0 is the classical multiplier of Dedekind and Hermite. Here
h 1, e(r). It is known thatv4-= 1.

(lOb) c(g, --r’, v’) 2e(r/2) _,(, --r, v), m > O, ’ O.

By similar methods one obtains another symmetry formula involving an
interchange of m and g"

c-i(m 1, --r’, v’) 2e(r/2)a.,(, --r, v),
(lla)
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Consider r(r) e{F(1), -r, v0r}, with -12 =< r < 0.
pansion is

r) e(rr/12)[1 + O(e(r))]

Setting K r/12 [r/12], we have

and0<- K< 1.
we conclude that

Now let be arbitrary.

Its Fourier ex-

e(--v)y(r) t-__...,
Hence F v satisfies the conditions of Theorem 1, and

G(r,r- 2, v-,0) 0 forr > -12,

G(r, 14, 1, 1) =- 0.

Consider

H(r) J(r):(r),
where J(r) is the absolute modular invariant of Klein with Fourier series

J(r) e(-r) -t- bo + b e(r) "Jr" "".

Since J e{r(1), 0, 1.}, H belongs to the same class of automorphie forms as
2rn and has the Fourier series

e(--r)H( r) --1 --A suitable linear combination of {H,/ 0, 1, t 11 will be of the form

e(--r)F,(r) - + do + d -t- "",

and to this we can apply Theorem 1.
We collect these results in a theorem (el. [3, p. 432]).

THEOnnM 2. Let--12 -< r < 0. Then

G(r,r- 2, v ,u) 0, t- 0, 1, 2,..- r > -12
and

G(r, -14, 1, t) 0, t 1, 2, ....
Furthermore, there are no cusp forms except 0 in the spaces F(1), r 2, v-},
0 > r > --12, or in {r(1),--14, 1}.

The last statement follows from the known result that the above Poincar
series generate the space of cusp forms of the appropriate dimension and
multiplier system.

5. From now on we restrict our attention to forms of positive integral
dimension -r (r < 0) and change our point of view somewhat. Previously
we had begun with a function F which was assumed to be an automorphic
form, that is, we assumed F e{F, -r, v}. Now we lift this restriction and
think of F F as a Fourier series defined by (2), with am am(t, -r, v)
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given by (5). As before, u is a positive integer. As was shown in [2], if
F, e{F, -r, v}, then F, has such a Fourier expansion. The converse, how-
ever, is not true, even with the present assumption that -r is an integer.
That is, an F, defined by (2) may or may not be in {F, -r, v}.
On the other hand, it is known [1] that any function F, defined by (2) with

a. given by (5) satisfies the transformation equation

(14) F,(Mr) v(M)(cr + d)rF,(r) v(M)(cr + d)rp(r;tt, v), 3C,

l-
for each M= (c d) e F’ where pM( r , V)is a polynomiM in rof degree

at most -r. Then, F, elF, -r, v} is equivalent to p(r; , v) 0 for all
M e F. The method of [1] is based on a technique introduced by
Rademacher [6].
We now define a Fourier series that we shall call the series supplementary

to F. Let -r be unchanged, so that -r > 0, and let v’ be defined as in (1),
that is, vv’ 1 on F. As before we have K connected with v’, with d defined
by (7). In addition, let ’ be

v’ 1 , if a > O,
(15)

v’ --v, if O.

The supplementary series F, is the series

(6) e(-’/x),() -’ + --o . ", t= e(r/X),

where
d, a,(t,’, --r, v’).

The method of [1] shows that F, has the transformation property

(17) /?,,(Mr) v’(M)(cr + d)r, (r) (M)(cr + d)(r; u’, v’),
T C

/_
for each M (c
degree at most -r.

e F, where #(r; u’, v’) is again a polynomial in r of

6. The cases > 0 and 0 are somewhat different in detail, and it is
convenient to treat them separately. Assume first that > 0. In this case
the computations of [1] show that

(18) /3(r; ’, v’) p(; u, v) for all M I’.

Furthermore a comparison of a(,, -r, v) with d shows that

(19) a e(-r/2)a_,_(., -r, v).

(Note that L(m, 1 u, -r, ,d), L(-m 1, , -r, ) are real since r
integer.) Now, by (14), F. e r, -r, v} if and only if p(r; , v) 0 for all
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M e r. By (18) this happens if and only if/(; g’., v.’) 0 for all M e F.
Therefore, according to (17), F e {F, -r, v} if and only if/, e IF, -r, v’}.
But

ff’,,(r) e[(#-- ’)r/,] -q- _,,=od e[(m -4- ’)r/,]

e[(z K)r/X] + =0dm e[(m q- 1 K)r/X],

so that/,, is bounded at . Hence, by [2; p. 274, Theorem 4],
if and only if ,, 0. If we now apply (19), we see that we have derived
the following result for the case x > 0"

THEOREM 3. Let F, be the Fourier series given by (2), and ,, the supple-
mentary series defined in (16). Here -r is a positive integer, and a, is defined
in (5). Then when > O,

Fe{F,--r,v} if and only if F, =-- 0;
and when O,

Fe{F--r,v} if and only if , =- do.

This condition is equivalent to

a_,(t, --r, v) O,

a_,(tz, --r, v) e((--r -q- 1)/2).

m g, m > O,

7. We now treat the remaining case 0. In this instance the computa-
tions of [1] yield

(20)

forallM (: )eF. We also see that

d, e(--r/2)_,(tt, --r, v), m >- 1,
(21)

d0 --a0(, --r, v).

We proceed as before to find that F, e{F, --r, v} if and only if

P’ -t- a0(/, --r, v) /,, do e F, --r, v’}.

Again, since/,, is bounded at , this occurs if and only if/,, d0. Thus
using (21) we obtain the case x 0 of Theorem 3, which is now completely
proved.

8. When r is an integer, we can strengthen Theorem 1.

THEOREM 4. Let --r be a positive integer, and let F, be defined by (2) and
(5) with >-_ 1. Then FeI F, --r, v} if and only if

G( r, -rr, v, 1) - 0 when > 0
or

G(r, -r’, v, ) - 0 when O.
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LetK > 0.

and

The condition G-I - 0 is equivalent to

c(- 1,-r’,v’) 0 form>0,m- 1,

By (10a) this implies

and

c_( 1, -r’, v’) -2.

a-m(, -r, v) 0 form > O,m g,

a_,(g, --r, v) 1.

Hence we can apply Theorem 3 to the function e((r 1)/2)F, which, we
conclude, lies in {r, -r, v}. The same argument works when K 0, if we
use (10b) in place of (10a).
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