AVERAGE ORDER OF ARITHMETIC FUNCTIONS

BY
J. P. TuLL

1. Introduction and an elementary lemma

The author has given a theorem [8] by which it is possible to find an asymp-
totic formula for the summatory function of the convolution of two arithmetic
functions if such a formula is known for these functions. By the convolution
of arithmetic functions ¢ and b we mean

(axb)(n) = 2ain a(d) b(n/d).

If A(z) = D ncsa(n) and B(z) = D <o b(n), we have used the term Stzeltjes
resultant for the function

C(x) = D ucs (a%D)(n)
due to the fact that for almost all z

C(z) = fl " Az /u) dB(w).

However, the term convolution is just as natural, and so we have two convolu-
tions, * and X, where for x = 1

(A X B)(2) = 2nca (axD)(n).

In the present paper we shall apply the theorem of [8] to some interesting
arithmetic functions and then apply the following elementary lemma to some
of these results and also to some known nonelementary asymptotic formulae
to find estimates for sums Y.< a(n)/n.

LemMA. Given an arithmetic function a, if for x = 1
A(z) = 2w a(n) = R(z) + 0(2°L(z)),

where R is continuous on [1, «), a 1s real, L slowly oscillating (see below), then
Yccaln)/n = [ RO d+ R@)a™ + ¢ + 06" Li(x)),

1
where ¢ = 0 if a = 1,

¢ = f t2(A(t) — R(t)) dt

1
ifa <1, Ly(x) = L(x) if « # 1, and
Li(z) = f tL(¢) dt
1

if a = 1.
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A function L is said to be slowly oscillating if it is continuous and positive
valued on [z,, «) for some x,, and if for every ¢ > 0

lim,, L(cx)/L(z) = 1.
Such a function is characterized by the form [5]
L&) = s@mewp ([ ) @),
zy
where p and & are continuous, py > 0, p is positive valued, and p(x) — 1 and

d(z) > 0asax — . (xowill be taken as 1 in this paper.)
Note that as ¢ — «, L(x) is asymptotic to

J(z) = pyexp <j;: £8(t) dt),

where J is differentiable. Thus the use of ’Hospital’s rule is justified in
the following proof.
Proof of lemma. Let E(x) = A(z) — R(z) = O(z"L(z)). Then

Zn<x a(n)/n = ‘[lx t—l dA(t)

- A2)/o + f1 F2A() dt

= R@)/e + 0GLG) + [ CRW dt+ [ O8O @
Now if @ > 1, then
flx {PE() dt = 0 <f1 *7°L(t) dt) = 0(z*'L(2)),
for one can use I’Hospital’s rule to prove that
fj () dt ~ 2 'L(z) /(e — 1).

If « = 1, then
f LGt dt = f tL(t) dt.
1 1

This is readily seen to be a slowly oscillating function with the aid of
I’Hospital’s rule; further, it can be shown that it dominates L(z). Ifa < 1,

flx {E(t) dt = flw 2B (t) dt — f; E(t) dt

=c+0 (f: t*L(t) dt)

=c¢+ 0(*"L(z))
by I'Hospital’s rule. This completes the proof of the lemma.
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S. A. Amitsur [2] has used the arithmetic linear transformations of K.
Yamamoto [9] to find some formulae for sums Znéz a(n)/n. His technique
involves the method of convolutions applied directly to these sums. It is
interesting to note that with the aid of the above lemma we are able to get a
better estimate in his formulae even in some cases where we used only the
convolution method to get a formula for Y .., a(n). In fact, the theorem
by which he derives his formulae can easily be derived as a special case of the
theorem of [7] which is a special case of [8].

2. Statement of results
We begin with the assumption that for z = 1,

(2’1) M<x) = Zn<¢ I-"(n) = O(xaLo(:L')),
and
(22) Diu(z) = 2aucdi(n) = aPi(logz) + O(z™Ly(x)) (k= 2),

where p is the Mobius function, d;(n) is the number of ordered positive integral
solutions of oy x2 - - - 2 = m, Lo and Ly are slowly oscillating functions, P; a
polynomial function of degree k¥ — 1 (which is known explicitly),

3=0=1 and (k—1)/(2k) S ax = (k—1)/(k+1).

(See [6], Chapter 12 and [4] for estimates of a; .) We further assume that if
¢ =1,thenforz =1

(2.3) Lo(z) = O(exp {—c (log z)*"/(log log z)¥"}),

for suitable ¢ > 0. (Thisfollows by standard arguments from the information
on p. 114 of [6]. See [6], p. 316 for the case 6 = 3. Of course it is not yet
known whether one can take § < 1.) TUnder these assumptions we shall
prove the following:

(24) Lacom(n)
(2.5) D uczm(n)/n

I

z/¢(k) + 0" 0L (2)) (k z 2),
(log z) /¢ (k) + & + O(z~* 01T (2)),

(2.6) 5 e 2™ = 2Py (log 2) + 0(2™L; (z)),

(27) P 2®/n = Py¥ (log z) + 0(2" L3 (x)),

(28)  Lazd(n’) = 2PF (logz) + 0L (),

(29) Lacad(n®)/n = P5* (logz) + 0(z"'Li (x)),

(210) Yaced(n)? = zP§ (logz) + O0(z™Li(x)),

(211) Xuced(n)’/n = Pi* (log z) + 0(2"'Li(2)),

(212) <o di(n)/n = P} (logz) + 0(x™"Li(x)) (k2 2),

where u; is the characteristic function of the k*-power-free integers (thus
ue(n) = |u(n)|), v(n) is the number of distinct prime factors of =,

It
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d(n) = dx(n) the number of divisors of n,

0k=(1—0ak)/)\k, )\k=3—0—2ak, if ay;

IIA

. -

0k=ak lf ak_>_=

The P’s are polynomial functions which can be explicitly calculated by an
Abelian argument (see [3]) or by (4.2) below. The L’s are slowly oscillating
functions satisfying

L(T(x) — (1 + 0(1))Lo(xll(k+1_0))(]+O(1))/(k+l_a) as T — 00’
L}T(Il?) — {Lk(x(l—o)/)\k)2—0L0(x(l_ak)/)\k)1—2% log(k_”(l_“")(x + 1)} A+o(1))/Ng

as z— o if a4 <3t (k=2),

Li (z) =f W) du if oy =
1

[N

(k =z 2),

Li(z) = Li(z) if o >3 (k= 2).

Note that all the arithmetic functions @ in the above formulae satisfy
a(n) = 0(n) for each £ > 0 and hence although we use the sum D, a(n)
in the text, the formulae are unchanged by replacing this sum by D _,<, a(n).

3. Proof of (2.4)
We observe that Doy u(n)/n° = ¢(s)/¢(ks), and hence if
Au(@) = Daran(n),  B@) = 2acl, and Mi(z) = 2acem(n),
then M, = A; X B. Thus we apply [8] to the formulae

(3.1) Ar(z) = 0(2""Lo(2'™)),
(3.2) B(x) = = + 0(1),
(3.3) Valz) = 0", Ve(z) = O(x).

Here V4(x) denotes the total variation of the function A over the interval
(1, z].
Formulae (5) and (6) of [8] applied to A* and B give us
My(2) = [ M((@/m)™) du+ 0G™ Lo(@™) + 0" yLy(2")) + 0(H")
1

uniformly for 1 £ y = z,2 = x/y. The main term is

‘/;x M((z/w)"™) du = xj;’” WM (™) du

-2 f WM (M) du + 0 <x f w7 Ly (W) du)
1 x

= 2/t(k) + 02" Lo(z*"*))
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by 'Hospital’s rule. We choose, with g = k + 1 — 6,
2 = 2Ly = 2LX(x),
and the error term becomes

Ol Lo(a""L*(2)) L*(2)"™) + O(¢"L¥(x)) = O(2""Li (),
where

Ly (z) = max {L*(z), Lo(a""L*(2))L*(2)*™ = (1 + o(1))Le(a'™) 4"
as ¢ — . The term O(z"*Lo(2"*)) is neglected, for if # < 1, then

0/k < 1/(k+1 — 0),
and if § = 1, then Lo(x) =< 1 for large z, and so

Lo(xllk) é Lo(xl/k)llk — L*(x).
Thus we have (2.4):

Dce me(n) = a/¢(k) + 0L ().
A simple application of our lemma now yields (2.5).

4. Proof of (2.6)-(2.11)
If k is an integer = 2, set
M®P(2) = M(@"™) = 2ncz u(n),
Ci(x) = (De X M®)(2) = Lz di(m)n(n).
It is easily shown that (see [6], Chapter 1)

Co(2) = 2ue 2, Calr) = Lucad(n),

04(11) = Zn<x d(n)2

Thus we can handle formulae (2.6)—(2.11) in one proof.
With the aid of (2.1), (2.2), and the estimates

Vo (x) = O(zlog" (z + 1)),  Vuwm(z) = 0(z'"),
the theorem of [8] gives, for o, < 3,1 Sy = 2,2 = 2/y,
Ciu(z) = Ti(z) + 0(z™*Li(z)) + 0z Lo(x'"*))

and

(4.1)
+ 0(*y"*Li(2)) + O(ay""Lo(y"*) log"™'(z +1)),
where
W) = | M e Py
) Tu() = [ M((z/w)") d(uPy(log u))
= xP;ck(log z) + 02" "Ly(2"*) log" " (z + 1)).
Since

Lo(a) log" (. + 1) = o(1)
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if 9 =1, and
0/2 < (1 — 60x)/(3 — 60 — 2a4)

if 6 <1 (o = 1), the above error term is dominated by that found below.

The substitution in (4.1) of
x(l"(’)ﬁ\chIc (x(l—o)/)\k)w)\k

&= Lo (@0 Py 1o TEDM (1

leads to the error term
(4.3) O (P ™ML ()

with A and Ly as in Section 2 (o < 3).
If o, = %, then [8] gives an error term

(44) 0@E"Ly(z")) + 0(3:”2 j:g w Ly (u) du) =0 (x”z j;z w Ly (u) du) .
If o > %, the error is
(4.5) O(a™Li(z)).

After applying the lemma to these results, we have formulae (2.6)—(2.11).
(2.12) is an immediate consequence of the lemma applied to (2.2).

One can easily show that 6, is a nondecreasing function of o5 and of 6, and
thus improvements on «; and on ¢ will yield improvements on 6, . However,
since (1 — fox)/(3 — 0 — 2a;) = % if 6 = 1, no improvement on a; beyond
ar = 3 will improve 6; by this method until more is known on the Riemann
conjecture. Thus at present the best value for 6, given by this method is 3.
Since a2, a3, and a4 can be taken < %, we have 6, = 6; = 6, = 3. (Hua [4]
has a list of the best values of a; known to date.) Furthermore, if
ar < 3 (6 = 1), then Lj is independent of L; , and so improvements on L; are
of no help unless o, = 3. However, if L, is given by (2.3), then improvements
on oy beyond % will improve L.

If we recall that the best conceivable values for a5 and 6 are (k — 1)/(2k)
and 3, respectively, then it appears that the best value for 6, given by this
method would be

6, = (3k + 1)/(6k 4+ 4).

(See [6], p. 273.) It would be interesting to know whether this is indeed a
lower bound on the possible values of 6 .
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