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Consider the system of linear differential equations

u" + A ()U hfl(u, v, W, u/, v/, t, h),

(1)

w’ f(u, v, w, u’, v’, t, ),

where }, is a real parameter,

u (y,..., y,), v (y,+,..., y,) w (y,+,...,

f, (f*, f*), f. * .(f +x f, ), f (f’, +

A(X) diag (, ,), (a,+, a), and the vector
functions fl, f, fa are linear functions of u, v, w, u’, v’. The coefficients in
these lineur functions are real, periodic functions of of period T 2/0,
L-integrble in [0, T], analytic in , and have mean value zero. Further,
suppose that each a(h), j 1, 2, #, is a real positive analytic function
of }, with a(0) +/- a(0)
h 1, 2,.-.,u, m 1, 2,.... Systems of type (1) for hl small have
recently been extensively investiguted by a method which has been suc-
cessively developed by L. Cesari, J. K. Hale and R. A. Gambill for both
linear [1, 3, 4, 6, 8] and wekly nonlinear differential systems [2, 5, 7]. Most
of the previous work has been concerned with systems of type (1) without
the third vector equation, i.e., with systems of second order equations. The
aim of the present paper is to prove a theorem concerning the boundedness
of the AC (absolutely continuous) solutions of (1). By applying the same
methods, the following theorem is proved"

THEOREM. If
v’, -t, ) fa(u, v, w, u’, t, ),() fl(U, V, W, --U’, V’

() f(u, -v, w, -u’, v’, -t, ) -f(u, v, w, u’, v’, t, ), and

() f(u, -v, w, -u’, v’, -t, x) -f(u, v, w, u’, v’, t, x),

then for l[sufficiently small, all the AC solutions of (1) are bounded in
(-,+).

This theorem generalizes some previous results of the author [8] for sys-
tems of linear equations of type (1) where the third vector equation did not
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appear. A different notation is used in this paper to simplify the presenta-
tion.

This theorem is proved by showing there is a fundamental system of AC
solutions of (1) which are bounded for all values of t. More specifically,
it is shown that the first 2t characteristic exponents of (1) are purely imagi-
nary and the remaining n are zero.
By the transformation of variables

j 1 2,... t,y (1/2i(r)(z2_ + z2), y -(zi-1 z.),
(2)

Yk z,+k, / t - 1, ..., n,

system (1) is equivalent to the first order system

(3) z’ Az + g(z, t, ),

where z (z, zn+), A diag (a’, an+,), a.’_ ia’,
a: -ia’, j 1, 2,...,#, a:+" 0, j 1,2,...,n #,and
g (gl ,’", g+), g2-I f[(1/2ia)(z + z),..., (1/2ia)(z_l + z,),
z,+,’", z,+,, 1/2(z z2),..., 1/2(z.,_ z.,), t, X], gi --gi-,

2, n-- p,.j 1,2,...,; g.,+ =f;+, j 1,
By considering an auxiliary equation of (3),

(4) z’ Bz + hg(z, t,

transforming it into an integral equation, and employing the method men-
tioned above, we obtain AC solutions of the equation

(5) z’ (B ,D)z + ),g(z, t, ),

where D is a constant diagonal matrix which depends on B, g and k.
by determining B so that

(6) B- hn A,

Then,

the obtained solutions of (5) become solutions of (3).
In the following, let C denote the family of all functions which are finite

sums of functions of the form f(t) e"(t), < < - , where a

is any complex number and (t) is any complex-valued function of the real
variable t, periodic of period T 2/, L-integrable in [0, T]. If (t) has a
Fourier series, (t) _-_ C e, then the series

(7) f(t) e"(t) ,_ C,e(n+")

is the series associated with f(t). Moreover, in harmony witch [1] and [6],
the mean value M[f] of f(t) is the number M[f] 0 if inoo - a 0 for all
n, M[f] C if in a 0 for some n. It is known [1, 6] that if f(t) C
and M[f] 0, then there is one and only one primitive of f(t), say F(t),
which belongs to C and such that M[F] O.
Put B diag (p, p+) where p._(k) ir (k), p. (k) -ir (,),

j 1,2,...,, p.+ 0, k 1,2,...,n- ;each r.isarealposi-
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tive analytic function of X with rs(0) =i= rh(0) moo, j h, j, h 1,
2,..., , rh(0) moo, h 1, 2,..., , m 1, 2,.... Let

(8) z

denote the m* approximation to a solution of (4), and define the method of
successive approximations as follows"

X() (al epl an+ epn+t’t)

x() e, f e-’"[g(x(’-) (D()x(-) D(.)x(O)(9) ,a,X) + -t- )] da,

m 1,2,

where eBt diag (epit, eP+), a, a+, are complex numbers, and
the matrix D(r) is defined by

as d) M[e-#itgs(x(r-1), t, })], if as # 0,

(10) d) 0 for any as if M[...] 0,

d(D(’) diag (d’), +,),

and the integrations are performed so as to obtain the unique primitive
of mean value zero. In definition (10), it is to be understood that if
M[eg(x(-), t, )] 0 for any r, then the corresponding a. is chosen 0.
It is clear that the integrand belongs to the class C of functions and has
mean value zero; consequently, there is a unique primitive of mean value
zero. This method of successive approximations is exactly the same as the
one defined by L. Cesari [1] except in his paper none of the p’s were allowed
to be zero. The proof of convergence of the method to a solution of an
equation of the form (5) may be supplied in the same way as described in
[1] or [6].

It is first shown that by a proper choice of the constants a,
(r) --(r)the numbers s are such that tt_, , h 1, 2,..-, t (the overbar

D(r)denotes the complex conjugate), d() h 2t -]- 1, n
r- 1, 2,... for every system of type (4). Under the conditions of the
theorem and some additional restrictions on a, a,+, it is then shown
thata_.-(’)- -ash’(), h 1,2,...,, d() 0, h 2+ 1,...,n
r 1, 2,.... Consequently, the system of n - equations (6) reduces
to the equations

ir hd_l i, h 1, 2,

where each d_ r= h- ah--, h 1, 2, t, is purely imaginary.
From the implicit function theorem, there exist real numbers ,
analytic in k for I1 sufficiently small satisfying the above system of equa-
tions and a + O(X). Consequently, there will be a solution of (3)
with components z of the form = () ()x (t), where xs is given by (9).
It is clear that such a solution is bounded in (- , + and AC. The final
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step in the proof of the theorem is to show that the above solutions yield
n W linearly independent bounded AC solutions of (1).
By induction, it is very easy to prove the following (which assumes only

that system (1) is real)

LEMMA 1.
a2" ./,
n- , then

If the algorithm (9) is applied to system (4) with a2-1 b,
j= 1, 2,..., , a2+k b+k, b,+k real, k 1, 2,...,

23"--1 2’, j 1,2,

x(r)

r= 1,2,. ...
Iff f f satisfy the conditions of the theorem and if the numbers

j= 1, 2,..., , b c,
LEMMA 2.

b of Lemma 1 satisfy bj icj, c real,
cjreal, j v+ 1,...,n+,then

(r). (r) . (r) . (r)
x2- (-t) (t),
(r). x (r) -(r)(l), a2i-, u2x2’-. (-t)

(r)x (--t) @)(t), d) O,

j 1, 2,"" v,

j= v+ 1,’",tz,

j 2t+ 1,...,n+u,

r O, 1,2,....
-(") t) ()(t) j= 1,Proof. We first prove by induction that ’-1-- x

(r)()- ()(t) j v+ 1 , x)(-t) x" (t)2,... , x2j-,(--t) = --x2 "’,

j 2# + 1,..., n and all r. From the choice of the numbers a,
the assertion is true for r 0. Assume the assertion true for r 0, 1, 2,
-., v-1 and all j. Then

x() "(’) x() (t) + x)(t)2j--1 (--t) + 2j (-- t) 2.--1

(r) -2(-t) --tx2-(t)--2(t)], j= 1, ,..., v;
,(r) [(r) (r)

_
(-t) + (-t) (t) + x (t)]ta/2j--1

(’)- -() (’)- (t) j v + 1z._, (-t) (t) (t) 2j

(r)xr) (--t) x (t), j 2+ 1, ..., n+gandr 0, 1, ., v- 1.

Consequently, from conditions (a), (B), and (,) of the theorem and the defi-
nition of the g’s in (3), it follows that

g.i-1 IX(r)(-t), --t, X] g2’-1 [x(r)(t), t, X], j 1, 2, v,

(11) g2j-1 [x(") ( t) --t, X] --g2’-a [x()(t), t, hi, j u + 1, ,
g [x()(--t), --t, x] -g [x()(t), t, x], j 2u + 1, n + u,

r- 0, 1, 2, ,v-- 1.
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Furthermore, since q2s-1 -q2s, j 1, 2, g and M[f(-t)] M[f(t)],
it follows from (11) that

M[e-Jtg2s_i (x(r)(t), t, h)] M[eJtg2s_ (x(r)(-t), -t, h)]

M[eitg.s_i (X(r)(t), t, ,)] --M[eitg. (x(r)(t), t, X)], j 1, 2, .
.(r) .(r)Now, if cs 0, it follows from (10) that s-1 -s and if c- 0, then

from our assumptions on the as concerning congruence, the above mean value
-(r)will always be zero. Consequently, in any case, a.s-1 -., j 1, 2,.., andr 1,2,...,v. In the same way,.._ -., j -t- 1,.., / and r 1, 2,..., v. From (11),

M[gs(x()(t), t, ),)] -M[gs(x()(t), t, h)] for j 2 + 1, n -+- ,
and, therefore, d) 0 for j 2 W 1, n -- and r 1, 2,..., v.
From (9),

P
(v) !xs_.(--t). _e-i J eit

(0)[gs_l(x(’-l)( t) t,) () (-) () x.._,(--t)}] dt,-- LV2s--lX2j--1 (--t) + "-I-tb23"--I

x (t) + + }]e-’jt eit[g2s(x(V-1) (t), t, h) {b2j’(1) 2j(v--1) /(v),tt2S;2j(0) dt

x () (t) j 1, 2, .2

(v) (v) XV)In a similar manner, 2s- (-t) (t),:s j -4- 1 t, (--t)
x)(t), j 2# -t- 1, ..., n -f- #, and the induction on the xr) is completed.

() for all r, then the other relations must hold forIf the assertion is true for xs
ll r and the lemm is proved.

Thus, from the remarks preceding Lemma 1, it remains only to show that
n -4- t linearly independent bounded AC solutions of (1) can be obtained from
these solutions. Suppose one of the c’s of Lemm 2, say cs, is chosen 0 and
all other c, k j, are chosen 0.
By taking j to be successively 1, 2, n and using the transformation

formulus (2), the above method of successive approximations leads to n -4- tt
bounded solutions, y()(t, ),),

/](2S-1)(t, O) 0 k rs j,

(t,o) =0, j,

(t,O) O, kj,

y(s)(t, O) O, k j,

(t,O) 0, k#j,

h 1, 2, n -+- g, of the form

yJ2’-l)(t, 0) (cs/as) cos r" t,

y2)(t, O) --cs sin rst, j 1,2,...,,;

(t, O) (cs/s) sin r. t,

y2)(t,O) cscosrst, j A- 1,". ,g;

yJ2,+s)(t, 0) c+, j 1, 2, n g.

It is clear that these n A- g functions also form a fundamental system of AC
solutions of (1) and the theorem is proved.
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Example 1. Consider the system

y’ A- ay -, cos t.w,

w hsint.yA- hsint’w,

where a 0 (rood 1). This system satisfies the conditions of the preceding
theorem with 1, 0, n 2. Therefore, all the solutions of this equa-
tion are bounded for I1 sufficiently small. The following example illus-
trates how a change in only one of the periodic coefficients can lead to un-
bounded solutions.

Example 2. Consider the system

iy, + a2y _h cos t.w,
(12)

w’ ), cos t.y A- sin t.w.

By the transformation y (1/2i)(zl + z.), y’ 1/2(zl z), w z.
the above system is equivalent to the system

z i(z X cos t.z3,

Z2 --i(rz2 "Jr- h COS t’Za,

za (h cos t/2ia)(z + z2) + h sin t.z.

The characteristic exponent which is close to zero may be obtained by
applying the method of successive approximations (9) to the auxiliary system

(0)(4) with B diag (ia, -ia, ) and the 0 approximation as z) z2 0,z) a (see [1] or [6]). Carrying out this procedure, one finds that d) 0,
d)= 1/2(1- a:). But must satisfy the equation

T X(d1) -- hd2) -4- "’) 0,

and therefore r h212(1 a2)]- -4- .’-, and if al < 1, r has a positive
real part, and at least one solution of (12) is unbounded no matter how small

The author has been able to obtain by a different method the above theo-
rems (and slightly more general ones) for the case in which system (1) for
), 0 has only one zero characteristic root. This method involves a dis-
cussion of the characteristic exponents as a function of h without using suc-
cessive approximations and, therefore, does not aid in the calculation of the
solutions.
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