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ON CANONICAL BASES AND INTERNALITY CRITERIA

RAHIM MOOSA AND ANAND PILLAY

Abstract. A criterion is given for a strong type in a finite rank
stable theory T to be (almost) internal to a given nonmodular

minimal type. The motivation comes from results of Campana

which give criteria for a compact complex analytic space to be

“algebraic” (namely Moishezon). The canonical base property

for a stable theory states that the type of the canonical base

of a stationary type over a realisation is almost internal to the

minimal types of the theory. It is conjectured that every finite

rank stable theory has the canonical base property. It is shown

here, that in a theory with the canonical base property, if p is a

stationary type for which there exists a family of types qb, each

internal to a nonlocally modular minimal type r, and such that

any pair of independent realisations of p are “connected” by the
qb’s, then p is almost internal to r.

1. Introduction

This paper is concerned with analysability and internality in the context of
stable theories of finite rank. While we will briefly recall these notions at the
end of this introduction, we refer the reader to [14] for details on geometric
stability theory.

In the many sorted structure A of compact complex spaces, a space X will
be an algebraic variety (or rather a Moishezon space) if its generic type is
internal to the sort of the projective line. Roughly speaking, Campana proves
in [5] that if the space X is of Kähler-type and “algebraically connected” in
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the sense that there exists an analytic family of algebraic subvarieties of X
such that any two points of the space X are connected by a finite sequence of
algebraic subvarieties from this family, then X is itself algebraic.

We wanted to find a general model-theoretic treatment or at least analogue
of this result, and this is what the current paper is about.

We work in a saturated model M
eq

of a complete stable theory T of finite U -
rank sort-by-sort. In general, we will be concerned with types (over arbitrary
small sets of parameters) of possibly infinite tuples that are contained in the
algebraic closure of a finite tuple.

For p(x) ∈ S(A) a stationary type, the canonical base of p usually means
(an enumeration of) the smallest definably closed subset A0 of dcl(A), such
that p(x) does not fork over A0 and the restriction of p to A0 is stationary. It
will be more convenient for us to consider (an enumeration of) the algebraic
closure of A0, which we will denote by Cb(p) and also refer to as the canonical
base. This abuse of notation is harmless since throughout this paper we will
only be concerned with precision up to interalgebraicity. We will also write
Cb(a/A) to mean Cb(stp(a/A)).

The following is a property that is conjectured to hold in all finite rank
theories. Let P be the set of all nonmodular minimal (stationary U -rank 1)
types.

Canonical Base Property(CBP). If b = Cb(a/b), then stp(b/a) is al-
most P-internal.

Remark 1.1. (a) The CBP is preserved by naming parameters.
(b) The CBP is equivalent to the statement where one replaces P by the set

of all minimal types. The reason is that from Proposition 1.9 of [7] (see
also [16]) we know that stp(b/a) is already (almost) analysable in P, hence
orthogonal to all modular minimal types.

The following definition is inspired by a related notion for cycle spaces of
compact complex manifolds introduced by Campana in [5]. It will be discussed
in further detail in Section 2 below.

Definition 1.2. Suppose q(x, y), s(y), p(x) ∈ S(A) are stationary types.
We say that q is a generating family for p over s if

(i) q(x, y) � p(x) ∧ s(y),
(ii) qb(x) := q(x, b) is stationary for b |= s, and
(iii) if (a, b) |= q then acl(Aa) ∩ acl(Ab) = acl(A).

We call s the parameter space for the family, and qb the fibres, where b |= s.
If s is algebraic, then we say the family is trivial. A generating family is
canonical if b ∈ Cb(qb) for b |= s. It is said to almost separate points of p if
for any a |= p there are only finitely many other realisations of p that lie on
all the same fibres as a.
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The purpose of this note is to prove the following theorem which is moti-
vated by, and in part recovers, Campana’s “algebraicity criteria” for compact
Kähler manifolds (cf. Theorems 2 and 3 of [5]). It depends heavily on the
results of Chatzidakis [7].

Theorem 1.3. Suppose that a stationary type p(x) ∈ S(A) has a generating
family with a fibre that is almost internal to a nonmodular minimal type r.
(a) Then r is nonorthogonal to A (and so every fibre of the generating family

is almost internal to r) and p is almost analysable in r.
(b) If moreover the CBP holds for T , then p is almost internal to r.

The rest of the paper is organised as follows. In Section 2, we discuss in
greater detail the notion of a generating family introduced above. In Sec-
tion 3, we elaborate on the connections between the notions presented here
and the model theory of compact complex manifolds. In Section 4, we discuss
a natural strengthening of the CBP which is true in compact complex man-
ifolds and relate it to the work of Chatzidakis [7]. Finally, in Section 5, we
prove Theorem 1.3.

We end this introduction with a brief discussion of internality and analys-
ability. If p(x) ∈ S(A) is stationary and P is some family of partial types
(over possibly differing sets), we say p is internal to P or is P-internal, if
there is some C containing A and a realizing p independent from C over A,
such that a is in the definable closure of C together with some realisations
of some partial types in P whose domains are contained in C. If we replace
definable closure by algebraic closure, we get the notion of p being almost
internal to P. We will be using this notion in at least two cases, first where
P is some acl(∅)-invariant family of minimal (stationary U -rank 1) types over
varying domains, such as the family of all nonmodular minimal types, and
second where P is a single minimal type (over some set) q say. In the second
case, the hypothesis that p ∈ S(A) is almost internal to q implies that q is
nonorthogonal to all of its conjugates over acl(A)—that is, q is nonorthogonal
to A. So almost internality of p to q is equivalent to almost internality of p
to Q where Q is the family of conjugates of q over acl(A).

We also have the standard notion of analysability; p(x) ∈ S(A) is analysable
in P if there are a0 · · · an such that stp(ai+1/Aa0 · · · ai) is internal to P for
i = 0, . . . , n − 1 and a ∈ acl(an). So algebraic closure is built into the definition.
We might also want to define almost analysability by only requiring that
stp(ai+1/Aa0 · · · ai) be almost internal to P for i = 0, . . . , n − 1, and in this
case we may as well require that an = a. Assuming that the family P is
acl(A)-invariant, it is not hard to see that p(x) ∈ S(A) is almost analysable
in P if p(x) is analysable in P. As in the case of internality, if q is a minimal
type nonorthogonal to A then almost analysability of p in q is equivalent to
(almost) analysability of p in Q where Q is the family of conjugates of q over
acl(A).
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2. Generating families

In this short section, we will elaborate a little on Definition 1.2 of a gen-
erating family. Note that to be given a generating family for a stationary
type tp(a/A) is to be given a tuple b, such that acl(Aa) ∩ acl(Ab) = acl(A),
tp(b/A) is stationary, and tp(a/Ab) is stationary. The generating family is
then canonical if b ∈ Cb(a/Ab), and trivial if tp(b/A) is algebraic.

Remark 2.1. Suppose q(x, y) is a generating family for p(x) over s(y).

(a) If q almost separates points of p then pM ⊂ acl(AsM ).
(b) If q is a nontrivial canonical generating family with fibres of U -rank 1,

then q almost separates points.
(c) If p has a nontrivial canonical generating family then p is not 1-based.

Proof. Part (a) is clear.
For part (b), note that as b /∈ acl(A), condition (iii) of the definition implies

that b /∈ acl(Aa). Hence, there exists b′ /∈ acl(Aab) realizing tp(b/Aa). In
particular, b′ /∈ acl(Ab). As b′ ∈ Cb(qb′ ), we must have that qb ∪ qb′ is not a
nonforking extension of both qb and qb′ , which implies by the rank hypothesis
that qb ∪ qb′ is algebraic. So q almost separates points of p.

For part (c), note that if p is 1-based then b ∈ Cb(qb) ⊆ acl(Aa), and so by
condition (iii), b ∈ acl(A). That is the family is trivial. �

The following lemma justifies the term “generating family”; it says that if
q is a generating family for p over s, and given independent realisations a and
a′ of p, one can get from a to a′ by “moving along the fibres” of q over s. The
lemma is due originally to Lascar [10] who stated it in the language of groups
of automorphisms, but we give a proof for the sake of completeness.

Lemma 2.2. The following are equivalent:
(i) acl(Aa) ∩ acl(Ab) = acl(A).
(ii) For any a′ |= stp(a/A) independent of a over A, there exist a = a0, . . . ,

a� = a′ and b = b0, . . . , b� such that
• ai+1 |= stp(ai/Abi) and
• bi+1 |= stp(bi/Aai+1),
for all i = 0, . . . , � − 1.

Proof. We suppress the parameters A by naming them as constants to the
language. Assume (i). By stationarity, in order to show (ii) it suffices to find
some a′ |= stp(a) independent of a satisfying the desired properties. This is
what we do. Define sequences a = a0, a1, . . . and b = b0, b1, . . . inductively so
that
(1) ai+1 realises the nonforking extension of stp(ai/bi) to abi.
(2) bi+1 realises the nonforking extension of stp(bi/ai+1) to aai+1.
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Note that U(ai+1, bi/a) ≥ U(ai, bi/a). Indeed,

U(ai+1, bi/a) = U(ai+1/abi) + U(bi/a)
= U(ai+1/bi) + U(bi/a)
= U(ai/bi) + U(bi/a)
≥ U(ai/abi) + U(bi/a)
= U(ai, bi/a).

Similarly, U(ai+1, bi+1/a) ≥ U(ai+1, bi/a). So we get a sequence

U(a, b/a) ≤ U(a1, b/a) ≤ U(a1, b1/a)
≤ U(a2, b1/a) ≤ · · · ≤ U(a, b).

Hence, for some � ≥ 0 it must be the case that U(a�, b�/a) = U(a�+1, b�/a). It
follows that

U(a�/ab�) + U(b�/a) = U(a�, b�/a)
= U(a�+1, b�/a)
= U(a�+1/ab�) + U(b�/a)
= U(a�+1/b�) + U(b�/a)
= U(a�/b�) + U(b�/a).

That is U(a�/ab�) = U(a�/b�), and so a |�b�
a�. On the other hand, a |�a�

b�

by construction. So Cb(a/a�b�) ⊆ acl(a�) ∩ acl(b�). But a�b� has the same
type as ab, and acl(a) ∩ acl(b) = acl(∅). What we have shown is the following
statement that we will use again later:
(∗) If acl(a) ∩ acl(b) = acl(∅) and a = a0, a1, . . . and b = b0, b1, . . . satisfy (1)

and (2), then there exists � ≥ 0 such that a |� a�b�.
In particular, a |� a�. Setting a′ = a�, we have shown (ii).

For the converse, suppose (ii) holds and let σ0, . . . , σ�−1 and τ1, . . . , τ�

be automorphisms such that for all i = 0, . . . , � − 1, σi fixes acl(bi) point-
wise and sends ai to ai+1, while τi+1 fixes acl(ai+1) pointwise and sends
bi to bi+1. Hence, for each i, σi witnesses that acl(ai) ∩ acl(bi) = acl(ai+1) ∩
acl(bi) and τi+1 witnesses that acl(ai+1) ∩ acl(bi) = acl(ai+1) ∩ acl(bi+1).
So acl(a) ∩ acl(b) = acl(a′) ∩ acl(b�). In particular, acl(a) ∩ acl(b) ⊆ acl(a) ∩
acl(a′). But the independence of a and a′ implies that the latter is acl(∅),
as desired. �

3. Compact complex manifolds

Much of the discussion in the introduction—including the CBP, the no-
tion of a generating family, as well as the statement of Theorem 1.3 itself—is
informed by certain aspects of the model theory of compact complex mani-
folds. In this section, we aim to make these origins and connections precise.
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The material here is almost entirely of an expository nature. Let A denote
the multi-sorted structure where there is a sort for each irreducible com-
pact complex-analytic space and the language consists of a predicate for each
complex-analytic subset of each finite cartesian product of sorts. The the-
ory Th(A) admits quantifier elimination, and is sort-by-sort, of finite Morley
rank. A survey of some of the model theory of Th(A) can be found in [12].

We work in a fixed sufficiently saturated elementary extension A′ of A.
Here it is more natural to work only with types of finite tuples. Since the
theory is totally transcendental, there will be no loss of generality in doing
so. It may however lead to some (harmless) abuse of notation; for example,
we will often write Cb(p) when we really mean a finite tuple whose algebraic
closure is Cb(p).

Among the sorts of A, we have the projective line P(C) in which the com-
plex field is definable. In A ′, the interpretation of this sort is P(C′) where C

′

is the corresponding elementary extension of the complex field.
The nonmodular minimal types in this theory are exactly those that are

nonorthogonal to the generic type of the projective line (which is equal to the
generic type of C

′). Indeed, this follows from the truth of the Zilber dichotomy
in Th(A) via Zariski geometries plus the fact that the only infinite field de-
finable in A′ is C

′ (see Corollary 4.8 of [11]). However, it also follows directly
from a theorem of Campana [4] (due independently to Fujiki [9]) as observed
by the second author in [17]. We will discuss this theorem of Campana’s later,
as it is tied up with the issues we are concerned with in this paper. In any
case, it follows that almost internality to the set of nonmodular minimal types
coincides in this theory with almost internality to the generic type of the pro-
jective line. Moreover, as the following summarising fact describes, almost
internality to the projective line has a very natural geometric meaning.

First, some notation: given a tuple a from A ′ by the locus of a, denoted
loc(a), we mean the smallest complex-analytic set whose interpretation in A ′

contains a. A holomorphic map of compact complex-analytic spaces, f : X →
Y , is called a Moishezon morphism if X bimeromorphically embeds into a
projective linear space P(F ) over Y , where F is some coherent analytic sheaf
on Y . In particular, by a Moishezon variety, we mean an irreducible complex-
analytic space that is bimeromorphic to a projective variety.

Fact 3.1. Suppose p(x) = tp(a/b) is a stationary type. Let X = loc(a), S =
loc(b), G = loc(ab) ⊆ X × S, and G → S and G → X the natural projections.
Then the following are equivalent:

(a) p is almost internal to the set of nonmodular minimal types.
(b) p is almost internal to the projective line.
(c) p is internal to the projective line.
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(d) After base change, G → S is a Moishezon morphism: that is for some
complex-analytic space T over S, the fibred-product G ×S T → T is a
Moishezon morphism.

(e) For some complex-analytic space T̂ over S, the fibred-product G ×S T̂

bimeromorphically embeds into Pn(C) × T̂ over T̂ , for some n ≥ 0.

Proof. The equivalence of (c), (d), and (e) is Proposition 4.4 of [11]. In
the preceding discussion, we explained the equivalence of (a) and (b). It
remains to prove that (b) implies (c). In the case when the tuple b comes
from the standard model A, this is stated in [15] and boils down to the fact
that if X is a Moishezon space and X ′ is another space such that there is
a dominant generically finite-to-one meromorphic map from X ′ to X , then
X ′ is also Moishezon. To prove that (b) implies (c) in general we actually
need a relative version of the above fact, which we now explain. If tp(a/b) is
almost internal to the projective line then there exist a tuple c extending b
such that a |�b

c, and a tuple d from P(C) such that a ∈ acl(cd). It suffices
to prove that tp(a/c) is P(C)-internal. Let T = loc(c), H = loc(ac) ⊆ X × T ,
P = loc(dc) ⊆ P

n(C) × T , and Z = loc(adc) ⊆ H ×T P . We then have the
following diagram where all the maps are the natural projections:

Z

H P

T

Now P → T is Moishezon as P ⊆ P
n(C) × T . Also, Z → P is generi-

cally finite-to-one since a ∈ acl(cd), and all generically finite-to-one maps are
Moishezon. Hence, the composition Z → T is Moishezon. (See for example
Section 1 of [9] for these facts about Moishezon morphisms.) By the equiva-
lence of parts (c) and (d), this implies that stp(ad/c) is P(C)-internal. Hence,
tp(a/c) is P(C)-internal. �

In particular, note that if p is a stationary type over ∅, then p is (almost)
internal to the projective line if and only if it is the generic type of a Moishezon
variety.

We now explain why the CBP is true in Th(A). This is a consequence
of a theorem of Campana [4] already referred to earlier. Indeed, it was this
theorem in complex analytic geometry that inspired the second author to
introduce the CBP in [17]. To describe Campana’s theorem, we need to recall
the Barlet space of cycles. For X any complex-analytic space, a k-cycle of
M is a finite linear combination Z =

∑
i niZi where the Zi’s are distinct k-

dimensional irreducible compact complex-analytic subsets of X , and each ni
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is a positive integer called the multiplicity of Zi in Z. By |Z|, we mean the
underlying set or support of Z, namely

⋃
i Zi. We denote the set of all k-cycles

of X by Bk(X), and the set of all cycles of X by B(X) :=
⋃

k Bk(X). In [1],
Barlet endowed Bk(X) with a natural structure of a complex-analytic space
whereby if for s ∈ Bk(X) we let Zs denote the cycle represented by s, then the
set {(x, s) : s ∈ Bk(X), x ∈ |Zs| } is a complex-analytic subset of X × Bk(X).
Equipped with this complex structure, B(X) is called the Barlet space of X .
When X is a projective variety, the Barlet space coincides with the Chow
scheme. In [3], it is shown that

B ∗(X) : = {s ∈ B(X) : Zs is irreducible with multiplicity 1}
is a Zariski open subset of B(X): its complement in B(X) is a proper complex-
analytic subset. An irreducible component of B(X) is prime if it has nonempty
intersection with B ∗(X).

Note that even for a compact complex-analytic space X it is not necessarily
the case that the (prime) irreducible components of B(X) are again compact.
Indeed, the condition that all the prime components of B(Xn) are compact for
all n ≥ 0 turns out to be important model-theoretically; it is equivalent to the
property introduced by the first author in [13] of being essentially saturated.
This property is satisfied for example, by all holomorphic images of compact
Kähler manfiolds (these are the so-called Kähler-type spaces introduced by
Fujiki in [8]).

Theorem 3.2 (Campana [4]). Suppose X is a compact complex-analytic
space and S is an irreducible compact complex-analytic subset of B(X) such
that S ∩ B ∗(X) �= ∅. Let ZS := {(x, s) : s ∈ S,x ∈ |Zs| } ⊆ X × S denote the
graph of the family of cycles S. Then the natural projection pX : ZS → X is
a Moishezon morphism.

Let us see how this implies the CBP. Given a stationary type p(x) =
tp(a/b), let X = loc(a), Y = loc(b), and G = loc(a, b) ⊆ X × Y . By station-
arity, the general fibres of G over Y are irreducible complex-analytic subsets
of X . The universal property of the Barlet space, along with the geometric
flattenning theorem of [2], gives us a meromorphic map φ : Y → B(X) such
that for general y ∈ Y , Gy = Zφ(y) (see for example Proposition 2.20 of [6]).
The condition that b = Cb(p) translates into the statement that φ is generi-
cally finite-to-one onto its image. Let S denote the image of Y under φ. Then
S is an irreducible compact complex-analytic subset, S ∩ B ∗(X) �= ∅, and id ×φ
induces a dominant generically finite-to-one meromorphic map from G to ZS

over X . By Theorem 3.2, pX : ZS → X , and hence G → X , is Moishezon. By
Fact 3.1, stp(b/a) is internal to the projective line. That is the CBP holds in
Th(A).

Finally, in this section, we explain the origins of our notion of a generating
family for a stationary type. Fix an irreducible compact complex-analytic
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space X . In [5], Campana calls a family of cycles (Zs : s ∈ S), where S is
an irreducible compact complex-analytic subset of B(X) with S ∩ B ∗(X) �= ∅,
a generating family for X if for any x,x′ ∈ X there exists a sequence x =
x0, x1, . . . , x� = x′ in X and s1, . . . , s� ∈ S such that xi and xi+1 both lie in
the cycle |Zsi+1 |, for all i = 0, . . . , � − 1. That is if every pair of points in X
can be connected by moving along the cycles in the family. The motivation
for Definition 1.2 is made explicit by the following proposition.

Proposition 3.3. Suppose q = tp(a, b) is a canonical generating family for
p = tp(a) over s = tp(b) in the sense of Definition 1.2. Let X = loc(a), Y =
loc(b), and G = loc(a, b) ⊆ X × Y . Let φ : Y → B(X) be the meromorphic map
given by the universal property of the Barlet space, as discussed above. Let S
denote the image of Y under φ. Then (Zs : s ∈ S) is a generating family of
cycles for X.

Proof. Note that φ is generically finite-to-one onto S and that for general
y ∈ Y , Gy = Zφ(y). As in Section 1 of [5], for each n ∈ N, let Rn ⊆ X × X be the
set of pairs (x,x′) for which there exist x = x0, . . . , xn = x′ ∈ X and s1, . . . , sn ∈
S such that x,x1 ∈ |Zs1 |, x1, x2 ∈ |Zs2 |, . . . , xn−1, x

′ ∈ |Zsn |. By construction,
Rn is a complex-analytic subset of X × X . To show that (Zs : s ∈ S) is a
generating family of cycles for X , we need to show that R� = X × X for some
� ∈ N. Now, since q is a generating family for p, Lemma 2.2 implies there exists
a′ |= p independent from a and � ∈ N for which there exist a = a0, . . . , a� = a′

and b = b0, . . . , b� such that ai+1 |= stp(ai/Abi) and bi+1 |= stp(bi/Aai+1), for
all i = 0, . . . , � − 1. In particular the bi’s are all generic in Y and hence φ is
defined on them, and ai, ai+1 ∈ Gbi = Zφ(bi). That is (a, a′) ∈ R�. Since a
and a′ are independent generics of X , and X is irreducible, it follows that
R� = X × X . �

Campana proves the following algebraicity criterion (cf. Theorem 3 of [5]):

Theorem 3.4 (Campana [5]). Suppose X is a Kähler-type complex-analytic
space. If (Zs : s ∈ S) is a generating family of cycles for X, and each Zs is
Moishezon, then X is Moishezon.

Corollary 3.5. Suppose X is an irreducible Kähler-type complex-analytic
space, and p(x) is the generic type of X over ∅. The following are equivalent:

(i) p(x) has a generating family whose fibres are P(C)-internal.
(ii) X has a generating family of cycles, (Zs : s ∈ S), where each Zs is

Moishezon.
(iii) X is Moishezon.

Proof. Suppose q(x, y) = tp(a, b) is a generating family for p with tp(a/b)
being P(C)-internal. Setting b′ = Cb(a/b), we have that tp(a, b′) is a canon-
ical generating family for p over tp(b′), also with fibres P(C)-internal. Then
Proposition 3.3 produces a generating family of cycles, (Zs : s ∈ S), with the
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property that for s∗ a generic point of S, the generic type of Zs∗ is P(C)-
internal. By essential saturation (since X is of Kähler-type, see [13]), it fol-
lows that for s ∈ S outside of some countable union of proper complex-analytic
subsets, Zs is Moishezon. But the set of s ∈ S, such that Zs is Moishezon,
is itself always a countable union of Zariski closed subsets of S (this is Theo-
rem 00 of [5] and comes from chapter II of [3]). Hence, all the cycles Zs are
Moishezon. We have shown that (i) implies (ii).

That (ii) implies (iii) is exactly Theorem 3.4. For (iii) implies (i) we can
just take q(x, y) = p(x)—or, more precisely, choose a |= p and fix a standard
element b ∈ A, and then set q(x, y) = tp(a, b). �

It follows that our main result (Theorem 1.3), specialised to compact com-
plex manifolds, is a consequence of Campana’s algebraicity criterion (Theo-
rem 3.4). In fact, Theorem 1.3(b) can be viewed as generalising the “generic”
content of Theorem 3.4 to all finite rank theories with the CBP.

Question 3.6. Is there a direct argument for the equivalence of (i) and
(ii) in Corollary 3.5? One that does not use Theorem 3.4? This would show
Campana’s algebraicity criterion to be a special case of the main theorem of
this paper.

4. Variants of the CBP

Chatzidakis [7] has shown that the CBP implies what on the face of it
appears to be a stronger property. We will use this in our proof of Theorem 1.3
in Section 5 below.

Theorem 4.1 (Chatzidakis [7]). Suppose the CBP holds for T . If b =
Cb(a/b) then stp(b/acl(a) ∩ acl(b)) is almost P-internal.1

The point here is that we are able to conclude that stp(b/acl(a) ∩ acl(b))
rather than just stp(b/a) is almost P-internal. The following immediate corol-
lary is our main use of this theorem.

Corollary 4.2. Suppose the CBP holds for T and q(x, y) is a canonical
generating family for p(x) over s(y). Then s(y) is almost P-internal.

Proof. Writing q(x, y) = tp(a, b/A) we have that acl(Aa) ∩ acl(Ab) = acl(A)
and b ∈ Cb(a/Ab) =: b′. Then acl(a) ∩ acl(b′) ⊆ acl(A) and b′ = Cb(a/b′).
Hence, by Theorem 4.1, stp(b′/A) is almost P-internal. So tp(b/A) is almost
P-internal. �

The proof of Theorem 4.1 involves some substantial model-theoretic techni-
calities. It turns out however, that in the case of compact complex manifolds
the conclusion follows from a very transparent geometric argument. In this

1 Recall that in this general setting P denotes the collection of all nonmodular minimal

types.
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section, generalising from the case of compact complex manifolds, we intro-
duce a “uniform” version of the CBP and give a rather conceptual argument
for why the conclusion of Theorem 4.1 follows from this strengthened form of
the CBP.

To motivate this “uniform” CBP, let us look back to the previous section
at how the CBP was established for Th(A), and notice that one actually
gets more. Suppose tp(a/b) is a stationary type, X = loc(a), Y = loc(b), and
G = loc(a, b) ⊆ X × Y and πX : G → X is the natural projection. Campana’s
theorem (Theorem 3.2) implies that if b = Cb(p) then πX is a Moishezon
morphism, without taking any base change. On the other hand, the CBP
only concludes that tp(b/a) is internal to the projective line, which means
that πX is Moishezon after a suitable base change (cf. the equivalence of (c)
and (d) in Fact 3.1). To see concretely how these conclusions differ, consider
what happens if there is another Moishezon morphism f : X → X ′. The
Moishezonness of πX : G → X would imply that f ◦ πX is Moishezon, and so
stp(b/f(a)) would be P(C)-internal. Whereas internality of stp(b/a) to the
projective line only implies that stp(b/f(a)) is P(C)-analysable (in two steps).
So Campana’s theorem tells us more than the CBP for Th(A).

This motivates the following definition; we return to our general set-up
where T is an arbitrary complete stable theory of finite rank and P is the
collection of all nonmodular minimal types.

Uniform Canonical Base Property (UCBP). Suppose b = Cb(a/b)
and C is a set of parameters such that stp(a/C) is almost P-internal. Then
for b′ realising the nonforking extension of stp(b/a) to acl(Ca), stp(ab′/C) is
almost P-internal.

Note that UCBP implies CBP by taking C = a.

Proposition 4.3. Th(A) has the UCBP.

Proof. This is more or less the preceding discussion, but we give some
details now. Suppose p = tp(a/b) is stationary in Th(A) with b = Cb(p). We
have seen that the projection loc(a, b) → loc(a) is a Moishezon morphism. Now
suppose C is a set of parameters such that stp(a/C) is P(C)-internal and let
b′ realise the nonforking extension of stp(b/a) to acl(Ca). Set c = Cb(a/C),
X = loc(a, b′, c), Y = loc(a, c) and Z = loc(c). So X → Y is a Moishezon
morphism as it is obtained from loc(a, b) → loc(a) by base change (this is
where the choice of b′ |�a

c is used). We need to show that possibly after
further base change, X → Z is Moishezon. Since stp(a/c) is P(C)-internal,
we have by Fact 3.1 that for some T → Z, Y ×Z T → T is Moishezon. On
the other hand, X ×Z T → Y ×Z T is Moishezon since it is obtained from
X → Y by base change. Hence, the composition X ×Z T → T is Moishezon,
as desired. �
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The following argument yields the conclusion of Chatzidakis’ theorem un-
der the stronger hypothesis of UCBP.

Proposition 4.4. Suppose the UCBP holds for T . If b = Cb(a/b) then

stp
(
b/acl(a) ∩ acl(b)

)

is almost P-internal.

Proof. Working over acl(a) ∩ acl(b) we may assume that acl(a) ∩ acl(b) =
acl(∅), and aim to show that stp(b) is almost P-internal.

Next, we may assume that a = Cb(b/a) also. Indeed, letting a′ = Cb(b/a)
and b′ = Cb(a′/b) we see that b |�b′ a. This implies that acl(b) = acl(b′). Since
a′ = Cb(b′/a′), b′ = Cb(a′/b′), and acl(a′) ∩ acl(b′) = acl(∅), we have obtained
the desired reduction.

Now define inductively sequences a = a0, a1, . . . and b = b0, b1, . . . satisfying
the following

• ai+1 realises the nonforking extension of tp(ai/bi) to abi,
• bi+1 realises the nonforking extension of stp(bi/ai+1) to aai+1,
• stp(aibi/a) is almost P-internal.
This is done as follows. Applying UCBP to (a, b,C = a), we get that stp(b/a)
is almost P-internal. Now, applying UCBP to (b, a,C = a), we obtain a reali-
sation a1 of the nonforking extension of tp(a/b) to ab such that stp(a1b/a) is
almost P-internal. Hence, stp(a1/a) is almost P-internal. Now apply UCBP to
(a1, b,C = a) to obtain a realisation b1 of the nonforking extension of stp(b/a1)
to aa1 such that stp(a1b1/a) is almost P-internal. Hence, stp(b1/a) is almost
P-internal, and we may continue.

By (∗) in the proof of Lemma 2.2, we know that eventually, for some �,
a |� a�b�. In particular, stp(b�/a)—which is almost P-internal since stp(a�b�/
a) is almost P-internal—is a nonforking extension of stp(b�). Hence, stp(b�)
is almost P-internal, as desired. �

Question 4.5. Does the CBP imply the UCBP? Equivalently, does the
conclusion of Chatzidakis’ Theorem 4.1 imply the UCBP?

5. Internality criteria

We now work toward proving Theorem 1.3. We will need at least Chatzi-
dakis’ Proposition 1.9 from [7], which we now state in a slightly different
form.

Lemma 5.1 (Chatzidakis [7]). Suppose that a, b are tuples, A is alge-
braically closed, b = Cb(a/Ab), a = Cb(b/Aa) and acl(Aa) ∩ acl(Ab) = A.
Then there are mutually orthogonal nonmodular types of U -rank 1, r1, . . . , rk,
each nonorthogonal to A, and tuples a1, . . . , ak, b1, . . . , bk /∈ A such that tp(ai/
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A) and tp(bi/A) are Ri-analysable for each i (where Ri is the set of A-
conjugates of ri), a is interalgebraic with (a1, . . . , ak) over A, b is interal-
gebraic with (b1, . . . , bk) over A, and for each i, bi = Cb(ai/Ab) and ai =
Cb(bi/Aa).

We now prove Theorem 1.3 in the special case when the fibres of the gen-
erating family are of rank 1.

Proposition 5.2. Suppose that a stationary type p(x) = tp(a/A) has a
nontrivial canonical generating family q(x, y) = tp(a, b/A) over s(y) = tp(b/
A), with qb = tp(a/Ab) of rank 1.
(a) Then qb is nonorthogonal to A and p is almost analysable in qb.
(b) If moreover T has the CBP, then p is almost internal to qb.

Note that if the fibre qb is almost internal to a nonmodular minimal type
r then we can replace qb by r in the conclusions (a) and (b) above. Hence,
Proposition 5.2 does indeed imply a special case of Theorem 1.3.

Proof of Proposition 5.2. Without loss of generality, asume that A =
acl(A). Also note that b and Cb(a/Ab) are interalgebraic over A, and re-
placing b by Cb(a/Ab) preserves the hypotheses of the proposition. So we
may assume that b = Cb(a/Ab).

Let a′ = Cb(b/Aa) and b′ = Cb(a′/Ab). Then, as observed in the proof of
Proposition 4.4, b and b′ are interalgebraic over A.

We claim that a and a′ are interalgebraic over Ab. Note first that b � |�A
a′.

For if not, then b |�A
a, and so b ∈ A, contradicting nontriviality. So a′ /∈ A. If

a′ ∈ acl(Ab), then as a′ ∈ acl(Aa), we contradict the hypothesis that acl(Aa) ∩
acl(Ab) = A. So U(a′/Ab) ≥ 1. As U(a/Ab) = 1 and a′ ∈ acl(Aa), it follows
that a is interalgebraic with a′ over Ab as required.

We have b′ = Cb(a′/Ab′) a′ = Cb(b/Aa′) = Cb(b′/Aa′). Moreover,
acl(Aa′) ∩ acl(Ab′) = A. So we can apply Lemma 5.1 to a′, b′,A to obtain
r1, . . . , rk and a′

1, . . . , a
′
k, b′

1, . . . , b
′
k satisfying the conclusion of that lemma

(with the obvious notational changes).

Claim 5.3. k = 1 and r1 is nonorthogonal to qb.

Proof. Recall that a′
i /∈ A and a′ is interalgebraic with (a′

1 . . . , a′
k) over A.

So acl(Aa′
i) ∩ acl(Ab′) = A and it follows that a′

i /∈ acl(Ab′). Hence, U(a′
i/

Ab′) ≥ 1 for each i = 1, . . . , k. Since each stp(a′
i/Ab′) is Ri-analysable and the

ri’s are mutually orthogonal, it follows that U(a′/Ab′) ≥ k. But as b and b′ are
interalgebraic over A and a and a′ are interalgebraic over Ab, it follows that
U(a′/Ab′) = U(a/Ab) = 1. So k = 1 and stp(a′/Ab′) is R1-analysable. Hence,
qb = tp(a/Ab) is R1-analysable, and so nonorthogonal to r1 as desired. �

We can now prove (a). Since by the claim r1 is nonorthogonal to qb, and
since r1 is nonorthogonal to A, it follows that qb is nonorthogonal to A.
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Moreover, b is interalgebraic with b′
1 over A. It follows that tp(b/A) is almost

analysable in r1, and hence in qb. But tp(a/Ab) = qb. So tp(a/A) is almost
analysable in qb.

For (b), we already know from Corollary 4.2 that the CBP implies that
tp(b/A) is almost P-internal. On the other hand, we have just seen that
tp(b/A) is almost analysable in qb ∈ P. Hence, tp(b/A) must be almost in-
ternal to qb. On the other hand, as the fibres have rank 1, we know that q

almost separates points of p (cf. part (b) of Remark 2.1). So pM ⊆ acl(AsM ),
and hence p is almost internal to qb as well. This completes the proof of
Proposition 5.2. �

The following lemma will enable us to reduce Theorem 1.3 to Proposi-
tion 5.2.

Lemma 5.4. Suppose r is a stationary type of rank at least 2 that is almost
internal to a nonmodular minimal type. Then r has a canonical generating
family whose fibres are of rank 1.

Proof. There is no harm in assuming r to be over ∅. It suffices to show
(∗) there is some rank 1 stationary extension qb ∈ S(b) of r such that there

are realizations c1, c2 of qb which are independent over ∅.
Indeed, assume such a qb exists and let c |= qb. Restricting qb we may assume
b = Cb(qb). Hence, in order to see that q := stp(c, b) is a canonical generat-
ing family for r over stp(b) it remains to show that acl(c) ∩ acl(b) = acl(∅).
Suppose d ∈ acl(c) ∩ acl(b). Then as qb is stationary, if c′ |= qb is independent
from c over ∅ then d ∈ acl(c) ∩ acl(c′) = acl(∅), as desired. So (∗) suffices.

We next prove the lemma in the special case that r = tp(a) where a =
(a1, . . . , an) is an independent set of realizations of a nonmodular stationary
rank 1 type p(x). By nonmodularity of p, we can find, for each i = 2, . . . , n,
some bi such that tp(a1, ai/bi) is stationary of rank 1, bi is the canonical base of
tp(a1, ai/bi), and U(bi) ≥ 2. (See Chapter 2 of [14].) In particular, a1 |� bi and
ai ∈ acl(a1bi) for i = 2, . . . , n. Choose the bi as freely as possible; namely so
that b2 |�a1a2

a and bi |�a1ai
ab2 · · · bi−1 for i = 3, . . . , n. Set b := (b2, . . . , bn).

Claim 5.5. {b2, . . . , bn} is independent over ∅.

Proof. This is routine forking calculus and we exhibit the n = 3 case,
leaving the rest to the reader. By choice b2 |�a1a2

a3 and a3 |�a1
a2, so

that b2 |�a1
a2a3. But a1 |� b2 so that b2 |� a1a2a3. On the other hand,

b3 |�a1a3
b2. Hence, b3 |� b2, a desired. �

Claim 5.6. a1 /∈ acl(b).

Proof. Again consider the n = 3 case. We have b2 |� a1 and the proof of
Claim 5.5 showed that b3 |�a1

b2. So {a1, b2, b3} is ∅-independent. �
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Claim 5.7. a1ai |�bi
b for each i = 2, . . . , n.

Proof. Since U(a1ai/bi) = 1, the claim follows from Claim 5.6. �

From Claim 5.6 and the fact that ai ∈ acl(a1bi) for all i = 2, . . . , n, we have
that stp(a/b) is a rank 1 stationary extension of r. On the other hand, it
follows from Claim 5.7 and the fact that bi = Cb(a1ai/bi) for all i = 2, . . . , n,
that Cb(a/b) = b.

Let a′ = (a′
1, . . . , a

′
n) be a realization of stp(a/b), independent from a over b.

Claim 5.8. a′ |� a.

Proof. We first show that a′
1a

′
i |� a1ai for all i = 2, . . . , n. Indeed, sup-

pose this is not the case and seek a contradiction. Then U(a′
1a

′
i/a1ai) ≤ 1.

Since U(a′
1a

′
i/a1aib) = U(a′

1a
′
i/b) = 1, it follows that a′

1a
′
i |�a1ai

b. But bi =

Cb(a′
1a

′
i/b) = Cb(a′

1a
′
i/a1aib), so bi ∈ acl(a1ai). But then computing the rank

of stp(a1aibi) shows that U(bi) ≤ 1, which is a contradiction. So a′
1a

′
i |� a1ai.

Let mi = U(bi). By Claim 5.5, setting m = U(b) we have that m = m2 +
· · · + mn. Now a1 |� b (Claim 5.6) and a′

1 |� a1b (since a′
1 |�b

a1 by choice
and a′

1 |� b by Claim 5.6), so that U(a′
1a1b) = m + 2. Using the fact that

a ∈ acl(a1b) and a′ ∈ acl(a′
1b), we see that

U(a′ab) = m + 2.(1)

On the other hand U(a′
1a

′
ia1ai/bi) = 2, and as proved above U(a′

1a
′
ia1ai) = 4.

It follows that U(bi/a′
1a

′
ia1ai) = mi − 2. Thus, U(bi/a′a) ≤ mi − 2, and so

U(b/a′a) ≤ m − 2(n − 1). Let x = U(a′a). We conclude that

U(a′ab) ≤ x + m − 2(n − 1).(2)

Then (1) and (2) yield that x = 2n, completing the proof of Claim 5.8. �

So (∗) has been proved in the special case that r is the type of n independent
realizations of a nonmodular stationary rank 1 type.

Now for the general case. Our assumption on r implies that there is a
realization c of r, a model M independent from c, a nonmodular rank 1 type
p over M , and an M -independent set {a1, . . . , an} (n ≥ 2) of realizations of
p which is interalgebraic with c over M . Denote (a1, . . . , an) by a. Let b be
given by the special case treated above; namely tp(a/Mb) has rank 1, and if
a′ realizes stp(a/Mb) independently from a over Mb then a′ |�M

a. Note that
tp(c/Mb) has rank 1 too. Now let (a, c) and (a′, c′) be independent (over Mb)
realizations of stp(a, c/Mb). As a′ |�M

a it follows (from the interalgebraicity
of c and a over M ), that c′ |�M

c, and thus c′ |� c. So c′ and c are realizations
of stp(c/Mb), which are independent over ∅. This proves (∗) for r. �
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5.1. Proof of Theorem 1.3. Let us recall the statement of our main theo-
rem: Suppose p(x) = tp(a/A) is stationary, q(x, y) = tp(a, b/A) generates p(x)
over s(y) = tp(b/A), and qb(x) = tp(a/Ab) is almost internal to a nonmodular
minimal type r. Then r is nonorthogonal to A and p is almost analysable
in r. If moreover the CBP holds for T , then p is almost internal to r.

Without loss of generality, assume that A = acl(A). Let b′ = Cb(a/Ab).
Then tp(a/Ab′) is stationary and almost internal to r, and acl(Aa) ∩ acl(Ab′) =
A. So the hypotheses of the theorem are preserved by replacing b with b′. We
may therefore assume that b = Cb(a/Ab) and q is thus a canonical generating
family. If q were a trivial generating family, then qb = p and the theorem
would follow. So we may assume that q is a nontrivial canonical generating
family.

If U(qb) = 1, then the theorem follows from Proposition 5.2. So we may
assume that the fibres are of rank at least 2. Applying Lemma 5.4, we obtain
c such that

• tp(a/Abc) is stationary of rank 1,
• c ∈ Cb(a/Abc), and
• acl(Aba) ∩ acl(Abc) = acl(Ab).

Letting ĉ = Cb(a/Abc) we have that

• ĉ /∈ A,
• tp(a/Aĉ) is stationary of rank 1,
• ĉ = Cb(a/Aĉ), and
• acl(Aa) ∩ acl(Aĉ) = A.

That is tp(a, ĉ/A) is a nontrivial canonical generating family for p over tp(ĉ/A)
with fibre tp(a/Aĉ) of rank 1. Hence, Proposition 5.2 yields

(a′) tp(a/Aĉ) is nonorthogonal to A and p is almost analysable in tp(a/Aĉ).
(b′) If moreover T has the CBP then p is almost internal to tp(a/Aĉ).

But since qb = tp(a/Ab) is almost internal to r so is the extension tp(a/Abc)
and hence also tp(a/Aĉ). So (a′) and (b′) yield

(a) r is nonorthogonal to A and p is almost analysable in r.
(b) If moreover T has the CBP then p is almost internal to r.

This completes the proof of Theorem 1.3.

Remark 5.9. By [18], differentially closed fields satisfy the CBP. To be
more precise, if M := (K,δ1, . . . , δ�) is a saturated differentially closed field
of characteristic zero in several commuting derivations, and T is the theory
of the multi-sorted structure where the sorts are the finite rank differential
varieties in M equipped with their induced structures, then T has the CBP.
In this context, the nonmodular minimal types are those internal to the (ab-
solute) constant field. Hence, Theorem 1.3 gives an analogue of Campana’s
algebraicity criterion for finite rank differential varieties.
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