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FINITE GROUPS WITH L-FREE LATTICES OF SUBGROUPS

CZES�LAW BAGIŃSKI AND AGNIESZKA STOCKA

Abstract. Balanced and strongly balanced lattices were intro-
duced in order to generalize the uniform dimension of modular

lattices. A description of finite groups with strongly balanced

subgroup lattices was given by the authors in (Colloq. Math. 82

(1999), 65–77) and strengthened by Schmidt in (Illinois J. Math.

47 (2003), 515–528). In this paper, a description of finite groups
with dually strongly balanced subgroup lattices is given.

Let L be a lattice with the least element 0 and the greatest element 1. For
given a, b ∈ L, a ≤ b, we denote by [a, b] the interval {x ∈ L : a ≤ x ≤ b} in L.
If for all x, y, z ∈ L

(x ∧ y) ∨ [(x ∨ y) ∧ z] = 0 =⇒ [(y ∨ z) ∧ x] ∨ [(z ∨ x) ∧ y] = 0,

then L is called balanced. It is called strongly balanced if all its nonempty
intervals are balanced. If G is a group, then by L(G), we denote the subgroup
lattice of G. Following [10], a lattice L (a group G) is called L-free if L (the
subgroup lattice L(G)) has no sublattice isomorphic to L.

Balanced lattices were introduced in [6] mainly in order to generalize the
uniform dimension of modular lattices. Finite strongly balanced lattices were
characterized there as L6-free and L7-free lattices (see Figure 1). In [1], all
finite groups whose subgroup lattices are strongly balanced were determined.
We call them strongly balanced groups. The results in [1] show that their
structure is very similar to the structure of modular groups. In [10], Schmidt
strengthened these results characterizing all finite groups whose subgroup lat-
tices do not contain sublattices isomorphic to just one of the lattices from
Figure 1. In [11], [12], he studies other interesting classes of groups whose
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Figure 1.

Figure 2.

subgroup lattices are characterized in a similar way, that is by the fact that
their members do not contain certain lattices as sublattices.

The class of (strongly) balanced lattices is obviously not self-dual. So it is
not strange that the class of groups whose dual subgroup lattices are (strongly)
balanced substantially differs from the class of (strongly) balanced groups. In
this paper, we study this class of groups. We show that when restricting
attention to finite non-p-groups, a finite group from this class is very similar
to L7-free groups described in [10]. The case of finite p-groups needs further
studies. A description of dually strongly balanced 2-groups seems to be the
most difficult one as this depends on a description of 2-groups of rank ≤ 3
which is still not completed.

We follow standard notation which can be found in [4], [9].

1. Lattice theory preliminaries

A finite lattice L (a finite group G) is called dually strongly balanced if the
lattice dual to L (to L(G)) is strongly balanced.

The following lemma is an immediate consequence of the description of
strongly balanced lattices given in [6].

Lemma 1.1. A finite lattice L is dually strongly balanced if and only if L
is D1-free and D2-free (see Figure 2).
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Lemma 1.2. Let L be a finite lattice and x, y, z ∈ L be such that x, y, z �= 1,
(x ∧ y) ∨ z = 1 and (x ∧ z) ∨ y = y. Then x ∧ z < x ∧ y.

Proof. Since (x ∧ z) ∨ y = y, we have x ∧ z ≤ y and so x ∧ z ≤ x ∧ y. Now, if
x ∧ z = x ∧ y, then 1 = (x ∧ y) ∨ z = (x ∧ z) ∨ z = z. This contradiction proves
that x ∧ z < x ∧ y. �

Lemma 1.3. Let L be a finite lattice and let x, y, z ∈ L be such that
x, y, z �= 1, (x∧ y) ∨ z = 1, (y ∧ z) ∨ x = 1 and (x∧ z) ∨ y = y. If (x∧ y) ∨ (y ∧ z) =
y1 < y, then the sublattice of L generated by the set {x, y1, z} is isomorphic
to D2.

Proof. By definition of y1, x ∧ y ≤ y1, so x ∧ y ≤ x ∧ y1. Since the opposite
inequality is obvious, we obtain x ∧ y1 = x ∧ y. Similarly, y1 ∧ z = y ∧ z. Now,
by the assumptions and easy standard calculations we get the assertion. �

A 1-sublattice (a 0-sublattice) of a lattice L is a sublattice of L containing
the greatest (the smallest) element of L.

Proposition 1.1. If a lattice L contains a 1-sublattice isomorphic to D1,
then L contains a 1-sublattice isomorphic to D2 or a 1-sublattice isomorphic
to D1 containing two antiatoms of L.

Proof. Suppose that there is an isomorphism of D1 onto a 1-sublattice of L
which maps A, B, C (see Figure 2) onto a, b, c, respectively. In particular, we
have (a ∧ b) ∨ c = 1, (a ∧ c) ∨ b = b, (b ∧ c) ∨ a = a. Of course, we may assume
that at least one of the elements a, b, say a, is not an antiatom of L. Now,
let us consider the sublattice 〈a1, b, c〉, where a1 is an antiatom of L such that
a1 > a. It is clear that (a1 ∧ b) ∨ c = 1, and by Lemma 1.2, b ∧ c < a1 ∧ b. We
have also b ∧ c ≤ a1 ∧ c as (b ∧ c) ∨ a1 = a1 (i.e., a1 ∧ b ∧ c = b ∧ c).

If b ∧ c = a1 ∧ c, then (a1 ∧ c) ∨ b = (c ∧ b) ∨ b = b, and obviously a1 ∨ b =
a1 ∨ c = b ∨ c = 1, as a1 is an antiatom of L. Hence, a1, b, and c generate a
sublattice isomorphic to D1. If b or c is an antiatom of L, we are done. If not,
we can replace a by a1 in the sublattice generated by a, b and c and repeat
the above considerations, changing the roles of a and b. Therefore, in what
follows, we may assume that b is an antiatom of L and b ∧ c < a1 ∧ c.

Now, if a1 ∧ c ≤ b, by the end of the first paragraph we obtain a1 ∧ c =
a1 ∧ c ∧ b = b ∧ c, which contradicts the assumption b ∧ c < a1 ∧ c. Therefore,
a1 ∧ c � b, i.e., (a1 ∧ c) ∨ b = 1, and substituting x = b, y = a1, z = c we are in
the assumptions of Lemma 1.3, which then yields that the sublattice generated
by a1, b and c is isomorphic to D2. This ends the proof. �

For subgroups A1,A2, . . . ,Ak of a group G by L(A1,A2, . . . ,Ak), we denote
the sublattice of L(G) generated by A1,A2, . . . ,Ak as elements of L(G).

Lemma 1.4. Let A, B, C be subgroups of a group G.
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(a) If L(A,B,C) 
 D1, where A,B,C are such as in Figure 2, then A ∨ B ∨
C �= (A ∧ B)C; in particular A ∧ B and C are not normal in A ∨ B ∨ C.

(b) If L(A,B,C) 
 D2, where A,B,C are such as in Figure 2, then A(B ∧
C) �= A ∨ B ∨ C �= (A ∧ C)B; in particular non of the subgroups A,B,A ∧
C,B ∧ C is normal in A ∨ B ∨ C.

Proof. For the proof of (a), suppose that A ∨ B ∨ C = (A ∧ B)C. Then
by Dedekind’s law ([8], 1.3.14) A = (A ∧ B)(A ∧ C) = A ∧ B, a contradiction.
The proof of (b) is similar. �

2. Finite p-groups

Lemma 2.1. A finite p-group G is a dually strongly balanced group if and
only if L(G) is D2-free.

Proof. By Lemma 1.1, it suffices to show that if L(G) is D2-free then
it is D1-free. If not, then applying Proposition 1.1 we get that G contains
subgroups A, B, C two of which are maximal in A ∨ B ∨ C. However, maximal
subgroups of a p-group are normal which contradicts Lemma 1.4. �

Proposition 2.1. If the commutator subgroup G′ of a finite p-group G
has order p, then L(G) is D1-free.

Proof. Let G be a counterexample of minimal order and let A, B, C be
subgroups of G such that L(A,B,C) 
 D1 (see Figure 2). Then obviously
A ∨ B ∨ C = G = A ∨ B = A ∨ C = B ∨ C and by Lemma 1.4, G′ � C and one
of the subgroups A, B, say A, does not contain G′ as well. Since |G′ | = p,
a subgroup of G not containing the commutator subgroup is abelian. Thus,
A and C are abelian and because of that A ∧ C is central, and so, normal in
A ∨ C = G. By minimality of G, we obtain A ∧ C = {e}. If B is abelian, A ∧ B
is normal in A ∨ B = G, which contradicts Lemma 1.4. So B is nonabelian,
and then G′ ≤ B which in turn means that B � G.

Clearly, G′C � G, and hence G = (A ∧ B)G′C. Applying Dedekind’s law
twice, we get

B = (A ∧ B)(B ∧ G′C) = (A ∧ B)G′(B ∧ C) = (A ∧ B)G′.

Since G′ ≤ Z(G), it follows that B = (A ∧ B) × G′ is abelian, a contradiction.
�

In Lemma 2.1, we got that the class of D2-free p-groups is contained in the
class of D1-free p-groups. The following example shows that these classes do
not coincide.

Example 1. Let p be a prime and let

T = 〈x1, x2, x3, y | xp
1 = xp

2 = xp
3 = yp = e, [x1, y] = x2,

[x2, y] = [x3, y] = e, [xi, xj ] = e〉.



L-FREE LATTICES OF SUBGROUPS 891

One can easily check that for A = 〈x3, y〉, B = 〈x1x2, x1x3〉, C = 〈x1, y〉, we
have L(A,B,C) 
 D2. It is easily seen that T is isomorphic to a direct product
of a nonabelian group of order p3 and exponent p and a cyclic group of order
p. Therefore, L(T ) does not contain a sublattice isomorphic to D1 by Propo-
sition 2.1. It follows from the description of groups of order p4, p > 2, that
among these groups T is the unique group whose subgroup lattice contains a
sublattice isomorphic to D2.

In the following example, we present a p-group of minimal order whose
subgroup lattice contains an isomorphic copy of D1.

Example 2.

T1 = 〈x1, x2, x3, x4, y | xp
1 = xp

2 = xp
3 = xp

4 = yp = e, [x1, y] = x2,

[x2, y] = e, [x3, y] = x4, [x4, y] = e, [xi, xj ] = e〉.
For A = 〈x1, y〉, B = 〈x1x3, y〉, C = 〈x1x4, x1x3〉, the lattice L(A,B,C) is
isomorphic to D2. For A = 〈x1, y〉, B = 〈x3, y〉, C = 〈x1x4, x2x3〉, the lattice
L(A,B,C) is isomorphic to D1.

The following lemma can be easily derived from the proof of Theorem 1.11
in [7].

Lemma 2.2. Let G be a powerful p-group and H,K its subgroups. If
〈H,K〉 = G, then HK = G.

Proof. Let H and K be subgroups of G such that H = 〈h1, . . . , hs〉 and
K = 〈k1, . . . , kr 〉. Then obviously G = 〈H,K〉 = 〈h1, . . . , hs, k1, . . . , kr 〉. Now
we choose a minimal set of generators from the above generating set, G =
〈hi1 , . . . , hin , kj1 , . . . , kjm 〉. Since G is powerful, we obtain

G = 〈hi1 〉 · · · 〈hin 〉〈kj1 〉 · · · 〈kjm 〉 ≤ 〈hi1 , . . . , hin 〉 〈kj1 , . . . , kjm 〉 ≤ HK. �

The next lemma follows directly from Lemma 2.2 and Lemma 1.4(b).

Lemma 2.3. If G is a powerful p-group, then L(G) does not contain a
1-sublattice isomorphic to D2.

Proposition 2.2. Let G be a p-group. If every nonpowerful subgroup of G
is 2-generated, then G is dually strongly balanced.

Proof. Let G be a counterexample of minimal order. By Lemma 2.1, there
exist subgroups A,B,C of G such that L(A,B,C) 
 D2 as in Figure 2. By
choice of G, we have A ∨ B ∨ C = G that is L(A,B,C) is a 1-sublattice. Then
by Lemma 2.3, G is 2-generated, that is |G/Φ(G)| = p2. So if A1 and C1 are
maximal subgroups of G containing A and C, respectively then

A ∧ C ≤ A1 ∧ C1 = Φ(G),

a contradiction since (A ∧ C) ∨ B = G. �
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Lemma 2.4. Let G be a nonpowerful p-group, p > 2. If d(G) ≥ 3, then G
contains a section isomorphic to the group T from Example 1.

Proof. Without loss of generality, we may assume that d(G) = 3. Let N be
a normal subgroup of G such that |G′ : N | = p. The factor group Ḡ = G/GpN
has exponent p, |Ḡ| = p4 and |Ḡ′ | = p. This group is isomorphic to T (see
Example 1). �

Theorem 2.1. Let G be a p-group, p > 2. The following conditions are
equivalent:
(a) G is dually strongly balanced,
(b) G contains no section isomorphic to T ,
(c) every subgroup of G is either powerful or 2-generated.

Using the description of 3-generator powerful p-groups (Theorem 3.3, [7]),
we obtain the following corollary.

Corollary 2.1. Let G be a powerful p-group. If d(G) ≤ 3, then G is
dually strongly balanced.

Note that it follows from [2] that if G is a finite p-group in which every
nonabelian subgroup is 2-generated, then G is metabelian.

3. Simple groups

In this section, we show that the lattice of subgroups of an arbitrary finite
simple group contains isomorphic copies of the both lattices D1 and D2. So in
particular, we prove that if a finite group G is dually strongly balanced then
G is solvable. It is clear that it suffices to consider the minimal simple groups
only. So we list first these groups and some known results concerning them.

Theorem 3.1 ([13]). Every minimal simple group is isomorphic to one of
the following groups:
(a) PSL(2,2p), p any prime;
(b) PSL(2,3p), p any odd prime;
(c) PSL(2, p), p any prime exceeding 3 such that p2 + 1 ≡ 0 (mod 5);
(d) Sz(2p), p any odd prime;
(e) PSL(3,3).

The next two lemmas are immediate consequences of II.8.27 of [4].

Lemma 3.1. Let p, p > 2, be a prime and let k be a positive integer (if
p = 3 then we assume that k > 1). The group PSL(2, pk) contains a subgroup
isomorphic to S4 if and only if p2k − 1 ≡ 0 (mod 16).

Lemma 3.2. Let p be a prime, p > 3, or p = 3k where k is a prime. More-
over, let G = PSL(2, p). Every maximal subgroup M of G is isomorphic to
one of the following groups:
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(a) the dihedral group of order p − 1;
(b) the dihedral group of order p + 1;
(c) A4 – the alternating group of degree 4;
(d) a semidirect product of a Sylow p-subgroup of G and a cyclic group of

order p−1
2 .

Corollary 3.1. Let G be a group as in the previous lemma with order
not divisible by 8 (i.e. 16 � p2 − 1). If H is a proper subgroup of G with order
divisible by 4 and P1 �= P2 are Sylow 2-subgroups of H , then P1 ∩ P2 �= {e}.

We need also some basic information on the Suzuki groups (see for instance
[5], pp. 182–194). Let G be a Suzuki group Sz(2p), with p = 2m + 1. Let

F =

〈⎛
⎜⎜⎝

1 0 0 0
a 1 0 0
b aθ 1 0

a2+θ + ab + bθ aθ + b a 1

⎞
⎟⎟⎠

∣∣∣ a, b ∈ GF (2p)

〉
,

where θ is the automorphism of GF (2p) such that θ2 = id. Then F is a Sylow
2-subgroup of G. Let

H =

〈⎛
⎜⎜⎝

c1+θ 0 0 0
0 cθ 0 0
0 0 cθ 0
0 0 0 c−1−θ

⎞
⎟⎟⎠

∣∣∣ 0 �= c ∈ GF (2p)

〉
and

t =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

Then Sz(q) = 〈F,H, t〉.
Lemma 3.3. A maximal subgroup of a Suzuki group Sz(q) is conjugate to

one of the following subgroups:
(a) FH = NG(F );
(b) NG(H) which is isomorphic to the dihedral group of order 2(q − 1);
(c) Bi = 〈Ui, ti〉, where Ui, i = 1,2, is a cyclic group of order q ± 2m+1 + 1;

moreover for every u ∈ Ui, uti
i = uq and |Bi : Ui| = 4;

(d) Sz(s), where q is a power of s.

We need also the following, rather easy observation.

Lemma 3.4. The lattices L(S4) of all subgroups of the symmetric group
of degree 4 and L(A5) of all subgroups of the alternating group of degree 5
contain sublattices isomorphic to D1 and sublattices isomorphic to D2.

Proof. One can easily check that for A = 〈(1 2), (1 2 3)〉, B = 〈(1 2 3 4)〉
and C = 〈(1 2), (1 3 2 4)〉, the sublattice L(A,B,C) of L(S4) generated by A,
B and C is isomorphic to D2.
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For a construction of a sublattice isomorphic to D1, we take A as in the pre-
vious case, B = 〈(1 2), (3,4)〉 a noncyclic group of order 4 and C = 〈(1 2 3 4)〉—
a cyclic group of order 4.

In the group A5, let A = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, B = {e,
(1 2)(3 5), (1 3)(2 5), (1 5)(2 3)}, and C = 〈(1 2)(3 4), (3 4 5)〉. Simple com-
putations show that A, B, and C generate a sublattice isomorphic to D2.

Finally, if in the above set of subgroups we replace B by the subgroup
B1 = 〈(1 2 3 4 5)〉 then the set obtained in this way generate a sublattice
isomorphic to D1. �

Theorem 3.2. If G is a finite simple group, then L(G) contains isomorphic
copies of the lattices D1 and D2.

Proof. As it was mentioned earlier, we consider only the minimal simple
groups. We begin with studying the easiest cases. So first let us consider the
group PSL(3,3). Let G = T (3,3) be the group of upper triangular matrices
from SL(3,3) and let

a =

⎛
⎝1 1 0

0 1 0
0 0 1

⎞
⎠ , b =

⎛
⎝1 0 1

0 1 0
0 0 1

⎞
⎠ , d =

⎛
⎝2 0 0

0 2 0
0 0 1

⎞
⎠ .

Straightforward calculations show that for A = 〈a, d〉, B = 〈b, d〉, C = 〈ab〉 we
get L(A,B,C) 
 D1. Obviously, the image of G in PSL(3,3) is isomorphic
to G.

Now let

a1 =

⎛
⎝2 0 0

0 2 0
0 0 1

⎞
⎠ , b1 =

⎛
⎝1 0 0

0 1 1
0 0 1

⎞
⎠ , a2 =

⎛
⎝1 0 0

0 2 0
0 0 2

⎞
⎠ ,

b2 =

⎛
⎝1 1 0

0 1 0
0 0 1

⎞
⎠ , d =

⎛
⎝1 0 1

0 1 0
0 0 1

⎞
⎠ .

It is easily seen that the subgroups H1 = 〈a1, b1〉, H2 = 〈a2, b2〉 are isomorphic
to S3, the subgroup 〈d〉 = [H1,H2] is normal in G and 〈H1,H2〉/〈d〉 is isomor-
phic to S3 × S3. Let Ḡ = G/〈d〉 and consider the subgroups Ā = 〈ā1, ā2〉, B̄ =
〈b̄1ā1, b̄2ā2〉, C̄ = 〈ā1, b̄1〉. Again easy calculations show that L(Ā, B̄, C̄) 
 D2.

To get a proof for the group G = PSL(2,2p) where p is an odd prime, for a
sublattice L(A,B,C) isomorphic to D2 one can take

A =
{(

1 a
0 1

)
, a ∈ F

}
, B =

{(
1 0
c 1

)
, c ∈ F

}
,

C =
〈(

1 1
0 1

)
,

(
1 0
1 1

)〉
.
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For the sublattice L(A,B,C) isomorphic to D1, put

A =
{(

d a
0 d−1

)
, a ∈ F,d ∈ F ∗

}
, B =

{(
d 0
a d−1

)
, a ∈ F,d ∈ F ∗

}
,

C =
〈(

1 1
1 0

)〉
.

Not difficult standard details of the proof we leave to the reader.
Now let p be a prime, p > 3, or p = 3k where k is a prime and G = PSL(2, p).

By Lemmas 3.1 and 3.4, we may assume that 16 � p2 − 1, i.e., |PSL(2, p)| is not
divisible by 8 (that is the Sylow 2-subgroups of G are isomorphic to the four
group). Since p is odd, exactly one of the numbers p−1

2 , p+1
2 is an odd integer.

Let us denote this number by q. Let Q be a fixed cyclic subgroup of order q.
It follows from II.8.27 of [4] also that the subgroup C = NG(Q) is a dihedral
group of order 2q. By Lemma 3.2, it is a maximal subgroup of G. Let x, y ∈ C
be elements of order 2 such that Q = 〈xy〉. Now let A be a Sylow 2-subgroup
of G containing x and let B be a Sylow 2-subgroup of G containing y. Note
that A ∧ B = {e}. Otherwise, there exists an element t of order 2, such that
A = 〈x, t〉 and B = 〈y, t〉. This element t would centralize C, i.e., the group
〈C, t〉 = C × 〈t〉 would be a proper subgroup of G which is not possible as C
is maximal in G.

Now by maximality of C in G and by Corollary 3.1, we obtain A ∨ B =
A ∨ C = B ∨ C. Moreover, we have A ∧ C = 〈x〉 i B ∧ C = 〈y〉. All these yield
that L(A,B,C) 
 D2.

Since PSL(2,5) is isomorphic to A5, by Lemma 3.4, we may additionally
assume that p > 5. This and the fact that 8 � |G| yield that there exists an
odd integer dividing |G| and relatively prime to pq. Let r be the biggest
among such numbers (it follows from the assumptions that if q = p−1

2 then
r = p+1

4 and if q = p+1
2 then r = p−1

4 ). Now let A be a dihedral subgroup of
order 4r (such a subgroup exists by Lemma 3.2) and let B = NG(Q) be such
that |A ∧ B| = 2. Moreover, let C be a cyclic subgroup of order r such that
A ∧ C = {e}. Now, it is not difficult to check that L(A,B,C) 
 D1.

Finally, let G = Sz(q), where q = 22m+1. Then |G| = (q2 + 1)q2(q − 1).
Let A be a Sylow 2-subgroup containing the element t. Let B be a Sylow
2-subgroup containing tx, where x ∈ G \ A and let C = 〈t, tx〉. Since two
distinct Sylow 2-subgroups have trivial intersection, A ∧ B = {e}. It follows
from Lemma 3.3 that the subgroups 〈A, tx〉 and 〈B, t〉 are not contained in a
maximal subgroup of Sz(q), so A ∨ (B ∧ C) = G and B ∨ (A ∧ C) = G. Thus,
L(A,B,C) 
 D2.

Now let A = FH i B = F ′H (see the paragraph before Lemma 3.1), where
F ′ is the subgroup consisting of all matrices which are transpositions of ma-
trices from F . Moreover, let C = St, where St is a Sylow 2-subgroup of G
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containing the element t. Again by the argument already used in the previ-
ous paragraph, A ∧ C = B ∧ C = {e}. Additionally, A ∧ B = H . Since the
elements t and th, where h ∈ H , are of order 2 and tth has odd order, t and th

belong to distinct Sylow 2-subgroups of G. Thus, h /∈ NG(St), that is H is not
contained in NG(St). Since 〈H,St〉 is not contained in a maximal subgroup
of G, (A ∧ B) ∨ C = G. Thus, L(A,B,C) 
 D1. �

4. Solvable groups

Lemma 4.1. Let p be a prime and let G = H � P be a semidirect product
of an elementary abelian p-group P and a cyclic p′-group H and suppose that
G is D1-free and D2-free. Then:

(a) If |H| = q, where q is a prime, then H acts trivially on P or H acts
irreducibly on P or H acts by power automorphisms on P .

(b) If H acts nontrivially on P , then |G : CG(P )| = q, with q a prime.

Proof. (a) Assume that H acts nontrivially on P and H does not induce
power automorphisms on P . By way of contradiction, suppose that there
exist H-invariant nontrivial subgroups P1 and P2 of P such that P = P1 × P2.
We may suppose also that P1 and P2 are H-irreducible.

If there exists t ∈ P such that 〈t〉H = P , then the subgroups A = HP1,
B = HP2 and C = 〈t〉 generate a sublattice of L(G) isomorphic to D1. So we
may assume that 〈t〉H < P , for any t ∈ P \ {e}. Put H = 〈y〉, P1 = 〈x1〉H and
P2 = 〈x2〉H . None of the subgroups P1 and P2 is cyclic as otherwise we would
have 〈t〉H = P for t = x1x2. In particular, we may assume that q > 2.

Let C = 〈xy
1x2, x1x

y
2 〉 be a noncyclic subgroup of P of order p2. It is seen

that for i = 1,2, Pi ∧ C = {e}. In fact, if P1 ∧ C �= {e}, then for some integers
k, l we have e �= (xy

1x2)k(x1x
y
2)

l ∈ P1. By easy calculations and the fact that
P1 ∧ P2 = {e}, we obtain that xk

2(xy
2)

l = e. Therefore xy
2 = x−kl′

2 , where l′ is
the inversion of l modulo p. Then P2 is a cyclic group, a contradiction. Fur-
thermore, we have CH = P . Actually ((xy

1x2)−1)y−1
x1x

y
2 = (x−1

2 )y−1
xy

2 , and if
(x−1

2 )y−1
xy

2 = e, we obtain xy2

2 = x2, a contradiction. Therefore, (x−1
2 )y−1

xy
2 =

t �= e and then P = 〈t〉H < CH . This means that CH = P . Now, it is easily
seen that L(A,B,C) 
 D1. A contradiction.

(b) Obviously, we may assume that H ∩ CG(P ) = Z(G) = {e}. Suppose
that there exist distinct primes q and r dividing |H| and let Q and R be
subgroups such that |Q| = q and |R| = r. In view of (a), we may assume
that Q and R act on P irreducibly or induce power automorphisms on P .
Moreover, if Q and R induce power automorphisms on P , we may assume
that P is a cyclic group. Clearly, H ∧ Hx = {e} for any x /∈ NG(H). Let
A = H , B = Hx for some x ∈ P and x �= e. Let also C = 〈Q,Qx〉, if Q acts
irreducibly on P or C = 〈R,Rx〉, if R acts irreducibly on P . Now it is easy to
check that a sublattice of L(G) generated by A, B and C is isomorphic to D2.
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This contradicts the assumption, so |H| is not divisible by distinct primes,
say H is a q-group.

Now we let H = 〈y〉, where y is an element of order q2 and suppose yq /∈
CG(P ). Since G is D1-free and D2-free, yq induces a power automorphism
on P or 〈yq 〉 acts irreducibly on P . Let x ∈ P and consider the subgroups
A = 〈y〉, B = 〈y〉x and C = 〈yq, (yq)x〉. Obviously, 〈y〉 ∩ 〈y〉x = {e}. Hence,
the lattice L(A,B,C) is isomorphic to D2. A contradiction. �

Lemma 4.2. Let p and q be distinct primes and let G = Q�P be a semidi-
rect product of an elementary abelian p-group P and a noncyclic q-group Q.
If Q acts nontrivially on P , then L(G) contains a sublattice isomorphic to D1

or D2.

Proof. Let H = CG(P ) ∩ Q. Of course H is normal in G, so we can con-
sider the factor group Ḡ = G/H . By Lemma 4.1(a), every element of Q̄ acts
irreducibly on P̄ or induces a power automorphism on P̄ . Therefore, Q̄ is a
regular group of automorphisms of P̄ and by [3], 5.4.11, Q̄ is a cyclic group or a
generalized quaternion group. On the other hand, by Lemma 4.1(b), for every
ȳ ∈ Q̄, we have ȳq = 1. Hence, Q̄ is cyclic and by Lemma 4.1(b), |Q/H| = q.
Since Q is not cyclic, we have |Q/Φ(Q)| ≥ q2 and Φ(Q) < H . Thus, Φ(Q)
is a normal subgroup of G and we may assume that Φ(Q) = {e}. Now, take
elements y, z in G such that o(y) = o(z) = q, y ∈ Q \ H and z ∈ Z(G). Let also
x ∈ P be such that xy �= yx. It is easily seen that for A = 〈x, y〉, B = 〈y, z〉, and
C = 〈xyz〉, the subgroups A, B, C generate a sublattice of L(G) isomorphic
to D1. This completes the proof. �

We call a group G L-indecomposable if the lattice L(G) is not a direct
product of its nontrivial sublattices. This means that G is not a direct product
of its nontrivial subgroups with coprime orders. Otherwise, the group G will
be called L-decomposable.

Lemma 4.3. Let G = H � Q be a semidirect product of a normal nilpotent
group H and a q-group Q, with (|H|, q) = 1. If G is L-indecomposable and G
is D1-free and D2-free, then H is a p-group for a prime p.

Proof. Let π(H) = {p1, . . . , pr }. By assumption Q acts nontrivially on all
Sylow pi-subgroups of G and then Q induces nontrivial action on every pri-
mary component of H/Φ(H). Obviously, we may assume that Φ(H) = {e}.
By Lemma 4.2, Q is cyclic, that is Q = 〈y〉 for some y ∈ G. In view of
Lemma 4.1, yq ∈ CG(Pi) for every i ∈ {1, . . . , r}. Hence, 〈yq 〉 is normal in G
and we may replace G by the factor group G/〈yq 〉. Now, let a ∈ P1, b ∈ P2 be
such that ay �= a and by �= b. Then as it can be easily checked the subgroups
A = 〈a, y〉, B = 〈b, y〉, and C = 〈aby〉 generate a sublattice of L(G) isomorphic
to D1. A contradiction. �
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Lemma 4.4. Let G be a solvable group. If π(G) = {p, q}, p �= q, and G is
D1-free and D2-free, then either a Sylow p-subgroup or a Sylow q-subgroup of
G is normal in G.

Proof. Suppose that no Sylow subgroup of G is normal in G. Let H = K ×
M be the Fitting subgroup of G, where K = Op(G) and M = Oq(G). Let also
H1/H be a minimal normal subgroup of G/H . Obviously, H1 is not nilpotent
and since H1/H is a primary group we may assume that H1/H is a p-group.
Since the Fitting subgroup of a solvable group is not trivial, we have M �= {e}.
Otherwise, we get a contradiction because H1 would be a nilpotent normal
subgroup of G greater than its Fitting subgroup. Furthermore, suppose that
M is an elementary abelian q-group and K = {e} (if it is not the case we can
replace G by the factor group G/(K × Φ(M)).

Let P be a Sylow p-subgroup of G. Since H1 is not nilpotent, P acts non-
trivially on M . By Lemma 4.2, P is cyclic and by Lemma 4.1(b),
|P : CP (M)| = p. It follows from well-known properties of the Fitting sub-
group that CG(H) ≤ H , so CP (M) = CP (H) ≤ H = M . Hence, CP (M) = {e}
and then |P | = p. Therefore P ≤ H1, and G/H1 is a cyclic q-group by
Lemma 4.2.

Now, observe that |G/H1| = q. In fact, if CG/M (H1/M) contains q-elements
then Oq(G/M) �= {e} and it means that there exists a normal q-subgroup of G
greater than M , which is not possible. So all q-elements of G/M act nontriv-
ially on H1/M and in view of Lemma 4.1 we get |G/H1| = q.

Let P = 〈x〉 be a fixed Sylow p-subgroup and let A = NG(P ). If y /∈ M is
a q-element of G, then xy = xim for 0 < i < p and some m ∈ M . But every
element of the form xiu, u ∈ M , is conjugated to xi by some element t ∈ M .
Let t ∈ M be such that (xi)t = xim−1. Then

xyt = (xim)t = xim−1m = xi.

Therefore, yt ∈ A and of course yt is a q-element. It is also clear that A ∩ M =
{e} and so |A| = pq. Let A = NG(P ) = 〈x, y〉, where 〈x〉 = P and o(y) = q.
Let also t ∈ A be such that t does not normalize some p-subgroup of G and
let z ∈ M be such that tz = zt. Now, the subgroup B = 〈t, z〉 is abelian of
order q2 and A ∧ B = 〈t〉. Take a p-element v, v /∈ P , such that t /∈ NG(〈v〉)
and set C = 〈v〉. Then (A ∧ B) ∨ C = 〈t,C〉 = G because 〈C,Ct〉 = PM and
t /∈ PM . Moreover, A ∨ C = B ∨ C = G. Hence, the subgroups A, B, and C
generate a sublattice of L(G) isomorphic to D1. This contradiction ends the
proof. �

As an immediate consequence of the above lemmas we obtain the following
theorem.

Theorem 4.1. Let G be a nonnilpotent group with |π(G)| = 2. If G is
D1-free and D2-free, then G = P � Q, where P is a Sylow p-subgroup, and Q
is a Sylow q-subgroup for some different primes p and q. Moreover:
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(a) P is powerful or 2-generated;
(b) Q = 〈y〉 is cyclic with yq ∈ CG(P );
(c) Q acts irreducibly on P/Φ(P ) or it acts on P/Φ(P ) by power automor-

phisms.

Lemma 4.5. Let G be a solvable group and let |π(G)| = 3. If G is D1-free
and D2-free, then G is L-decomposable.

Proof. Assume that G is L-indecomposable and π(G) = {p, q, r}, where
p, q, r are distinct primes. Since G is solvable, there exist a Sylow p-subgroup
P , a Sylow q-subgroup Q and a Sylow r-subgroup R such that G = PQR and
PQ, PR and QR are subgroups of G.

Suppose first that one of the subgroups P , Q, R, say P , is normal in G.
We assume also that Φ(P ) = {e}, that is P is elementary abelian. If it is not
the case, we replace G by the factor group G/Φ(P ). By assumption QR is

D1-free and D2-free, so in view of Lemma 4.4, we may assume that Q � QR.
Since G is L-indecomposable, one of the subgroups Q or R is not contained in
CG(P ). If Q ≤ CG(P ), then G = (P × Q) � R and we obtain a contradiction
by Lemma 4.3. Hence Q � CG(P ). Since the subgroup PQ is D1-free and
D2-free, Q is cyclic by Lemma 4.2. We set Q = 〈a〉. Observe that 〈aq 〉 is a
normal subgroup in QR = Q � R and by Lemma 4.1(b) aq ∈ CG(P ). Hence
〈aq 〉 is normal in G and we replace G by G/〈aq 〉 that is we assume aq = e.

If R � CG(P ), then by Lemma 4.2 R is also cyclic; set R = 〈b〉. If
QR = Q × R, then we get a contradiction by Lemma 4.1. Thus, QR =
Q � R. Since the subgroups PR and QR are D1-free or D2-free, we have
br ∈ CG(P ) ∩ CG(Q). Hence, 〈br 〉 is normal in G and then we can sup-
pose br = e. Therefore, QR is a regular group of automorphisms of P of
order qr. But by [3], Theorem 5.3.14, QR is cyclic which again contra-
dicts to Lemma 4.1. Hence, R ⊆ CG(P ) and since |Q| = q it follows that
R = CQR(P ) � QR, a contradiction.

Suppose now that none of the subgroups P,Q,R is normal in G. By 10.1.10
of [8] at least one of them, say P , is not cyclic. Then it follows from Lemma 4.2
that P � PR and P � PQ; hence P � G, the final contradiction. �

Theorem 4.2. If G is D1-free and D2-free, then G is a direct product of
p-groups and {p, q}-groups with pairwise relatively prime orders.

Proof. By Lemma 4.5, the theorem is true when |π(G)| ≤ 3. So assume that
|π(G)| ≥ 4 and let G be a counterexample of minimal order. Since G is solv-
able, there exist Sylow pi-subgroups Pi of the group G such that G = P1 · · · Pn

and PiPj = PjPi, for i, j ∈ {1, . . . , n}. Let H = P2 · · · Pn. By choice of G, H is
a direct product of p-groups and {p, q}-groups with pairwise relatively prime
orders. Since P1 is not a direct factor of G, H has a direct factor which does
not centralize P1. If for some i, j ∈ {2, . . . , n}, PiPj is not a direct product
of its Sylow subgroups, then by minimality of G and by Lemma 4.5 we have
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P1PiPj = P1 × PiPj . Hence, there exists i ∈ {2, . . . , n} such that Pi is a direct
factor of H and P1 � CG(Pi). Therefore, the group P1Pi is L-indecomposable.
Let us consider the subgroup Pj of H , where j �= i. Since P1PiPj < G, by
choice of G we have P1PiPj = P1Pi × Pj . Hence, P1Pi is a direct factor in G.
This contradiction ends the proof. �
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