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REMARKS ON HNN EXTENSIONS IN OPERATOR
ALGEBRAS

YOSHIMICHI UEDA

Dedicated to Mariko, Rio, and Mimi

Abstract. It is shown that any HNN extension is precisely a
compression by a projection of a certain amalgamated free prod-
uct in the framework of operator algebras. As its applications

several questions for von Neumann algebras or C∗-algebras aris-
ing as HNN extensions are considered.

1. Introduction

In [19], we introduced the notion of reduced HNN extensions in the frame-
work of von Neumann algebras as well as that of C∗-algebras, which naturally
includes the group von Neumann algebras or the reduced group C∗-algebras
associated with HNN extensions of groups. This paper is its continuation and
provides some improvements and several new results.

First, with a minor change made in the previous construction in [19], we see
that any reduced HNN extension is precisely a compressed algebra of a certain
reduced amalgamated free product. It is also pointed out that the same fact
still holds true for universal HNN extensions of C∗-algebras. The observation
is new even for the group von Neumann algebras and the (both reduced and
universal) group C∗-algebras associated with HNN extensions of groups, and
indeed it seems that there is no explicit counterpart in the framework of group
theory. However, a similar observation was already pointed out by Gaboriau
[7] (also Paulin [11]) for equivalence relations. Indeed, we missed it when we
did [19], and comparing it with our construction of reduced HNN extensions
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is a starting point of this paper. Based on the observation, we obtain several
results on HNN extensions of von Neumann algebras or those of C∗-algebras.
We first improve the previous factoriality and type-classification results in [19],
which lead to a satisfactory answer to the questions of factoriality and type
classification of HNN extensions of von Neumann algebras, say N�Dθ, when
both D and θ(D) are (not necessarily inner conjugate) Cartan subalgebras
in N . Here, we note that the inner conjugate case was already treated in
[19, Remark 3.7(1)] based on its particularity, and one should remind that all
Cartan subalgebras in a fixed von Neumann algebra are isomorphic, which
allows to take an HNN extension by a bijective ∗-homomorphism between
those. We also consider the questions of simplicity and K-theory of (reduced
or universal) HNN extensions of C∗-algebras. Some of the consequences here
for C∗-algebras should be read as improvements of previous arguments for
the group C∗-algebras associated with HNN extensions of groups, but some
others are new. We also give some supplements to the recent work [4] on free
entropy dimension due to Brown, Dykema, and Jung.

2. Preliminaries

Throughout this paper, we follow the notational conventions in [19], which
are summarized here for the reader’s convenience.

2.1. von Neumann algebra setup. Let N ⊇ D be σ-finite von Neumann
algebras and θ : D → N be an injective normal unital ∗-homomorphism. As-
sume that there are faithful normal conditional expectations EN

D : N → D,
EN

θ(D) : N → θ(D). The HNN extension of base algebra N by θ with respect
to EN

D , EN
θ(D) is a unique triple (M,EM

N : M → N,u(θ)) of a von Neumann
algebra containing N , a faithful normal conditional expectation and a unitary
in M (called the stable unitary) satisfying the following conditions:

(A) u(θ)θ(d)u(θ)∗ = d for every d ∈ D;
(M) EM

N (w) = 0 for every reduced word w in N and u(θ).

Here, a given word w = u(θ)ε0n1u(θ)ε1n2 · · · n�u(θ�)ε� in N and u(θ) (with
n1, . . . , n� ∈ N , ε0, . . . , ε� ∈ {1, −1}) is said to be reduced (or of reduced form)
if εj−1 �= εj implies that

nj ∈ N ◦
θ

def
:= KerEN

θ(D) when εj−1 = 1, εj = −1;

nj ∈ N ◦ def
:= KerEN

D when εj−1 = −1, εj = 1.

We write the triple in the following way:

(M,EM
N , u(θ)) := (N,EN

D )�
D

(
θ,EN

θ(D)

)
.
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Let ψ be a faithful normal semifinite weight on D. Then the modular
automorphism σ

ψ◦EN
D ◦EM

N
t (t ∈ R) is completely determined by

(1) σ
ψ◦EN

D ◦EM
N

t (u(θ)) = u(θ)
[
Dψ ◦ θ−1 ◦ EN

θ(D) : Dψ ◦ EN
D

]
t

(see [19, Theorem 4.1]). In particular, if N has a faithful normal trace τ sat-
isfying that (i) both EN

D and EN
θ(D) are τ -preserving and (ii) τ |θ(D) ◦ θ = τ |D,

then the new positive functional or weight τ ◦ EM
N (= τ |D ◦ EN

D ◦ EM
N =

τ |θ(D) ◦ EN
θ(D) ◦ EM

N ) becomes again a trace on M . Let M̃ = M �
σψ◦EN

D ◦EM
N

R ⊇
Ñ = N �

σψ◦EN
D

R ⊇ D̃ = D �σψ R be the inclusions of (continuous) cores with
common canonical generators λ(t) (t ∈ R), and then the canonical liftings
ÊM

N : M̃ → Ñ , ÊN
D : Ñ → D̃ are provided in such a way that ÊM

N |M = EM
N

and ÊN
D |N = EN

D . Also, let θ̃ : D̃ → Ñ be the canonical extension of θ de-
fined by θ̃|D = θ and θ̃(λ(t)) = [ψ ◦ θ−1 ◦ EN

θ(D) : ψ ◦ EN
D ]tλ(t) for t ∈ R, and

hence θ̃(D̃) = θ̃(D) := θ(D) �σψ◦θ−1 R so that we have the canonical lifting
ÊN

θ(D) : Ñ → θ̃(D̃) too as before. Then (M̃, ÊM
N , u(θ)) is naturally identified

with the HNN extension (Ñ , ÊN
D )�D̃(θ̃, ÊN

θ(D)) (see [19, Section 4] for details).

2.2. C∗-algebra setup. Let B ⊇ C be a unital inclusion of C∗-algebras,
θ : C → B be an injective unital ∗-homomorphism, and EB

C : B → C,
EB

θ(C) : B → θ(C) be conditional expectations. Assume, as a natural and
usual requirement, that EB

C and EB
θ(C) are nondegenerate (or equivalently

have the faithful GNS representations), which ensures that B is embedded in
the reduced HNN extension faithfully. The reduced HNN extension of base al-
gebra B by θ with respect to EB

C , EB
θ(C) is constructed and defined as a triple

(A,EA
B : A → B,u(θ)) in the exactly same manner as in the von Neumann

algebra case, and it is indeed characterized by the same conditions (A), (M)
under the additional assumption that EA

B are nondegenerate (see [19, Sec-
tion 7.2] for the details). (An important issue about the characterization [19,
Proposition 7.1] will be discussed in Remark 3.2.) In the C∗-algebra setup,
another kind of HNN extension is available, and it is the universal HNN ex-
tension B�univ

C θ, i.e., the universal C∗-algebra generated by B and a single
unitary u(θ) with subject to only the algebraic relations u(θ)θ(c)u(θ)∗ = c for
all c ∈ C.

3. Observation

Let (M,EM
N , u(θ)) = (N,EN

D )�D(θ,EN
θ(D)) be an HNN extension of von

Neumann algebras, and

(M, E ) :=
(
N ⊗ M2(C),Eθ : ιθ

)
�

D⊕D

(
D ⊗ M2(C),E1 : ι1

)
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be the amalgamated free product von Neumann algebra over D ⊕ D via the
distinguished embedding maps

ιθ(d1 ⊕ d2) :=
[
d1 0
0 θ(d2)

]
, ι1(d1 ⊕ d2) :=

[
d1 0
0 d2

]
with respect to the conditional expectations

Eθ :=
[
EN

D 0
0 EN

θ(D)

]
, E1 :=

[
IdD 0
0 IdD

]
.

Then we denote by λ, λθ, λ1 the canonical embedding maps of D ⊕ D, N ⊗
M2(C), D ⊗ M2(C) into M, respectively, which satisfy λ = λθ ◦ ιθ = λ1 ◦ ι1
(see [19, Section 2] for the construction and terminologies). Let us denote
by Eθ the conditional expectation from M onto λθ(N ⊗ M2(C)) that satisfies
E ◦ Eθ = E .

Proposition 3.1. There is a bijective ∗-homomorphism Φ : M → M ⊗
M2(C) such that Φ(λθ(N ⊗ M2(C))) = N ⊗ M2(C) ⊆ M ⊗ M2(C), and more-
over

(2) Φ ◦ Eθ = (EM
N ⊗ Id) ◦ Φ.

The above bijective ∗-homomorphism Φ is precisely given by

Φ :

⎧⎪⎪⎨⎪⎪⎩
λ1

([0 1
0 0

])
λθ

([0 0
1 0

])
�−→

[u(θ) 0
0 0

]
,

λθ

([n 0
0 0

])
�−→

[n 0
0 0

]
,

λθ

([0 1
0 0

])
�−→

[0 1
0 0

]
.

(3)

Proof. Let us first recall (and improve) the construction of reduced HNN
extensions given in [19]. Let (M, E ) be as above, and the HNN extension
(M,EM

N , u(θ)) is realized in the compressed algebra pMp with p := λ(1 ⊕ 0)
as follows. (Note that another algebra slightly larger than this M was used
in [19], but it is clear that M is sufficiently large to construct the desired al-
gebra.) Identify n ∈ N with λθ

([
n 0
0 0

])
and set u(θ) := λ1

([
0 1
0 0

])
λθ

([
0 0
1 0

])
.

Then the desired algebra M is generated by N and u(θ) inside pMp, and the
conditional expectation EM

N is obtained as the restriction of Eθ to M .
Let Φ : M → pMp ⊗ M2(C) be the bijective normal ∗-isomorphism deter-

mined by the 2 × 2 matrix unit system

p = λθ

([
1 0
0 0

])
, λθ

([
0 1
0 0

])
, λθ

([
0 0
1 0

])
, λθ

([
0 0
0 1

])
.

Then we get

Φ(u(θ)) =
[
u(θ) 0

0 0

]
and

Φ
(

λθ

([
n 0
0 0

]))
=

[
n 0
0 0

]
; Φ

(
λθ

([
0 1
0 0

]))
=

[
0 1
0 0

]
,
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where the right-hand sides are considered in M2(pMp) = pMp ⊗ M2(C). This
implies that Φ sends M ∨ {λθ

([
0 1
0 0

])
}′ ′ to M2(M) = M ⊗ M2(C). Note that

u(θ) = λ1

([
0 1
0 0

])
λθ

([
0 0
1 0

])
, λθ

([
n 0
0 0

])
, λθ

([
0 1
0 0

])
(considered in M) generate the whole M since

u(θ)λθ

([
0 1
0 0

])
= λ1

([
0 1
0 0

])
λθ

([
0 0
1 0

])
λθ

([
0 1
0 0

])
= λ1

([
0 1
0 0

])
inside M. Since Φ(M) = pMp ⊗ M2(C), we conclude that pMp ⊗ M2(C) =
M ⊗ M2(C) and M = pMp. The equality (2) is easily verified. �

Remark that the above argument clearly works well even in the general
case where the θ is replaced by a family of injective normal unital ∗-homomor-
phisms from D into N , where the 2 × 2 matrix algebra in the both free com-
ponents should be replaced by B(	2(Θ1)) with Θ1 := {IdD } 
 Θ.

The same observation as Proposition 3.1 clearly holds true even in the
reduced C∗-algebra setup, and we call it “the C∗-version of Proposition 3.1”
in what follows. We also remark that it still holds true even when the θ
in a reduced HNN extension (A,EA

B) = (B,EB
C )�C(θ,EB

θ(C)) is replaced by
a family Θ of injective unital ∗-homomorphisms from C into B. However,
when Θ is an infinite family, one has to replace the larger amalgamated free
product C∗-algebra A constructed in the same way as in the von Neumann
algebra setup by the C∗-subalgebra generated by λΘ(B ⊗ K(	2(Θ1))) and
λ1(C ⊗ K(	2(Θ1))) with the notations in [19, Section 7], where K(H) denotes
the algebra of all compact operators on a Hilbert space H. The proof of
Proposition 3.1 still works without any change when Θ is a finite family. The
case when Θ is infinite needs to pass through the inductive limit by finite
subfamilies Ξ ↗ Θ with the aid of [3, Theorem 1.3].

Remark 3.2. There is an insufficient point related to the characteriza-
tion of reduced HNN extensions ([19, Proposition 7.1]); in fact, we did not
prove that the reduced HNN extensions constructed in [19] actually satisfy
the condition (ii) (the nondegeneracy condition) there. Of course, this is not
an issue in several cases including reduced group C∗-algebras associated with
HNN extensions of groups. However, it is certainly necessary to prove it for
the justification of our definition. One easy way to do so is provided by the
C∗-version of Proposition 3.1 as follows. Let (A,EA

B) = (B,EB
C )�C(θ,EB

θ(C))
be a reduced HNN extension, and (A, E ) be the larger reduced amalgamated
free product and Eθ the unique conditional expectation from A onto the first
free component with E ◦ Eθ = E , both appeared in the C∗-version of Propo-
sition 3.1. Notice that the proof of Proposition 3.1 was done based on the
construction. Thus, the C∗-version of Proposition 3.1 shows, in particular,
that EA

B ⊗ Id : A ⊗ M2(C) → B ⊗ M2(C) is nondegenerate (since so is Eθ by
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the amalgamated free product construction), which immediately implies that
so is EA

B . Note that we used in [19] a reduced amalgamated free product larger
than the above A to construct the reduced HNN extension A, and thus it is
necessary to prove that this A is the same as that constructed there without
the use of [19, Proposition 7.1]. However, this is clearly true because A is
naturally embedded into the larger one faithfully thanks to [3, Theorem 1.3].

Let B ⊇ C be a unital inclusion of C∗-algebras with an injective unital
∗-homomorphism θ : C → B as above, and A = B�univ

C θ be the universal
HNN extension of C∗-algebras. Let

A :=
(
B ⊗ M2(C) : ιθ

)
�univ

C⊕C

(
C ⊗ M2(C) : ι1

)
be the universal amalgamated free product C∗-algebra over C ⊕ C via the
distinguished embedding maps

ιθ(c1 ⊕ c2) :=
[
c1 0
0 θ(c2)

]
, ι1(c1 ⊕ c2) :=

[
c1 0
0 c2

]
.

Let us denote by j, jθ and j1 the canonical embedding maps of C ⊕ C, B ⊗
M2(C) and C ⊗ M2(C) into A, respectively, which satisfy j = jθ ◦ ιθ = j1 ◦ ι1.

Proposition 3.3. There is a unique bijective ∗-homomorphism Φ : A →
A ⊗ M2(C) determined by the same correspondence among generators as (3).

Proof. Let us first define two ∗-homomorphisms Φθ : B ⊗ M2(C) → A ⊗
M2(C), Φ1 : C ⊗ M2(C) → A ⊗ M2(C) by

Φθ

(
jθ

([
b11 b12

b21 b22

]))
:=

[
b11 b12

b21 b22

]
;

Φ1

(
j1

([
c11 c12

c21 c22

]))
:=

[
c11 c12u(θ)

u(θ)∗c21 θ (c22)

]
(

=
[
1 0
0 u(θ)∗

][
c11 c12

c21 c22

][
1 0
0 u(θ)

] )
.

Then we have

Φθ

(
jθ ◦ ιθ((c1, c2))

)
= Φθ

(
jθ

([
c11 0
0 θ (c22)

]))
=

[
c11 0
0 θ (c22)

]
,

Φ1

(
j1 ◦ ι1((c1, c2))

)
= Φ1

(
j1

([
c11 0
0 c22

]))
=

[
c11 0
0 θ (c22)

]
.

Thus, the universality of A = (B ⊗ M2(C) : ιθ) �
C⊕C

(C ⊗ M2(C) : ι1) ensures

that there is a unique unital ∗-homomorphism Φ := Φθ�Φ1 : A → A ⊗ M2(C)
extending both Φθ and Φ1. Since Φ agrees with the required correspondence
among generators, it remains only to show that Φ is bijective. To do so,
we will construct the inverse of Φ in what follows. By the universality of
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A = B�univ
C θ, we can construct the unital ∗-homomorphism Ψ0 : A → pAp

with p := j(1 ⊕ 0) in such a way that

Ψ0(b) := jθ

([
b 0
0 0

])
, Ψ0(u(θ)) := j1

([
0 1
0 0

])
jθ

([
0 0
1 0

])
since jθ

([
c 0
0 0

])
coincides with

j1

([
0 1
0 0

])
jθ

([
0 0
1 0

])
jθ

([
θ(c) 0
0 0

])
jθ

([
0 1
0 0

])
j1

([
0 0
1 0

])
for all c ∈ C. Consider the following two 2 × 2 matrix unit systems inside
C1 ⊗ M2(C) ⊆ A ⊗ M2(C) and A

e11 :=
[
1 0
0 0

]
, e12 :=

[
0 1
0 0

]
, e21 :=

[
0 0
1 0

]
, e22 :=

[
0 0
0 1

]
;

f11 := jθ

([
1 0
0 0

])
, f12 := jθ

([
0 1
0 0

])
,

f21 := jθ

([
0 0
1 0

])
, f22 := jθ

([
0 0
0 1

])
,

respectively, with f11 = p. Clearly, Ψ0 is extended to a ∗-homomorphism
Ψ : A ⊗ M2(C) → A by Ψ(x) :=

∑2
i,j=1 fi1Ψ0(e1ixej1)f1j for x ∈ A ⊗ M2(C).

Then one immediately observes that Ψ ◦ Φ = idA and Φ ◦ Ψ = idA⊗M2(C). �

The statement of Proposition 3.3 still holds true even when the θ is replaced
by a family Θ of injective unital ∗-homomorphisms from C into B, but the
same care as in the reduced construction setting is required. Also, it should
be pointed out that the above proof says that the matrix trick we employ
provides a simple way to construct universal HNN extensions of C∗-algebras.

In [7] (see also a bit earlier work due to Paulin [11]) Gaboriau introduced
the notion of HNN equivalence relations and derive a formula of costs for them
from that for amalgamated free product equivalence relations. It is not hard to
see that any HNN equivalence relation can be regarded as a particular case of
HNN extensions of von Neumann algebras via Feldman–Moore’s construction
[6]. In this point of view, Proposition 3.1 is nothing less than the von Neumann
algebra analog of the observation due to Gaboriau [7, lines 12–26 in p. 66].
Gaboriau’s observation consists of the “converse” assertion too, and we then
examine its operator algebra counterpart.

Let P1, P2,Q be σ-finite von Neumann algebras with two embeddings
ι1 : Q ↪→ P1, ι2 : Q ↪→ P2. Suppose that there are two faithful normal con-
ditional expectations E1 : P1 → ι1(Q), E2 : P2 → ι2(Q). Then let (P,E) :=
(P1,E1 : ι1)�Q(P2,E2 : ι2) be the amalgamated free product von Neumann
algebra. Set N := P1 ⊕ P2 ⊇ D := ι1(Q) ⊕ ι2(Q), and define the bijective
∗-homomorphism θ : (ι1(x), ι2(y)) ∈ D �→ (ι1(y), ι2(x)) ∈ D. Also, define
EN

D = EN
θ(D) := E1 ⊕ E2 : N → D = θ(D). Then let (M,EM

N , u(θ)) =
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(N,EN
D )�D(θ,EN

θ(D)) be the HNN extension. Set p := 1P1 ⊕ 0 ∈ D, and de-
note by M0 the von Neumann subalgebra generated by N and v := pu(θ)
(a partial isometry with v∗v = θ(p) = 1 − p, vv∗ = p). It is plain to see that
e11 := p, e12 := v, e21 := v∗, e22 := 1 − p form a 2 × 2 matrix unit system
in M0, and moreover, that e11M0e11 is generated by e11Ne11 = P1 ⊕ 0 and
e12Ne21 = v(0 ⊕ P2)v∗ = u(θ)(0 ⊕ P2)u(θ) (see e.g., [20, Lemma 5.2.1]). The
restriction F := EN

D ◦ EM
N |e11M0e11 clearly gives a faithful normal conditional

expectation from e11M0e11 onto e11D = ι1(Q) ⊕ 0. It is trivial that the restric-
tion of F to e11Ne11 = P1 ⊕ 0 is given by E1 ⊕ 0. Also, the characterization
of HNN extensions enables us to compute

F
(
u(θ)(0 ⊕ x)u(θ)∗)

= EN
D ◦ EM

N

(
u(θ)

(
0 ⊕

(
E2(x) +

(
x − E2(x)

)))
u(θ)∗)

= EN
D ◦ EM

N

(
u(θ)θ

(
ι1(ι−1

2 (E2(x))) ⊕ 0
)
u(θ)∗)

+ EM
D ◦ EM

N

(
u(θ)

(
0 ⊕

(
x − E2(x)

))
u(θ)∗)︸ ︷︷ ︸

=0

= EN
D ◦ EM

N

(
ι1 ◦ ι−1

2 (E2(x)) ⊕ 0
)

= ι1 ◦ ι−1
2 (E2(x)) ⊕ 0

for x ∈ P2. Define λ : x ∈ Q �→ ι1(x) ⊕ 0 ∈ e11De11 ⊆ e11Me11, λ1 : x ∈ P1 �→
x ⊕ 0 ∈ e11Ne11 ⊆ e11Me11, λ2 : x ∈ P2 �→ u(θ)(0 ⊕ x)u(θ)∗ ∈ e12Ne21 ⊆
e11Me11. Then we have

λ1 ◦ ι1(x) = ι1(x) ⊕ 0 = λ(x),
λ2 ◦ ι2(x) = u(θ)

(
0 ⊕ ι2(x)

)
u(θ)∗ = u(θ)θ

(
ι1(x) ⊕ 0

)
u(θ)∗ = ι1(x) ⊕ 0 = λ(x)

for x ∈ Q. Since

KerF ∩ (P1 ⊕ 0) = KerE1 ⊕ 0 ⊆ KerEN
D ,

KerF ∩ u(θ)(0 ⊕ P2)u(θ)∗ = u(θ)(0 ⊕ KerE2)u(θ)∗ ⊆ u(θ)KerEN
θ(D)u(θ)∗,

one easily derives, from the condition (M) in Section 2.1, that λ1(P1) = P1 ⊕ 0
and λ2(P2) = u(θ)(0 ⊕ P2)u(θ)∗ are free with respect to F . Summarizing the
discussion so far, we conclude the following.

Proposition 3.4. Let (M,EM
N , u(θ)) = (N,EN

D )�D(θ,EN
θ(D)) be the HNN

extension with N := P1 ⊕ P2 ⊇ D := ι1(Q) ⊕ ι2(Q), θ : (ι1(x), ι2(y)) ∈ D �→
(ι1(y), ι2(x)) ∈ D, EN

D = EN
θ(D) := E1 ⊕ E2, and p(= e11) := 1P1 ⊕ 0 ∈ N .

Then, by letting M0 be the von Neumann subalgebra of M generated by N
and v := pu(θ), the compressed system (pM0p,F = EN

D ◦ EM
N |pM0p) is identi-

fied with the amalgamated free product (P,E) = (P1,E1 : ι1)�Q(P2,E2 : ι2).

The triple consisting of M0, the conditional expectation EM0
N := EM

N |M0 ,
and the partial isometry v can be characterized, similarly as in the case of
(M,EM

D , u(θ)), by the following two conditions: (A) vθ(d)v∗ = d for every
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d ∈ pD; (M) EM0
N (w) = 0 for every nonzero word w = vε0n1v

ε1n2 · · · n�v
ε�

(with n1, . . . , n� ∈ N , ε0, . . . , ε� ∈ { ·, ∗ }) satisfying that εj−1 �= εj implies that

nj ∈ Ker
(
EN

θ(D)|θ(p)Nθ(p)

)
when εj−1 = ·, εj = ∗;

nj ∈ Ker(EN
D |pNp) when εj−1 = ∗, εj = ·.

Hence, the triple (M0,E
M0
N , v) depends only on the restrictions θ|pD and

EN
D |pNp,E

N
θ(D)|θ(p)Nθ(p) so that it should be called the generalized HNN ex-

tension by the partial ∗-isomorphism θ|pD : pD → θ(p)Nθ(p) with respect
to EN

D |pNp,E
N
θ(D)|θ(p)Nθ(p). Here, a partial ∗-isomorphism means an injec-

tive unital ∗-homomorphism from a subalegebra, whose unit is different from
a given algebra, into a compressed algebra of the given one. We should
also remark that the same assertion as Proposition 3.1 still holds true for
(M0,E

M0
N , v). Namely, M0 ⊗ M2(C) can be identified with the amalgamated

free product of([
N N
N N

]
,

[
EN

D 0
0 EN

θ(D)

]
:

[
IdD

θ

])
�

D⊕D

([
D pD
pD D

]
,

[
IdD 0
0 IdD

]
:

[
IdD

IdD

])
in the same way as in Proposition 3.1.

The same facts as the above (including Proposition 3.4) is still valid in the
C∗-algebra settings. The reduced construction setting is treated in the exactly
same way, but the universal construction setting needs to use the universality
similarly to Proposition 3.3. In the course of the proof, one easily observes
the following fact:

Fact 3.5. Let B ⊇ C be unital C∗-algebras, θ : C → B be an injective
unital ∗-homomorphism, and p be a (nonzero) central projection in C. Write
C0 := pC and θ0 := θ|C0 : C0 → θ(p)Bθ(p). Let

A0 :=
([

B B
B B

]
:

[
IdC

θ

])
�univ

C⊕C

([
C C0

C0 C

]
:

[
IdC

IdC

])
be the universal amalgamated free product C∗-algebra with the canonical em-
bedding maps j (of the amalgamated subalgebra into A0), jθ (of the first free
component into A0), j1 (of the second free component into A0). Then the
C∗-subalgebra A0 (inside the compressed algebra of A0 by j(1 ⊕ 0)) generated
by jθ

([
b 0
0 0

])
, b ∈ B, and v := j1

([
0 p
0 0

])
jθ

([
0 0
1 0

])
is universal with subject

to the algebraic equations vθ0(c)v∗ = c for all c ∈ C0. Moreover, A0 ⊗ M2(C)
is identified with A0 in the same way as in Proposition 3.3.

Hence, the matrix trick we employ also provides the precise construction
of “universal HNN extensions by partial ∗-isomorphisms” (cf. the comment
after Proposition 3.3).
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4. Results

4.1. Factoriality and type classification. Let N ⊇ D be σ-finite von Neu-
mann algebras with an injective normal unital ∗-homomorphism θ : D → N ,
and then two faithful normal conditional expectations EN

D : N → D,
EN

θ(D) : N → θ(D) are given. We introduce the assumption below.

Assumption 4.1. There are two unitaries v1, vθ ∈ N and two faithful nor-
mal states ϕ1, ϕθ on D such that
(a) EN

D (vm
1 ) = EN

θ(D)(v
m
θ ) = 0 as long as m �= 0;

(b) v1 ∈ Nϕ1◦EN
D

and vθ ∈ Nϕθ ◦θ−1◦EN
θ(D)

.

In what follows, we will use the notational rule around Proposition 3.1.
Namely, (M,EM

N , u(θ)) is the HNN extension of N by θ with respect to EN
D ,

EN
θ(D); and M is the associated amalgamated free product as in Proposi-

tion 3.1, so that M ∼= M ⊗ M2(C). In what follows, we use the usual notations
for ultraproducts of von Neumann algebras. Namely, for a von Neumann al-
gebra L and a free ultrafilter ω ∈ β(N) \ N, Lω denotes the ultraproduct of L
with respect to ω. If a von Neumann subalgebra K ⊆ L is the range of a
faithful normal conditional expectation from L, then Kω can be naturally re-
garded as a von Neumann subalgebra of Lω . Moreover, for a bijective normal
∗-homomorphism α : L1 → L2 between two von Neumann algebras induces a
unique bijective normal ∗-homomorphism αω : Lω

1 → Lω
2 .

Lemma 4.1. Under Assumption 4.1, we have{[
v1 0
0 vθ

]
,

[
0 u(θ)

u(θ)∗ 0

]}′
∩

(
M ⊗ M2(C)

)ω ⊆
[
D 0
0 θ(D)

]ω

.

In particular,

(4)
(
M ⊗ M2(C)

)′ ∩
(
M ⊗ M2(C)

)ω =
(
M ⊗ M2(C)

)′ ∩
[
D 0
0 θ(D)

]ω

.

Proof. Via the bijective ∗-homomorphism Φ in Proposition 3.1(
M ⊗ M2(C) ⊇ N ⊗ M2(C),EM

N ⊗ Id
)

is identified with (
M ⊇ λθ

(
N ⊗ M2(C)

)
, Eθ

)
,

and correspondingly,[
v1 0
0 vθ

]
,

[
0 u(θ)

u(θ)∗ 0

]
with V := λθ

([
v1 0
0 vθ

])
,W := λ1

([
0 1
1 0

])
,

respectively. Hence, it suffices to show that

(5) {V,W } ′ ∩ Mω ⊆ λ(D ⊕ D)ω = λθ

(
ιθ(D ⊕ D)

)ω
.
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With letting ψ((d1, d2)) := 1
2 (ϕ1(d1) + ϕθ(d2)), a faithful normal state on

D ⊕ D, Assumption 4.1(b) implies that

σ
ψ◦ι−1

θ ◦Eθ

t (V ) = V

for t ∈ R, and hence
[v1 0

0 vθ

]
∈ (N ⊗ M2(C))ψ◦ι−1

θ ◦Eθ
. Since

Eθ

([
v1 0
0 vθ

]m)
= 0 (m �= 0), E1

([
0 1
1 0

])
= 0

by Assumption 4.1(a), we can apply [18, Proposition 5] (note here that the
assumption “uDu∗ = D = wDw∗” there is never used in the proof as remarked
in [19, p. 400] so that we can apply it) to

(M, E ) =
(
N ⊗ M2(C),Eθ : ιθ

)
�

D⊕D

(
D ⊗ M2(C),E1 : ι1

)
with V,W , and thus for all X ∈ {V }′ ∩ Mω we get∥∥W

(
X − E ω(X)

)∥∥
(ψ◦λ−1◦ E)ω ≤ ‖WX − XW ‖(ψ◦λ−1◦ E)ω .

This inequality immediately implies (5). �

Here is a simple and well-known lemma.

Lemma 4.2 (E.g., [13, Lemma 2.1]). Let P ⊇ Q be von Neumann algebras
and e ∈ Q be a projection. Then (eQe)′ ∩ ePe = Q′e ∩ ePe = (Q′ ∩ P )e.

Proposition 4.3. Under Assumption 4.1, we have

Z(M) = {x ∈ D ∩ θ(D) ∩ N ′ : θ(x) = x},(6)
M ′ ∩ Mω = {x ∈ Dω ∩ θω(Dω) ∩ N ′ : θ(x) = x}.(7)

Moreover, the core M̃ satisfies that

(8) Z(M̃) = {x ∈ D̃ ∩ θ̃(D̃) ∩ Ñ ′ : θ̃(x) = x},

where we use the notations in Section 2.1.

Proof. Applying Lemma 4.2 to (4) in Lemma 4.1 with e =
[1 0
0 0

]
and

[
0 0
0 1

]
we get, respectively,

M ′ ∩ Mω ⊆ Dω, M ′ ∩ Mω ⊆ θ(D)ω = θω(Dω).

Then the desired assertions immediately follow since M is generated by N
and u(θ), and also u(θ)θω(x)u(θ)∗ = x for all x ∈ Dω . (For more details, we
refer to [19, pp. 406–409].) �

In the next remark, we use the notations in Section 2.1.

Remark 4.4. The dual action {ϑM
t }t∈R on M̃ is defined in such a way

that ϑM
t |M = IdM and ϑM

t (λ(s)) = e−itsλ(s) for s, t ∈ R. Then ϑM
t commutes

with θ̃ for every t ∈ R. In particular, (8) implies (6).
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Proof. The commutativity between ϑM
t and θ̃ is clear from their definitions.

If (8) was true, then it would follow that

Z(M) = Z(M̃)ϑM

= {x ∈ D̃ ∩ θ̃(D̃) ∩ Ñ ′ : θ̃(x) = x,ϑM
t (x) = x(t ∈ R)}

= {x ∈ D ∩ θ(D) ∩ N ′ : θ(x) = x}.

Here, we use [15, Theorem XII. 1.1] for M̃ and D̃ twice. Note that D ∩ θ(D) ∩
N ′ = D ∩ θ(D) ∩ Ñ ′ thanks to the fact that Adλ(s) acts on the center Z(N)
trivially for every s ∈ R. �

We then consider and discuss a particular case; both D and θ(D) are as-
sumed to be Cartan subalgebras in N throughout the rest of this subsection.
Since any MASA in a von Neumann algebra contains its center, we note that
both the domains of θ and θ̃ must contain Z(N) and Z(Ñ), respectively.

Theorem 4.5. If N has no type I direct summand, then

Z(M) = {x ∈ Z(N) : θ(x) = x}, Z(M̃) = {x ∈ Z(Ñ) : θ̃(x) = x}.(9)

Moreover, if N is either of type II or a nontype I factor, then

(10) M ′ ∩ Mω = {x ∈ Dω ∩ θω(Dω) ∩ N ′ : θω(x) = x}.

Proof. Since, the core Ñ is of type II (under the hypothesis of the first
assertion), i.e., a direct sum of von Neumann algebras of type II1 and type II∞,
the argument of [17, Lemma 4.2] enables us to confirm that Assumption 4.1
holds for M̃ = Ñ�D̃ θ̃, and hence Proposition 4.3 with the aid of Remark 4.4
shows (9) since D ∩ θ(D) ∩ N ′ = Z(N) and D̃ ∩ θ̃(D̃) ∩ Ñ ′ = Z(Ñ). The
last assertion is also shown similarly by combining Proposition 4.3 with the
argument of [17, Lemma 4.2]. �

Remarks 4.6. Theorem 4.5 implies the following facts:

(1) If N is a non-type I factor, then so is M thanks to the first equality in
(9).

(2) If N is a type III1 factor, then so is M thanks to the second in (9).
(3) When N is a non-type I factor, if M is a factor of type III0, then so must

be N thanks to the second in (9).
(4) If N is a non-type I factor, then Mω = M ′ ∩ Mω ⊆ Dω thanks to (10)

and the argument given in [18, Theorem 8]. Hence, M is never strongly
stable, i.e., M �∼= M ⊗ R with the hyperfinite II1 factor R.

Proposition 4.7. If N is a factor of type II1 or of type IIIλ with λ �= 0,
then there is a faithful normal state ϕ on D with (Nϕ◦EN

D
)′ ∩ N = C1 (ϕ ◦ EN

D
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should be the unique tracial state in the type II1 case), and moreover,

(11) T (M) =
{
t ∈ T (N) :

[
Dϕ ◦ θ−1 ◦ EN

θ(D) : Dϕ ◦ EN
D

]
t
= 1

}
.

Proof. The first part of the assertion holds true thanks to [17, Lemma 4.2];
more precisely, one can construct two faithful normal states ϕ and ϕθ on D
in such a way that

• there are unitaries v1 ∈ Nϕ◦EN
D

, vθ ∈ Nϕθ ◦θ−1◦EN
θ(D)

with EN
D (vm

1 ) =

EN
θ(D)(v

m
θ ) = 0 as long as m �= 0;

• (Nϕ◦EN
D

)′ ∩ N = C1 and (Nϕθ ◦θ−1◦EN
D

)′ ∩ N = C1.

Let us define the faithful normal conditional expectation E : M ⊗ M2(C) →
D ⊕ θ(D) =

[D
θ(D)

]
and the faithful state ψ on D ⊕ θ(D) by

E
([

m11 m12

m21 m22

])
:=

[
EN

D ◦ EM
N (m11)

EN
θ(D) ◦ EM

N (m22)

]
,

ψ

([
d11

θ(d22)

])
:=

1
2
(
ϕ(d11) + ϕθ(d22)

)
.

Clearly, V :=
[
v1 0
0 vθ

]
is in the centralizer (M ⊗ M2(C))ψ◦ E , and the proof of

Lemma 4.1 shows that all X ∈ {V }′ ∩ (M ⊗ M2(C)) and W1,W2 ∈ Ker E must
satisfy that

(12)
∥∥W1

(
X − E (X)

)∥∥
ψ◦ E ≤ ‖W1X − XW2‖ψ◦ E .

Let t0 be a real number such that σψ◦ E
t0 = AdU for some unitary U ∈ M ⊗

M2(C), and set W :=
[0 1
1 0

]
. Since σψ◦ E

t (W ) ∈ Ker E , (12) shows that∥∥σψ◦ E
t0 (W )

(
U − E (U)

)∥∥
ψ◦ E ≤ ‖σψ◦ E

t0 (W )U − UW ‖ψ◦ E = 0.

Hence, U = E (U) =
[u 0
0 uθ

]
with some unitaries u ∈ D, uθ ∈ θ(D). It is plain

to see that

σψ◦ E
t

([
m11 m12

m21 m22

])
=

[
σ

ϕ1◦EN
D ◦EM

N
t (m11) σ

ϕ1◦EN
D ◦EM

N
t (m12)ut

u∗
t σ

ϕ1◦EN
D ◦EM

N
t (m21) u∗

t σ
ϕ1◦EN

D ◦EM
N

t (m22)ut

]

for mij ∈ M , i, j = 1,2, and t ∈ R with letting ut := [Dϕ1 ◦ EN
D : Dϕθ ◦ θ−1 ◦

EN
θ(D)]t. In particular, we see that σ

ϕ◦EM
N ◦EM

N
t0 = Adu. Since Nϕ◦EN

D
sits

in Mϕ◦EN
D ◦EM

N
, we have u ∈ (Nϕ◦EN

D
)′ ∩ D ⊆ (Nϕ◦EN

D
)′ ∩ N = C1 so that

σ
ϕ◦EN

D ◦EM
N

t0 = Id. Consequently, t ∈ T (M) if and only if σ
ϕ◦EN

D ◦EM
N

t = Id,

which is equivalent to that t ∈ T (N) and σ
ϕ◦EN

D ◦EM
N

t (u(θ)) = u(θ) since M =

{N,u(θ)}′ ′ and σ
ϕ◦EN

D ◦EM
N

t |N = σ
ϕ◦EN

D
t . Hence, the desired assertion immedi-

ately follows thanks to (1) in Section 2.1. �
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When N is a type II1 factor, the T -set T (M) can be described more explic-
itly as follows. Let τ be the unique tracial state on N . Since (τ |D) ◦ EN

D = τ =
(τ |θ(D)) ◦ EN

θ(D) must hold, we have [D(τ |D) ◦ θ−1 ◦ EN
θ(D) : D(τ |D) ◦ EN

D ]t =
[D(τ |D) ◦ θ−1 : D(τ |θ(D))]t, and hence (11) in Proposition 4.7 is rewritten as

T (M) =
{
t ∈ R :

[
D(τ |D) ◦ θ−1 : D

(
τ |θ(D)

)]
t
= 1

}
.

Thus, M is of type II1 if and only if θ “preserves the trace”.

4.2. Simplicity. Here, we will give a partial answer to the question of sim-
plicity of reduced HNN extensions of C∗-algebras. Our method is to derive
from a result on the simplicity of reduced amalgamated free products of C∗-
algebras due to McClanahan [10] with the aid of the C∗-version of Proposi-
tion 3.1 (see the comment after the proposition).

Let us first briefly review the above-mentioned result of McClanahan (which
essentially comes from a technique due to Avitzour [2]). Let P1, P2, Q be
unital C∗-algebras and η1 : Q ↪→ P1, η2 : Q ↪→ P2 be embeddings. Assume
that there are two conditional expectations F1 : P1 → η2(Q), F2 : P2 → η2(Q).
Let (P,F ) := (P1, F1 : η1)�Q(P2, F2 : η2) be the reduced amalgamated free
product of C∗-algebras, where the canonical maps are denoted by ρ : Q → P ,
ρ1 : P1 → P , ρ2 : P2 → P , which satisfy that ρ = ρ1 ◦ η1 = ρ2 ◦ η2 and F : P →
ρ(Q) is a conditional expectation. Let us introduce two conditions:
1◦. There are unitaries u, v ∈ P1, w ∈ P2 such that u · KerF1 · u∗ ⊆ KerF1,

F1(u∗v) = 0, w · KerF2 · w∗ ⊆ KerF2;
2◦. For every x ∈ Q and every j ∈ Z \ {0}, there is an increasing sequence

{mk }k=1,2,... of natural numbers such that

[ρ(x), (ρ1(u)ρ2(w))mkρ1(v)ρ2(w)ρ1(v)(ρ2(w)ρ1(u))j ] = 0

for all k ≥ k0 with some k0 ∈ N,
and then the subsets of Pi, i = 1,2:

N (2)(Fi) := {(x, y) ∈ Pi × Pi : x · KerFi · y ⊆ KerFi, x · ηi(Q) · y ⊆ ηi(Q)},

which act on P by left–right multiplication. (Note that two more kinds of
subsets are used in [10] to formulate the assertion, but they are nothing less
than Q and thus meaningless since Q is unital.) It is not so difficult to see
that for any (x, y) ∈ N (2)(Fi), one has ρi(x)F (z)ρi(y) = F (ρi(x)zρi(y)) for
every z ∈ P .

The next lemma is shown by a simple calculation.

Lemma 4.8. Assume that the unitaries u, v,w in the condition 1◦ satisfy
that u, v ∈ η1(Q)′ ∩ P1 and that w2 = 1, i.e., w is a self-adjoint unitary, and
moreover w · η2(Q) · w = η2(Q). Then the condition 2◦ automatically holds
true with mk := 2k − j − 1, k ≥ j+2

2 .

Lemma 4.8 apparently gives the following variant of [10, Proposition 3.10].
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Lemma 4.9. Assume that there are unitaries u, v ∈ η1(Q)′ ∩ P1 and w =
w∗ ∈ P2 such that (i) u · KerF1 · u∗ ⊆ KerF1, (ii) F1(u∗v) = 0, (iii) w · KerF2 ·
w ⊆ KerF2, (iv) w · η2(Q) · w = η2(Q), and (v) (Q) has no non-trivial C∗-ideal
under the actions of N (2)(Fi) via ηi, i = 1,2. Then P must be simple.

We are now in position to apply McClanahan’s result to the case of re-
duced HNN extensions. In what follows, (A,EA

B , u(θ)) = (B,EB
C )�C(θ,EB

θ(C))
is a reduced HNN extension of C∗-algebras. Let N (2)(EB

C ), N (2)(EB
θ(C)) be

defined as before, and they act on B by left–right multiplication. We ap-
ply Lemma 4.9 to the associated larger reduced amalgamated free product
(A, E ) appeared in the C∗-version of Proposition 3.1 with letting Q := C ⊕ C,
P1 := B ⊗ M2(C), P2 := C ⊗ M2(C), P := A, etc., and then get the following
proposition.

Proposition 4.10. Assume that there are unitaries a ∈ C ′ ∩ B, b ∈
θ(C)′ ∩ B such that EB

C (a) = EB
θ(C)(b) = 0, and moreover either a · KerEB

C ·
a∗ ⊆ KerEB

C ; or b · KerEB
θ(C) · b∗ ⊆ KerEB

θ(C) holds. If C has no C∗-ideal
invariant under the actions of N (2)(EB

C ), N (2)(EB
θ(C)) (by left–right multipli-

cation and via Θ for the latter), then A must be simple.

Proof. Since A ∼= A ⊗ M2(C) by the C∗-version of Proposition 3.1, it suf-
fices to show that A is simple. We use Lemma 4.9, and thus, need to specify
the unitaries u, v,w there in this setting. By symmetry, we may and do as-
sume that EB

C (a) = EB
θ(C)(b) = 0 and a · KerEB

C · a∗ ⊆ KerEB
C . Then it is clear

that the unitaries

u :=
[
a 0
0 1

]
, v :=

[
1 0
0 b

]
, w :=

[
0 1
1 0

]
satisfy the first four conditions in Lemma 4.9. Note that (w,w) ∈ N 2(F2),
and it is clear that any C∗-ideal in Q = C ⊕ C invariant under Adw (via
η1 = ιθ) must be of the form C0 ⊕ C0 with C∗-ideal C0 � C. Note also that
N (2)(EB

C ) × N (2)(EB
θ(C)) are embedded into N (2)(F1) by

((x1, y1), (x2, y2)) ∈ N (2)(EB
C ) × N (2)

(
EB

θ(C)

)
�→

([
x1

x2

]
,

[
y1

y2

])
∈ N (2)(F1),

respectively. Therefore, one easily observes that any C∗-ideal in C ⊕ C (con-
sidered inside P1 via the embedding) invariant under the action of N (2)(F1)
must be of the form C0 ⊕ C0 with a C∗-ideal C0 � C invariant under both the
actions of N (2)(EB

C ), N (2)(EB
θ(C)). By the assumption here, there is no such

nontrivial C∗-ideal C0 � C, and hence A is simple by Lemma 4.9. �
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Following [5], we say a (discrete) group to be C∗-simple if its reduced
group C∗-algebra is simple. The next corollary immediately follows from
Proposition 4.10.

Corollary 4.11. Let G be a discrete group and H be its subgroup with
an injective homomorphism θ : H → G. If the centralizers CG(H), CG(θ(H))
satisfy CG(H) ∩ (G \ H) �= ∅ �= CG(θ(H)) ∩ (G \ θ(H)) and moreover if H is
C∗-simple, then the HNN extension G�Hθ is C∗-simple.

The assumption of C∗-simplicity of H can be replaced by, for example, a
certain “relative Powers property” for H ⊆ G.

4.3. K-theory of HNN extensions. The C∗-versions of Proposition 3.1
and Proposition 3.3 assert that the computation of K-theory (also KK- or E-
theory) of (universal or reduced) HNN extensions of C∗-algebras is reduced to
that of the corresponding amalgamated free products. Here, we illustrate how
to derive by obtaining the six terms exact sequence for K-groups associated
with universal HNN extensions, which is exactly of the same kind of that
given in [1].

Here, we use (and keep) the setting and notations in Proposition 3.3. Let
us denote

A1 := B ⊗ M2(C), A2 := C ⊗ M2(C), B := C ⊕ C

and also the embedding map from a C∗-algebra X = C or B to another Y = B

or A = B�univ
C θ by ιX↪→Y . Under a certain mild condition on A1

ιθ←↩ B ι1
↪→ A2,

it is known that the six terms exact sequence

(13)
K0(B)

(ιθ ∗,ι1∗)−→ K0(A1) ⊕ K0(A2)
jθ ∗ −j1∗−→ K0(A)

↑ ↓
K1(A1) ←−

jθ ∗ −j1∗
K1(A1) ⊕ K1(A2) ←−

(ιθ ∗,ι1∗)
K1(B)

holds true. In fact, the most general result of this type was provided by
Thomsen [16], where he assumed that B is nuclear or the existence of con-
ditional expectations from A1, A2 onto ιθ(B), ι1(B), respectively. Note that
his conditions are apparently translated in our setup to the nuclearity of C
or the existence of conditional expectations from B onto C, θ(C).

Notice here that we have the following isomorphisms:

K0(B) ∼= K0(C) ⊕ K0(C) by [(p, q)] ↔ [p] ⊕ [q];{
K0(A1) ∼= K0(B)
K0(A2) ∼= K0(C)

with
[(

p
q

)]
↔ [p] + [q];

K0(A) ∼= K0

(
A ⊗ M2(C)

)
by Φ∗;

K0

(
A ⊗ M2(C)

) ∼= K0(A) with
[(

p
q

)]
↔ [p] + [q].
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For the description of the second and the fourth isomorphisms, we use the
obvious identification Mn(D ⊗ M2(C)) = M2(Mn(D)) with an arbitrary C∗-
algebra D, which identifies Mn(D ⊗ C2) with the diagonal matrices whose
entries are from Mn(D). By these facts, we can rewrite the upper horizontal
line in (13) as

K0(C) ⊕ K0(C)
φ0−→ K0(B) ⊕ K0(C)

ψ0−→ K0(A),

where the left arrow is given by φ0 : [p] ⊕ [q] �→ ([p] + θ∗([q])) ⊕ ([p] + [q]) and
the right one by ψ0 : [p] ⊕ [q] �→ [p] − [q]. The same discussion for K1-groups
shows that the lower horizontal arrow in (13) can be rewritten as

K1(A) ←−
ψ1

K1(B) ⊕ K1(C) ←−
φ1

K1(C) ⊕ K1(C),

where φ1 : [u] ⊕ [v] �→ ([u] + θ∗([v])) ⊕ ([u] + [v]) and ψ1 : [u] ⊕ [v] �→ [u] − [v].
Hence, (13) becomes

(14)
K0(C) ⊕ K0(C)

φ0−→ K0(B) ⊕ K0(C)
ψ0−→ K0(A)

↑ ↓
K1(A) ←−

ψ1
K1(B) ⊕ K1(C) ←−

φ1
K1(C).

Let φ′
0 be the projection map from K0(C) ⊕ K0(C) to the second component

and set ψ′
0 : = (idB)∗ − (ιC↪→B)∗. Then we have

K0(C)
θ∗ −(ιC↪→B)∗−→ K0(B)

φ′
0 ↑ � ↑ ψ′

0 � ↘ (ιB↪→A)∗

K0(C) ⊕ K0(C) −→
φ0

K1(B) ⊕ K0(C) −→
ψ0

K0(A),

and φ′
0(Kerφ0) = Ker(θ∗ − (ιC↪→B)∗). Similarly, let φ′

1 be the projection from
K1(C) ⊕ K1(C) onto the second component and set ψ′

1 := (idB)∗ − (ιC↪→B)∗.
Then we have

K1(A) ←−
ψ1

K1(B) ⊕ K1(C) ←−
φ1

K1(C) ⊕ K1(C)

(ιB↪→A)∗ ↖ � ψ′
1 ↓ � ↓ φ′

1

K1(B) ←−
θ∗ −(ιC↪→B)∗

K1(C),

and φ′
1(Kerφ1) = Ker(θ∗ − (ιC↪→B)∗). From these facts together with (14), we

finally arrive at the following proposition.
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Proposition 4.12. If C is nuclear or there are conditional expectations
from B onto C and θ(C), then the universal HNN extension A = B�univ

C θ
satisfies

K0(C)
θ∗ −(ιC↪→B)∗−→ K0(B)

(ιB↪→A)∗−→ K0(A)
↑ ↓

K1(A) ←−
(ιB↪→A)∗

K1(B) ←−
θ∗ −(ιC↪→B)∗

K1(C).

Remark 4.13. Note that the above proposition apparently includes the
celebrated six terms exact sequence for crossed-products by the integers Z

due to Pimsner and Voiculescu [12]. The work [12] also deals with crossed-
products by free groups Fn whose universal construction version can be also
treated in the same way, where one needs what we commented after Proposi-
tion 3.3.

4.4. Supplements to the Brown, Dykema, and Jung’s work [4].
Here, we give supplementary facts to [4], and thus we refer to that pa-
per for necessary backgrounds including notations and terminologies. Let
(M,EM

N , u(θ)) = (N,EN
D )�D(θ,EN

θ(D)) be an HNN extension of von Neumann
algebras. Assume that EN

D and EN
θ(D) are τ -preserving with a faithful normal

tracial state τ on N , and moreover that τ |θ(D) = (τ |D) ◦ θ holds. Then [19,
Corollary 4.2] shows that τ is extended to a faithful normal tracial state on
M by EM

N , and we still denote it by the same symbol τ .

Proposition 4.14. Let X and Y be generating finite families (of self-
adjoint elements) of N and D, respectively. If D is hyperfinite and N can
be embedded into Rω with the hyperfinite type II1 factor R, then δ0(X 
 Y 

{u(θ)}) = δ0(X 
 Y 
 θ(Y )) + 1 − δ0(D).

Proof. Let X̂ := {x ⊗ e11 : x ∈ X} 
 {1 ⊗ e12} (inside N ⊗ M2(C)), Ŷ :=
{y ⊗ e11 : y ∈ Y } 
 {1 ⊗ e12} (inside D ⊗ M2(C)), and Ỹ := {y1 ⊕ 0,0 ⊕
y2 : y1, y2 ∈ Y } (inside D ⊕ D). Note here, that the unital ∗-algebra gen-
erated by Ŷ contains {y1 ⊗ e11, y2 ⊗ e22 : y1, y2 ∈ Y }, a generating set of the
diagonals in D ⊗ M2(C). Then [4, Corollary 4.5] shows δ0(λθ(X̂) 
 λ1(Ŷ )) =
δ0(λθ(X̂) 
 λ1(Ŷ ) 
 λ(Ỹ )) = δ0(X̂ 
 ιθ(Ỹ ))+ δ0(D ⊗ M2(C)) − δ0(D ⊕ D) with
the embedding maps ιθ, λ, λθ, λ1 as in Proposition 3.1. By applying [4,
Proposition 5.1] to the right most side of the above equation with the matrix
units λθ(1 ⊗ eij)’s, it becomes δ0(X 
 Y 
 {u(θ)})/4 + 3/4 via the bijective

∗-homomorphism Φ in Proposition 3.1 (note here that it is trace-preserving
thanks to the hypothesis here). Similarly, the same [4, Proposition 5.1] (in
the special case when B = M2 there) enables us to show δ0(X̂ 
 ιθ(Ỹ )) =
δ0(X 
 Y 
 θ(Y ))/4 + 3/4. Also, Jung’s result [8] allows us to compute that
δ0(D ⊗ M2(C)) = 1 − (1 − δ0(D))/4 and δ0(D ⊕ D) = 1 − (1 − δ0(D))/2 (since
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the trace-weights on D ⊕ D are 1/2). Then the desired assertion is immedi-
ate. �

Let us point out that the above fact shows, in particular, that the class
of Rω-embeddable finite von Neumann algebras with separable preduals is
closed under taking HNN extension over hyperfinite algebra. Here, we need, in
general, to take an inductive limit arising from an increasing chain D,θ(D) ⊂
Nn ⊂ N with finitely generated Nn’s.

The next proposition is proved in a similar way as in [4, Theorem A.1]; in-
deed a repetition of its proof works with only one change that the G-pushout
used there as the initial point should be replaced by that given in [9, Exam-
ple 4.11, Remark 4.12]. Hence, the details are left to the reader.

Proposition 4.15. Let G∗ = G�H be an HNN extenison of groups, and
suppose that the first L2-Betti number b

(2)
1 (H) vanishes. Then b

(2)
1 (G∗) =

b
(2)
1 (G) − |G| −1 + |H| −1 with 1/∞ = 0.

We say a group G to be hyperlinear if there is a faithful representation
of G into the unitary group of Rω , which is known to be equivalent to the
Rω-embeddability of L(G) (see e.g., [14, Proposition 2.4]). The above two
facts immediately imply:

Corollary 4.16. Let G∗ = G�H be an HNN extension of groups, and
suppose that G is finitely generated, hyperlinear, and H amenable. If δ0(G) =
b
(2)
1 (G) − b

(2)
0 (G) + 1, then δ0(G∗) = b

(2)
1 (G∗) − b

(2)
0 (G∗) + 1. Thus, the class

of finitely generated, hyperlinear groups whose δ0 and b
(2)
1 − b

(2)
0 + 1 coincide

is closed under taking HNN extension over amenable subgroup.

In closing, we would like to point out three things: (i) The discussion of
Proposition 4.14 also works for showing that the class of finitely generated, hy-
perlinear, and microstates-packing regular groups is closed under taking HNN
extension over amenable subgroup. (ii) Proposition 3.4 enables us to obtain
a different (from [4, e.g., Corollary 4.7]) formula for δ0 (of natural generat-
ing sets) of amalgamated free products once through HNN extensions. The
resulting formula says two things. Firstly the class of Rω-embeddable von
Neumann algebras with separable preduals is closed under taking reduced
amalgamated free product over hyperfinite subalgebra. Secondly proving the
expected formula for δ0 of natural generating sets of direct sums (of two alge-
bras with equal trace-weights) is enough to get rid of the microstates-packing
regularity assumption from the main result in [4]. However, we encountered
the same difficulty, and the formula of δ0 for such direct sums could be
proved only when the same regularity condition is assumed. (iii) We can show
that if (M,τM ) = (N ⊕ N, (τN + τN )/2) with the same (N,τN ) and X ′ ′ = N
with |X| < ∞, then the expected formula δ0(X ⊕ 0 
 0 ⊕ X) = (δ0(X) + 1)/2
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(= (δ0(X) + δ0(X) + 2)/4) holds without the microstates-packing regularity
assumption. Correspondingly the same is true in the amalgamated free prod-
uct case, and in particular, δ0(G�HG) = 2δ0(G) − δ0(H) always holds for any
finitely generated, hyperlinear G with amenable H ⊂ G.
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