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MODULAR FORMS OF HALF-INTEGRAL WEIGHTS
ON SL(2,Z)

YIFAN YANG

Abstract. In this paper, we prove that, for an integer r with (r,6) = 1 and
0< r < 24 and a nonnegative even integer s, the set{

η(24τ)rf(24τ) : f(τ) ∈Ms(1)
}

is isomorphic to

Snew
r+2s−1

(
6,−

(8
r

)
,−

(12
r

))
⊗
(12

·
)

as Hecke modules under the Shimura correspondence. Here Ms(1) denotes the
space of modular forms of weight s on Γ0(1) = SL(2,Z), Snew

2k (6, ε2, ε3) is the
space of newforms of weight 2k on Γ0(6) that are eigenfunctions with eigenval-
ues ε2 and ε3 for Atkin–Lehner involutions W2 and W3, respectively, and the
notation ⊗(12/·) means the twist by the quadratic character (12/·). There is
also an analogous result for the cases (r,6) = 3.
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§1. Introduction

Let

θ(τ) =
∑
n∈Z

qn
2
, q = e2πiτ ,

be the Jacobi theta function. Then Shimura’s theory of modular forms of

half-integral weights can be described as follows. Let k be a positive integer,

let N be a positive integer, and let χ be a Dirichlet character modulo 4N .
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We say that a holomorphic function f :H= {τ : Im τ > 0}→C is a modular

form of half-integral weight k + 1/2 on Γ0(4N) with character χ if it is

holomorphic at each cusp and satisfies

f(γτ)

f(τ)
= χ(d)

θ(γτ)2k+1

θ(τ)2k+1

for all γ = ( a b
c d ) ∈ Γ0(4N). Let Mk+1/2(4N,χ) denote the space of these

functions. Shimura [19] showed how the Hecke theory can be extended to

these spaces. More importantly, he showed that if f ∈Mk+1/2(4N,χ) is a

Hecke eigenform, then there is a corresponding Hecke eigenform of integral

weight 2k with character χ2 that shares the same eigenvalues. Moreover,

he conjectured that the level of this modular form of integral weight can

be taken to be 2N . This conjecture was later proved by Niwa [16] (see also

[21]). In the literature, this correspondence between modular forms of half-

integral weights and modular forms of integral weights is called the Shimura

correspondence.

In [19], the correspondence was proved by using Weil’s characteriza-

tion of Hecke eigenforms in terms of L-functions. From the representation-

theoretical point of view, this correspondence amounts to a correspondence

from certain automorphic representations of the metaplectic double cover of

GL(2,AQ) to automorphic representations of GL(2,AQ), where AQ denotes

the adèle ring of Q (see [6], [10], and [24] for more details).

In general, the Shimura correspondence is not one-to-one. In order to get

a multiplicity-one result, Kohnen, in the fundamental works [13] and [14],

introduced a subspace of Mk+1/2(4N,χ) and developed a newform theory

for this subspace that is parallel to the Atkin–Lehner–Li theory of newforms

for modular forms of integral weights. To state Kohnen’s result, let χ be a

Dirichlet character modulo 4N , and set ε= χ(−1). Let S+
k+1/2(4N, (4ε/·)χ)

be the subspace consisting of cusp forms of half-integral weight k+1/2 and

character (4ε/·)χ on Γ0(4N) whose Fourier expansions are of the form∑
ε(−1)kn≡0,1 mod 4

ane
2πinτ .

Then Kohnen proved that, under the assumptions that N is odd and square-

free and that χ is a quadratic character, the image of S+
k+1/2(4N, (4ε/·)χ)

under the Shimura correspondence is S2k(N). Moreover, there is a canoni-

cally defined subspace Snew
k+1/2(4N, (4ε/·)χ)⊂ S+

k+1/2(4N, (4ε/·)χ) such that
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Snew
k+1/2(4N, (4ε/·)χ)� Snew

k+1/2(N) as Hecke modules. In particular, the strong

multiplicity-one theorem holds for Snew
k+1/2(4N, (4ε/·)χ). Kohnen’s work was

later extended by several authors in various directions (see [7], [8], [23]).

Modular forms of half-integral weights are closely related to many prob-

lems in number theory. For example, let p(n) denote the number of ways to

write a positive integer n as unordered sums of positive integers. Then the

generating function of the partition function p(n) is equal to

∞∑
n=0

p(n)qn =

∞∏
m=1

1

1− qm
.

If we set q = e2πiτ , then the infinite product above is essentially the recip-

rocal of the Dedekind eta function, which is well known to be a modular

form of weight 1/2 on Γ0(576) with character (12/·). Using this fact, along

with the Shimura correspondence and properties of Galois representations

attached to cusp forms, Ono [18, Theorem 1] proved that for every prime

m greater than 3, there is a positive proportion of primes � such that the

congruence

p
(m�3n+ 1

24

)
≡ 0 mod m

holds for all integers n relatively prime to �. This result was later extended

by several authors (see [1], [2], [28]). For example, in [28], the current author

showed that, for every prime m greater than 3 and every prime different

from 2, 3, and m, there is an explicitly computable integer k such that

p
(m�kn+ 1

24

)
≡ 0 mod m

for all integers n relatively prime to �. A key ingredient in [28] is the Hecke

invariance of the space

(1) Sr,s =
{
η(24τ)rf(24τ) : f(τ) ∈Ms(1)

}
,

where r is an odd integer between 0 and 24, s is a nonnegative even integer,

and Ms(1) is the space of modular forms of weight s on Γ0(1) = SL(2,Z).

That is, even though the space Mk+1/2(576, (12/·)) itself has a huge dimen-

sion, it contains several subspaces of small dimensions that are invariant

under the action of Hecke algebra. The invariance of these spaces was

first proved by Garvan [9, Proposition 3.1] and later rediscovered by the

current author independently (see Section 4 of the arXiv version of [28]

(arXiv:0904.2530 [math.NT]) for a proof of the invariance).

http://arxiv.org/abs/arXiv:0904.2530
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Now recall that a well-known result of Waldspurger [25, Theorem 1] states

that if f is a Hecke eigenform of half-integral weight k+1/2 and if F is the

corresponding Hecke eigenform of integral weight 2k, then for square-free

n, the square of the nth Fourier coefficient of f is essentially proportional

to the special value at s = k of L(F ⊗ χ(−1)kn, s), where χ(−1)kn is the

Kronecker character of the quadratic field Q(
√
(−1)kn) (see also [15]). Using

this result of Waldspurger, Guo and Ono [11] related the arithmetic of the

partition function p(n) to the arithmetic of certain motives. Specifically, let

13≤ �≤ 31 be a prime. Let r be the unique integer between 0 and 24 such

that r ≡−� mod 24, and let s= (�− r−2)/2. Then the space Sr,s defined in

(1) is 1-dimensional and spanned by g�(τ) = η(24τ)rEs(24τ), where Es(τ)

denotes the Eisenstein series. It is known that

(2) g�(τ)≡
∞∑
n=0

p
(�n+ 1

24

)
qn mod �.

Then Guo and Ono showed that if we let G�(τ) be the unique Hecke eigen-

form in S�−3(6) with Fourier expansion

G�(τ) = q+
(8
r

)
2(�−5)/2q2 +

(12
r

)
3(�−5)/2q3 + · · · ,

then the image of g�(τ) under the Shimura correspondence is G� ⊗ (12/·),
which is a newform of level 144. (Note that g�(τ) is contained in Kohnen’s

+-space.) In view of Waldspurger’s result and (2), this means that the val-

ues of the partition function modulo � are related to the values at the

center point of the L-function of G� twisted by quadratic Dirichlet charac-

ters. Thus, assuming the truth of the Bloch–Kato conjecture, the arithmetic

properties of the partition function are related to those of certain motives

associated to G�.

Now observe that, by [3, Theorem 3], the function G�(τ) is contained

in the Atkin–Lehner eigensubspace of Snew
�−3 (6) with eigenvalues −(8/r) and

−(12/r) for the Atkin–Lehner involutions W2 and W3, respectively. In other

words, for the few cases considered in [11], the Shimura correspondence

yields an isomorphism

Sr,s � Snew
r+2s−1

(
6,−

(8
r

)
,−

(12
r

))
⊗
(12

·
)

as Hecke modules, where Snew
2k (6, ε2, ε3) denotes the space of newforms of

weight 2k on Γ0(6) that are eigenfunctions with eigenvalues ε2 and ε3 for
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W2 and W3. (Note that the Hecke algebras on the two sides are isomorphic.

Thus, we may talk about isomorphisms as Hecke modules.) It is natural to

ask whether this isomorphism holds in general. The purpose of this paper

is to prove that this is indeed the case.

Theorem 1. Let r be an integer satisfying (r,6) = 1 and 0< r < 24, and

let s be a nonnegative even integer. Let

Sr,s =
{
η(24τ)rf(24τ) : f(τ) ∈Ms(1)

}
⊂ Sr/2+s

(
576,

(12
·
))

,

where Ms(1) denotes the space of modular forms of weight s on Γ0(1) =

SL(2,Z). Then the Shimura correspondence yields an isomorphism

Sr,s � Snew
r+2s−1

(
6,−

(8
r

)
,−

(12
r

))
⊗
(12

·
)

as Hecke modules.

For odd integers r that are divisible by 3, we have also an analogous

result.

Theorem 2. Let r be an odd integer satisfying 0< r < 8, and let s be a

nonnegative even integer. Let

S3r,s =
{
η(8τ)3rf(8τ) : f(τ) ∈Ms(1)

}
⊂ S3r/2+s

(
64,

(−4

·
))

.

Then the Shimura correspondence yields an isomorphism

S3r,s � Snew
3r+2s−1

(
2,−

(8
r

))
⊗
(−4

·
)

as Hecke modules.

Corollary 1. The multiplicity-one property holds for the spaces Sr,s

defined in Theorems 1 and 2.

Remark 2. Note that the space Snew
2k (6, ε2, ε3) ⊗ (12/·) is contained in

Snew
2k (144,−,−), regardless of whether ε2, ε3 are 1 or −1. Also, Snew

2k (2, ε2)⊗
(−4/·) is a subspace of Snew

2k (16,−) for both ε2 = 1 and ε2 =−1.

It turns out that the Hecke invariance of Sr,s and the explicit Shimura

correspondence in Theorems 1 and 2 are best explained in terms of mod-

ular forms of half-integral weight of η-type. Namely, in Shimura’s setting,



6 Y. YANG

a function is called a modular form of half-integral weight if its transfor-

mation is comparable with the Jacobi theta function. In a similar way, we

say that a function f(τ) is a modular form of η-type if its transformation is

comparable with the Dedekind eta function, that is, if f(τ) satisfies

f(γτ)

f(τ)
= (cτ + d)s

η(γτ)r

η(τ)r

for all γ = ( a b
c d ) in a subgroup Γ of SL(2,Z), where s is assumed to be a

nonnegative even integer and r is an odd integer between 0 and 24. Then

it is easy to show that modular forms of η-type on SL(2,Z) are essentially

just the functions in Sr,s defined in Theorems 1 and 2 (see Proposition 6

below). This explains the Hecke invariance of the spaces Sr,s.

At first sight, the introduction of the notion of modular forms of η-type

is superficial since if f(τ) is such a function, then f(24τ) is just a modular

form of half-integral weight with character (12/·) in the sense of Shimura,

and we do not get any new modular forms in this way. However, if a modular

form of half-integral weight on a congruence subgroup Γ0(4N) in the sense of

Shimura happens to be a modular form of η-type on a larger group, then the

extra symmetries from this larger group will give us additional information

about the function. This is the reason that we can determine such a precise

image of Sr,s under the Shimura correspondence. (In the proof of Theorems

1 and 2, we will work with modular forms of η-type on SL(2,Z) instead of

modular forms on the much smaller group Γ0(576) in the sense of Shimura.)

Our proof of Theorems 1 and 2 is classical. That is, since the Hecke

modules involved are all semisimple, to prove the theorems, it suffices to

show that the traces coincide for all Hecke operators. It will be interesting

to have a representation-theoretical proof of the results. Note that here we

prove only Theorem 1; the proof of Theorem 2 is similar, but much simpler,

and will be omitted.

The rest of this article has the following organization. In Section 2, we

first define modular forms of η-type in more detail. We then define Hecke

operators and introduce several basic properties of them. We also describe

Shimura’s abstract trace formula (see [20, Theorem 4.5]). In Section 3, which

constitutes the principal part of our paper, we compute the traces of Hecke

operators on the space of modular forms of η-type. In Section 4, we deter-

mine the traces of Hecke operators on Snew
2k (6, ε2, ε3). In Section 5, we show

that the traces coincide and thereby establish Theorem 1.
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§2. Preliminaries

In this section, we give a more detailed definition of modular forms of

η-type. We then define Hecke operators on these modular forms and review

Shimura’s trace formula for Hecke operators.

2.1. Modular forms of (ηr, s)-type

Notation 3. Throughout the rest of this article, we let r and s be fixed

integers with (r,6) = 1, 0 < r < 24 and s even. Set also k = (r − 1)/2 + s.

Let Gk+1/2 be the group of pairs (A,φ(τ)), where A = ( a b
c d ) ∈ GL+(2,Q),

φ(τ) is a holomorphic function H 	→C satisfying∣∣φ(τ)∣∣= (detA)−k/2−1/4|cτ + d|k+1/2,

and the group law is defined by(
A,φ(τ)

)(
B,ψ(τ)

)
=
(
AB,φ(Bτ)ψ(τ)

)
.

Consider the subgroup Γ∗ of Gk+1/2 defined by

Γ∗ =Γ∗
r,s =

{(
γ,

η(γτ)r

η(τ)r
(cτ + d)s

)
: γ =

(
a b

c d

)
∈ SL(2,Z)

}
.

For an element γ in SL(2,Z), we let γ∗ denote the element in Γ∗ whose first

component is γ. Naturally, if G is a subgroup of SL(2,Z), then we let G∗

be the subgroup {γ∗ : γ ∈G}.

Here let us recall a well-known formula for η(γτ)/η(τ).

Lemma 4 ([26, pp. 125–127]). Let γ = ( a b
c d ) ∈ SL(2,Z) with c≥ 0. Then

we have
η(γτ)

η(τ)
= ε(a, b, c, d)(cτ + d)1/2,

where

(3) ε(a, b, c, d) =

{
(dc )i

(1−c)/2e2πi(bd(1−c2)+c(a+d)−3)/24 if c is odd,

( cd)e
2πi(ac(1−d2)+d(b−c+3)−3)/24 if c is even.

We now define modular forms of η-type.

Definition 5. Let f : H→ C be a holomorphic function on the upper

half-plane. We define the action of γ∗ = (γ,φγ(τ)) on f by

(f | γ∗)(τ) = φγ(τ)
−1f(γτ).
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Let G be a subgroup of SL(2,Z) of finite index. If the function f satisfies

(f | γ∗)(τ) = f(τ)

for all γ∗ ∈G∗ and is holomorphic at each cusp of G, then we say that f is

a modular form of (ηr, s)-type on G. If, in addition, f vanishes at each cusp

of G, we say that f is a cusp form of (ηr, s)-type. The space of cusp forms

of (ηr, s)-type on G will be denoted by Sr,s(G). If G = Γ0(N), we simply

write it as Sr,s(N).

In the case N = 1, the space Sr,s(1) has a very simple description.

Proposition 6. For N = 1, we have

Sr,s(1) =
{
η(τ)rf(τ) : f ∈Ms(1)

}
,

where Ms(1) is the space of modular forms of weight s on SL(2,Z).

Proof. Assume that g(τ) ∈ Sr,s(1). We have

g(τ + 1) = e2πir/24g(τ).

Thus, the Fourier expansion of g(τ) takes the form qr/24(a0 + a1q + · · · ).
Since η(τ) is nonvanishing throughout H, the function g(τ)/η(τ)r is holo-

morphic on H. Moreover, it is easy to see that for γ = ( a b
c d ) ∈ SL(2,Z), one

has
g(γτ)

η(γτ)r
= (cτ + d)s

g(τ)

η(τ)r
.

Therefore, g(τ)/η(τ)r is a modular form of weight s on SL(2,Z). This proves

the proposition.

2.2. Hecke operators on Sr,s(N)

Notation 7. Let N be a positive integer. For a positive integer n, let

Mn(N)

= Γ0(N)

(
1 0

0 n

)
Γ0(N)

=

{(
a b

c d

)
: a, b, c, d ∈ Z, ad− bc= n,N

∣∣∣ c, (a,N) = 1, (a, b, c, d) = 1

}
,

and let Mn(N)∗ denote the subset

Mn(N)∗ =Γ0(N)∗
((

1 0

0 n

)
, nk/2+1/4

)
Γ0(N)∗

of Gk+1/2.



MODULAR FORMS OF HALF-INTEGRAL WEIGHTS ON SL(2,Z) 9

Lemma 8. If n is a positive integer relatively prime to 6, then for each

γ ∈ Mn2(N), there exists a unique element γ∗ in Mn2(N)∗ such that the

first component of γ∗ is γ.

Proof. It suffices to prove the case γ = ( 1 0
0 n2 ). We are required to show

that if A,B ∈ Γ0(N) are matrices such that A( 1 0
0 n2 )B−1 = ( 1 0

0 n2 ), then

(4) A∗
((

1 0

0 n2

)
, nk+1/2

)
=

((
1 0

0 n2

)
, nk+1/2

)
B∗.

Assume that A= ( a b
c d ). By Lemma 4, we have

A∗
((

1 0

0 n2

)
, nk+1/2

)

=

((
a bn2

c dn2

)
, ε(a, b, c, d)r(cτ/n2 + d)s+r/2nk+1/2

)
,

where ε(a, b, c, d) is defined by (3). Now the assumption that A( 1 0
0 n2 )B−1 =

( 1 0
0 n2 ) implies that if A= ( a b

c d ), then B = ( a bn2

c/n2 d ). In particular, we have

n2 | c. Thus,((
1 0

0 n2

)
, nk+1/2

)
B∗

=

((
a bn2

c dn2

)
, nk+1/2ε(a, bn2, c/n2, d)r(cτ/n2 + d)s+r/2

)
.

Since n is assumed to be relatively prime to 6, we have n2 ≡ 1 mod 24, and

hence

ε(a, b, c, d) = ε(a, bn2, c/n2, d).

This establishes (4) and the lemma.

The group Γ0(N) acts on Mn2(N) by matrix multiplication on the left.

It is clear that if f ∈ Sr,s(N) and α and β are two elements of Mn2(N) that

are equivalent under the left action of Γ0(N), then

f | α∗ = f | β∗.

Moreover, since ( 1 0
0 n2 )−1Γ0(N)( 1 0

0 n2 ) and Γ0(N) are commensurable, there

are finitely many right cosets in Γ0(N)\Mn2(N). Thus, for each positive

integer n with (n,6) = 1, we can define a linear operator on Sr,s(N).
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Lemma 9. The mapping[
Mn2(N)∗

]
: f 	−→ f |

[
Mn2(N)∗

]
=

∑
γ∈Γ0(N)\Mn2 (N)

f | γ∗

is a linear operator on Sr,s(N).

We now define Hecke operators on Sr,s(N).

Definition 10. For a positive integer n with (n,6) = 1, the Hecke oper-

ator Tn2 on Sr,s(N) is defined by

Tn2 : f 	−→ nk−3/2
∑

ad=n,a|d
af |

[
M(d/a)2(N)

]
.

Proposition 11. Let p be a prime such that p � 6N . Then for f(τ) =∑∞
n=1 af (n)q

n/24 ∈ Sr,s(N), we have

Tp2 : f(τ)

	→
∞∑
n=1

(
af (p

2n) +
(12
p

)((−1)kn

p

)
pk−1af (n) + p2k−1af (n/p

2)
)
qn/24.

Proof. One way to prove the proposition would be to utilize the standard

coset representatives of Γ0(N)\Mp2(N) given by(
p2 0

0 1

)
,

(
p a

0 p

)
,

(
1 b

0 p2

)
, a= 1, . . . , p− 1, b= 0, . . . , p2 − 1,

and then apply formulas similar to those in (5) in the proof of Lemma 17

below to get the conclusion. Here, however, because it is well known that

f(24τ) is a modular form of half-integral weight on Γ0(576) with character

(12/·) in the sense of Shimura, we can actually skip those tedious compu-

tations. Indeed, from the commutativity of the diagram

Sr,s Sr,s

Sk+1/2

(
576,

(12
·
))

Sk+1/2

(
576,

(12
·
))

�
Tp2

�
( 24 0
0 1 )

�
( 24 0
0 1 )

�
Tp2

and the formula given in [19, p. 450] for the Hecke operator Tp2 on

Sk+1/2(576, (12/·)) in terms of Fourier coefficients, we immediately get the

conclusion.
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Remark 12. The linear operators [Mn(N)] can also be defined for non-

square integers n and integers that are not relatively prime to 6, but it

turns out that they are actually the zero operator. The reason is that for

such integers n, there is more than one element in Mn(N) with the same

first component, and the actions of these elements cancel out each other.

2.3. Shimura’s trace formula

Here we state a trace formula of Shimura [20, Theorem 4.5], adapted

to our setting. Our description of the trace formula mostly follows that of

Kohnen [14, Section 4].

Definition 13. Let N and n be positive integers. For γ ∈ Mn(N), we

say that γ is

(1) a scalar element if γ = ( a 0
0 a ) for some integer a (this happens only when

n= 1),

(2) a parabolic element if the fixed point of γ is a single cusp in P1(Q),

(3) a hyperbolic element if the fixed points of γ are two distinct real num-

bers, and

(4) an elliptic element if the fixed points of γ are a pair of conjugate complex

numbers.

Two elements γ1 and γ2 in Mn(N) are equivalent if

(1) γ1 and γ2 are scalars and γ1 = γ2;

(2) γ1 and γ2 are hyperbolic or elliptic, and there exists an element σ ∈
Γ0(N) such that σγ1σ

−1 = γ2; or

(3) γ1 and γ2 are parabolic, and there exist σ ∈ Γ0(N) and α in the stabilizer

subgroup inside Γ0(N) of the cusp fixed by γ2 such that σγ1σ
−1 = αγ2.

Now for γ ∈ Mn2(N), we define a number J(γ) as follows.

(1) If γ is a scalar, then we set

J(γ) =
1

24

(
k− 1

2

)[
SL(2,Z) : Γ0(N)

]
.

(2) Assume that γ is parabolic with fixed point a/c ∈ P1(Q). Let σ ∈
SL(2,Z) be a matrix such that σ∞ = a/c. Then the stabilizer sub-

group of a/c inside Γ0(N) is generated by σ( 1 w
0 1 )σ

−1 and (−1 0
0 −1 ), where

w =N/(c2,N) is the width of the cusp a/c. Now we write

(
1 w

0 1

)∗
=

((
1 w

0 1

)
, e−2πiμ

)
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with 0≤ μ < 1. If

σ∗−1γ∗σ∗ =

(
±
(
n nuw

0 n

)
, η

)
,

then let

J(γ) =

{
− 1

2ηe
−2πiuμ(1− 2μ) if u ∈ Z,

− 1
2ηe

−2πiuμ(1− i cotπu) if u /∈ Z.

(3) If γ is hyperbolic and the fixed points are not cusps, then set J(γ) = 0.

(4) Assume that γ is hyperbolic fixing (two distinct) cusps. Then the eigen-

values of γ are two integers λ and λ′. We assume that |λ| > |λ′|. Let
( ac ) be an eigenvector associated to λ′ with a, c ∈ Z and (a, c) = 1. Find

an element σ ∈ SL(2,Z) such that σ = ( a b
c d ). Then σ−1γσ = ( λ

′ x
0 λ ) for

some integer x. If

σ∗γ∗σ−1∗ =

((
λ′ x

0 λ

)
, η

)
,

then set

J(γ) =
1

2

(
η
(λ′

λ
− 1

))−1
.

(5) Assume that γ = ( a b
c d ) is elliptic. Then the eigenvalues of γ are a pair of

conjugate complex numbers ρ and ρ. We assume that sgn Imρ= sgn c.

If

γ∗ =

((
a b

c d

)
, u(cτ + d)k+1/2

)
,

then we set

J(γ) =
(
wuρk−1/2(ρ− ρ)

)−1
,

where w denotes the number of elements in Γ0(N) that commute with γ.

Then according to Shimura’s formula [20, p. 273], the trace of the operator

[Mn2(N)] on Sr,s(N) is as follows (compare [14, p. 49]).

Proposition 14. For positive integers N and n with (n,6N) = 1, the

trace of the linear operator [Mn2(N)∗] on Sr,s(N) is given by

tr
[
Mn2(N)∗

]
=
∑
γ

J(γ),

where the sum runs over representatives of equivalence classes as per Defi-

nition 13 and J(γ) are defined as in the paragraph preceding the proposition.
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§3. Traces of Hecke operators on Sr,s(1)

In this section, we will compute the trace of Hecke operators on Sr,s(1).

The contributions of scalar, parabolic, hyperbolic, and elliptic classes will

be determined separately in individual subsections.

Throughout this section, we write Mn2(1) and Mn2(1)∗ simply as Mn2

and M ∗
n2 , respectively. All equivalences mentioned here refer to the equiva-

lence relation described in Definition 13.

3.1. Scalar cases

Since any element ( a b
c d ) in Mn2 satisfies (a, b, c, d) = 1, scalar elements

exist only in M ∗
1 , and they are (±( 1 0

0 1 ),1).

Proposition 15. The contribution of scalar elements in Mn2 to the trace

of [M ∗
n2 ] is {

1
12(k−

1
2) if n= 1,

0 otherwise.

3.2. Parabolic cases

The contribution of the parabolic classes to the trace of Mn2 is summa-

rized in Proposition 21. The proof is divided into several steps.

Lemma 16. The inequivalent parabolic elements in Mn2 are(
n a

0 n

)
, a= 1, . . . , n, (a,n) = 1.

Proof. Since SL(2,Z) has only one inequivalent cusp ∞, a parabolic ele-

ment is conjugate to

±
(
n b

0 n

)

for some b with (b,n) = 1. Since the stabilizer subgroup of ∞ inside SL(2,Z)

is generated by ( 1 1
0 1 ) and (−1 0

0 −1 ), we see that the inequivalent parabolic

elements are given as in the statement.

Lemma 17. Let a be an integer relatively prime to n. The contribution

of the class of (n a
0 n ) to the trace of [M ∗

n2 ] on Sr,s(1) is{
−(r− 12)/24 if n= a= 1,

−(−i)r(n−1)/2(−a
n ) e

−2πi(r�+1)a/n

1−e−2πia/n if n > 1,

where �= (n2 − 1)/24.
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Proof. Assume first that n = a = 1. We have ( 1 1
0 1 )

∗ = (( 1 1
0 1 ), e

2πir/24).

Then the numbers μ, η, and u in the definition of J(γ) in Proposition 14

are

μ=
24− r

24
, η = e2πir/24, u= 1,

respectively. Thus, the contribution to the trace is −(r− 12)/24.

Now assume that n > 1. We have (n,a) = 1. Let α and β be integers such

that αn+ βa= 1 and β > 0. We have(
n a

0 n

)
=

(
a −α

n β

)(
−1 0

0 −n2

)(
−nβ −1

1 0

)
.

By Lemma 4, we have(
a −α

n β

)∗
=

((
a −α

n β

)
,
(a
n

)
ir(1−n)/2e2πir(n(a+β)−3)/24(nτ + β)k+1/2

)

and (
−nβ −1

1 0

)∗
=

((
−nβ −1

1 0

)
, e2πir(−nβ−3)/24τk+1/2

)
.

Then(
−1 0

0 −n2

)∗(−nβ −1

1 0

)∗
=

((
nβ 1

−n2 0

)
, e2πir(−nβ−3)/24(nτ)k+1/2

)

and (
n a

0 n

)∗

=

((
n a

0 n

)
,
(a
n

)
ir(1−n)/2e2πir(na−6)/24

(
− 1

nτ

)k+1/2
(nτ)k+1/2

)

=

((
n a

0 n

)
,
(a
n

)
e2πir(n(a−3)+3)/24

)
.

(5)

Now the stabilizer of ∞ is generated by (( 1 1
0 1 ), e

2πir/24) and ((−1 0
0 −1 ),1).

Thus, according to Proposition 14 and (5), the contribution of the class of

(n a
0 n ) to the trace is

−1

2

(a
n

)
e−2πir(n(a−3)+3)/24e−2πia(24−r)/(24n)

(
1− i cot(πa/n)

)
.

Simplifying the expression, we get the lemma.
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The proof of Proposition 21 involves sums of the form
∑

u≤N/j χ(u) for

some Dirichlet character χ. Here we recall a formula from [22, (6), p. 276] for

such sums. Note that for a Dirichlet character χ modulo M , the generalized

Bernoulli numbers Bm,χ are defined by the power series

M∑
a=1

χ(a)teat

eMt − 1
=

∞∑
m=0

Bm,χ
tm

m!
.

If χ is the trivial character modulo 1, then Bm,χ is just the Bernoulli num-

bers Bm. We have

(6) B0,χ =
1

M

M∑
a=1

χ(a) =

{
φ(M)/M if χ is principal,

0 otherwise.

Also, B1,χ = 0 if χ is an even character. Moreover, if χ is an imprimitive

Dirichlet character induced from χ1, then we have the relation

(7) B1,χ =B1,χ1

∑
d|M

μ(d)χ1(d) =B1,χ1

∏
p|M

(
1− χ1(p)

)
.

Also, if d < 0 is a fundamental discriminant, then we have

(8) B1,(d/·) =−H(d),

where H(d) is the Hurwitz class number.

Lemma 18 ([22, (6), p. 276]). Let M be a positive integer, and let χ be a

Dirichlet character modulo M . Let N > 0 be a multiple of M , and let j be

a positive integer relatively prime to N . Then we have

∑
0≤u<N/j

χ(u) =−B1,χ +
χ(j)

φ(j)

∑
ψ mod j

ψ(−N)B1,χψ(N),

where the sum runs over all Dirichlet characters ψ modulo j and

B1,χψ(N)

=B0,χψN +B1,χψ

=

{
B1,χψ if χψ is a nonprincipal character modulo jM,

Nφ(jM)/jM if χψ is the principal character modulo jM.
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Proof. If M > 1, then the formula is just [22, (6), p. 276] with m = 1.

If M = 1, that is, if χ(u) = 1 for all u ∈ Z, then we should modify the

definition of Lχ(t) of [22, p. 274] to Lχ(t) =
∑∞

n=0χ(n)e
nt. Then following

the argument of [22, p. 274, up to (6)], we see that our formula holds. The

details of the proof are omitted.

Lemma 19. Let n be a positive odd integer greater than 1. If n≡ 1 mod 4,

then ∑
a mod n

(a
n

) 1

1− e2πia/n
=

{
φ(n)/2 if n is a square,

0 otherwise.

If n≡ 3 mod 4, then

∑
a mod n

(a
n

) 1

1− e2πia/n
= i

√
nH(−n).

Here H(−n) is the Hurwitz class number, that is, H(−3) = 1/3, H(−4) =

1/2, and H(−n) is the ideal class number of the quadratic order of the

discriminant −n if n = 3,4.

Proof. Assume that n≡ 1 mod 4. Then (·/n) is an even function. Let S

denote the sum. We have

2S =
∑

a mod n

(a
n

)( 1

1− e2πia/n
+

1

1− e−2πia/n

)
=

∑
a mod n

(a
n

)
.

If n is a square, then (·/n) is the principal Dirichlet character modulo n

and we have S = φ(n)/2. If n is not a square, then (·/n) is a nonprincipal

Dirichlet character modulo n and the sum S vanishes.

Now assume that n≡ 3 mod 4. Set z = e2πi/n. We first consider the case

n is square-free. For an integer t, set

S(t) =
∑

a mod n

(a
n

) zta

1− za
, T (t) =

∑
a mod n

(a
n

)
zta.

The two sums are related by

S(t)− S(t+ 1) =
∑

a mod n

(a
n

)zta(1− za)

1− za
=

∑
a mod n

(a
n

)
zta = T (t).
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Since n is assumed to be square-free, we have T (t) = (t/n)i
√
n. It follows

that

n∑
t=1

(
S(0)− S(t)

)
=

n∑
t=1

t−1∑
a=0

T (a)

=

t−1∑
a=0

T (a)(n− a)

= i
√
n

n−1∑
a=0

(a
n

)
(n− a)

= in
√
nH(−n).

Since
n∑

t=1

S(t) =
n∑

a=1

(a
n

)1 + za + · · ·+ z(n−1)a

1− za
= 0,

we conclude that S = S(0) = i
√
nH(−n) for the case n is square-free.

Now if n is not square-free, we write n as m2n0 with square-free n0. Then

using the partial fraction decomposition

�

1− x�
=

�−1∑
j=0

1

1− xe2πij/�
,

we get

S =
∑
d|m

μ(d)

n/d∑
a=1

(ad
n0

) 1

1− zad

=
∑
d|m

μ(d)
( d

n0

)n0−1∑
a=1

( a

n0

)n/dn0−1∑
j=0

1

1− e2πid(a+jn0)/n

=
∑
d|m

μ(d)
( d

n0

) n0∑
a=1

( a

n0

) n/dn0

1− e2πia/n0

= im2√n0H(−n0)
∑
d|m

μ(d)

d

( d

n0

)
,
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where in the last step we use the result for the square-free case computed

earlier. Now recall that, for d > 0 with d ≡ 0,3 mod 4, the Hurwitz class

numbers H(−m2D) and H(−D) are related by the formula

H(−m2D) =H(−D)m
∏
p|m

(
1− 1

p

(−D

p

))

=H(−D)m
∑
d|m

μ(d)

d

(−D

d

)
.

(9)

Therefore,

S = im
√
n0H(−n) = i

√
nH(−n).

This completes the proof of the lemma.

Lemma 20. For a positive integer n > 1 with (n,6) = 1, let � = (n2 −
1)/24. If n≡ 1 mod 4, then

1√
n

∑
a mod n

(a
n

)e2πi(r�+1)a/n

1− e2πia/n

=−1

8

(24
n

) ∑
u=−3,−4,−8,−24

(u
r

)(
1−

(un
2

))(
1−

(un
3

))
H(un).

(10)

If n≡ 3 mod 4, then

1

i
√
n

∑
a mod n

(a
n

)e2πi(r�+1)a/n

1− e2πia/n

=
1

8

(24
n

) ∑
u=1,8,12,24

(u
r

)(
1−

(−un

2

))(
1−

(−un

3

))
H(−un).

(11)

Proof. Let S denote the sum in question, and for a positive integer �, let

z� denote the �th primitive root of unity e2πi/�. Also, write n as n=m2n0

with square-free n0. We have, say,

S =−
∑

a mod n

(a
n

)1− z
(r�+1)a
n

1− zan
+

∑
a mod n

(a
n

) 1

1− zan

=−
r�∑
t=0

∑
a mod n

(a
n

)
ztan +

∑
a mod n

(a
n

) 1

1− zan
=−

r�∑
t=0

T (t) + S′.

(12)
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The sum S′ has been evaluated in Lemma 19. We now consider T (t). We

have

T (t) =
∑
d|m

μ(d)
∑

a mod n/d

(ad
n0

)
ztadn

=
∑
d|m

μ(d)
( d

n0

) ∑
a mod n0

( a

n0

)
ztadn

m2/d−1∑
b=0

zbtm2/d.

The inner sum is 0 if (m2/d) � t. Then

T (t) =m2
∑

d|m,(m2/d)|t

μ(d)

d

( d

n0

) ∑
a mod n0

( a

n0

)
zat/(m

2/d)
n0

= εm2√n0

∑
d|m,(m2/d)|t

μ(d)

d

( d

n0

)( t/(m2/d)

n0

)
,

(13)

where

ε=

{
1 if n≡ 1 mod 4,

i if n≡ 3 mod 4.

From (13), we obtain

r�∑
t=0

T (t) = εm2√n0

∑
d|m

μ(d)

d

( d

n0

) ∑
0≤u≤r�/(m2/d)

( u

n0

)
.

Now �= (n2−1)/24, and r is assumed to be in the range 0< r < 24. There-

fore, the sum above can also be written as

(14)

r�∑
t=0

T (t) = εm2√n0

∑
d|m

μ(d)

d

( d

n0

) ∑
0≤u<(rn2d/m2)/24

( u

n0

)
.

Now we apply Lemma 18 to (14) with χ = χn0 = (·/n0), M = n0, N =

rn2d/m2, and j = 24. We consider the three cases

(1) n0 = 1,

(2) n≡ 1 mod 4 and n0 = 1,

(3) n≡ 3 mod 4,
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separately.

When n0 = 1, an application of Lemma 18 yields

r�∑
t=0

T (t) =m2
∑
d|m

μ(d)

d

(
−B1 +

1

8

∑
ψ mod 24

ψ(−rm2d)B1,ψ(rm
2d)

)

=
1

2
mφ(m) +

1

8
m2

∑
d|m

μ(d)

d

∑
ψ mod 24

ψ(−rm2d)B1,ψ(rm
2d).

(15)

If we let χ0 denote the principal Dirichlet character modulo 24, then the

Dirichlet characters ψ modulo 24 are given by

(16) ψu = χ0(·)
(u
·
)
, u= 1,8,12,24,−3,−4,−8,−24.

By (6), (7), and (8), we have

B1,ψu(rm
2d)

=

⎧⎪⎨
⎪⎩
rm2dφ(24)/24 = rm2d/3 if u= 1,

0 if u= 8,12,24,

−(1− (u2 ))(1− (u3 ))H(u) if u=−3,−4,−8,−24.

(17)

The contribution from the character ψ1 to (15) is

(18)
rm4

24

∑
d|m

μ(d) = 0,

since m=
√
n is assumed to be greater than 1. The contributions from ψu,

for u=−3,−4,−8,−24, are

m2

8

(u
r

)(
1−

(u
2

))(
1−

(u
3

))
H(u)

∑
d|m

μ(d)

d

(u
d

)

=
m

8

(u
r

)(
1−

(u
2

))(
1−

(u
3

))
H(un),

(19)

where we have utilized (9). Combining (12), (15), (17), (18), and (19) and

using the formula for S′ given in Lemma 19, we get formula (10) for the

case n=m2.

Now let us consider the case n≡ 1 mod 4 but not a perfect square. That

is, n = m2n0 with square-free n0 = 1 and n0 ≡ 1 mod 4. In this case, we
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have B1,(·/n0) = B1,(·/n0)ψu
= 0 for u = 1,8,12,24, where ψu are defined by

(16). Then an application of Lemma 18 to (14) yields

r�∑
t=0

T (t) =
m2√n0

8

∑
d|m

μ(d)

d

( d

n0

)(24
n0

)

×
∑

u=−3,−4,−8,−24

ψu(−rn2d/m2)B1,(·/n0)ψu

=−m
√
n

8

(24
n

)∑
d|m

μ(d)

d

(n0

d

)

×
∑

u=−3,−4,−8,−24

( u

rd

)
B1,(n0u/·)

(
1−

(un0

2

))(
1−

(un0

3

))
,

where we have used (7). Then by (8) and (9), we get

r�∑
t=0

T (t) =

√
n

8

(24
n

) ∑
u=−3,−4,−8,−24

(u
r

)(
1−

(un
2

))(
1−

(un
3

))
H(un).

This gives the evaluation of the sum of T (t) in (12). The term S′ in (12) is

shown to be 0 in Lemma 19. This establishes (10) for the case n is not a

square.

Now assume that n ≡ 3 mod 4. Then B1,(·/n)ψu
= 0 for u = −3,−4,−8,

−24, and an application of Lemma 18 to (14) gives us

r�∑
t=0

T (t) = im
√
n
∑
d|m

μ(d)

d

( d

n0

)(
−B1,(·/n0)

+
1

8

(24
n0

) ∑
u=1,8,12,24

ψu(−rn2d/m2)B1,(·/n0)ψu

)
.

Using (7), (8), and (9) again, we get

r�∑
t=0

T (t) = i
√
n
(
H(−n)

− 1

8

(24
n

) ∑
u=1,8,12,24

(u
r

)(
1−

(−un

2

))(
1−

(−un

3

))
H(−un)

)
.

Combining this, (12), and Lemma 19, we arrive at the claimed formula. This

completes the proof of the lemma.
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Proposition 21. The total contribution of the parabolic classes of Mn2

to the trace of the linear operator [M ∗
n2 ] on Sr,s(1) is

√
n

8

(12
n

) ∑
e=1,2,3,6

(−4e

r

)(
1−

(−en

3

))(
H(−4en)−H(−en)

)
,

where, for a negative integer −d, we let H(−d) denote the Hurwitz class

number of the imaginary quadratic order of the discriminant −d. (If −d is

not a discriminant, then set H(−d) = 0.)

Proof. We first consider the case n= 1. By Lemmas 16 and 17, we find

that the total contribution is −(r−12)/24. We then verify case by case that

−r− 12

24
=

1

8

∑
e=1,2,3,6

(−4e

r

)(
1−

(−e

3

))(
H(−4e)−H(−e)

)
.

We next consider the cases n > 1. Again, using Lemmas 16 and 17, we

find that the total contribution is

−(−i)r(n−1)/2
n∑

a=1

(−a

n

)e−2πi(r�+1)a/n

1− e−2πia/n
.

Now for n≡ 1 mod 4, we have

(−i)r(n−1)/2 =
( 8

n

)
.

Thus, by (10), the contribution to the trace is

√
n

8

(12
n

) ∑
u=−3,−4,−8,−24

(u
r

)(
1−

(un
2

))(
1−

(un
3

))
H(un).

Since H(−12n) =H(−3n)(2− (−3n/2)), H(−n) =H(−2n) =H(−6n) = 0,

the formula above is equal to that in the statement of the proposition.

Now assume that n≡ 3 mod 4. We have

i(−i)r(n−1)/2 =−
(−4

r

)( 8

n

)
.

Then from Lemma 17, (11), and H(−4n) =H(−n)(2− (−n/2)), we get the

claimed formula. This proves the proposition.
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3.3. Hyperbolic cases

Lemma 22. A complete set of representatives of inequivalent hyperbolic

elements in Mn2 whose fixed points are cusps is{
±
(
a b+ma

0 d

)
:

b= 1, . . . , h, (b,h) = 1,m= 1, . . . , (d− a)/h with h= (a, d)

}
,

where in the set we let a and d run over all integers satisfying ad= n2 and

0< a< d.

Proof. Let M be a hyperbolic element in Mn2 whose fixed points are

cusps. Then the eigenvalues ofM are two integers a and d satisfying ad= n2.

Without loss of generality, we assume that |d|> |a|> 0. Let α be the cusp

corresponding to the eigenvalue a, and choose an element γ ∈ SL(2,Z) such

that σ∞= α. Then

σMσ−1 =

(
a b

0 d

)
for some integer b. The integer b must satisfy (a, b, d) = 1. In other words,

a hyperbolic element in Mn2 whose fixed points are cusps is conjugate to

a matrix of the form ( a b
0 d ) with ad= n2, |d|> |a|> 0, and (b, (a, d)) = 1. It

is clear that if two such matrices ( a b
0 d ) and ( a

′ b′
0 d′ ) are conjugate, then we

must have a = a′ and d = d′. Furthermore, by considering the eigenvector

( 10 ), it is easy to see that two matrices ( a b
0 d ) and ( a b′

0 d ) are conjugate if and

only if they are conjugate by ( 1 m
0 1 ) for some m ∈ Z, that is, if and only if

(d− a) | (b′ − b). With this information, it is straightforward to verify that

the set in the lemma is a complete set of representatives. This proves the

lemma.

Proposition 23. The total contribution of hyperbolic elements in Mn2

to the trace is 0.

Proof. By Shimura’s formula, the contribution from hyperbolic elements

whose fixed points are not cusps is 0. Furthermore, by Lemma 22, a complete

set of inequivalent hyperbolic elements whose fixed points are cusps is{
±
(
a b+ma

0 d

)
:

b= 1, . . . , h, (b,h) = 1,m= 1, . . . , (d− a)/h with h= (a, d)

}
,
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where in the set we let a and d run over all integers satisfying ad= n2 and

0< a< d. Now we have(
a b+ma

0 d

)
=

(
a b

0 d

)(
1 m

0 1

)
.

Thus, if the contribution from the conjugacy class ( a b
0 d ) is A, then the

contribution from the class ( a b+ma
0 d

) is e2πirm/24A. Since 24 | (d− a)/h, as

m runs from 1 to (d − a)/h, the contributions from the classes ( a b+ma
0 d

)

cancel out each other. We therefore conclude that the total contribution

from hyperbolic elements is 0.

3.4. Elliptic cases

The contribution of elliptic classes to the trace of [M ∗
n2 ] will be calcu-

lated according to the greatest common divisor of 24 and the trace t= a+d

of ( a b
c d ) ∈ Mn2 . After relating conjugacy classes of M ∗

n2 with equivalence

classes of quadratic forms in Section 3.4.1 and some preliminary computa-

tion in Section 3.4.2, we evaluate the contribution of elliptic classes case

by case. The computation is tedious. Here we will give details only for the

case (t,24) = 1 and a subcase of the case (t,24) = 2. For the calculation

in other cases, we refer the reader to the arXiv version of this paper (see

arXiv:1110.1810v1 [math.NT]).

3.4.1. Quadratic forms. Assume that γ = ( a b
c d ) ∈ Mn2 is elliptic. Then

t = a + d, f = (b, c, d − a), and sgn c are invariants under conjugation by

elements of SL(2,Z). This can be seen from the one-to-one correspondence

between the set

Γn,t,f =

{(
a b

c d

)
∈ Mn2 : a+ d= t, f = (b, c, d− a), c > 0

}

and the set Q(t2−4n2)/f2 of all primitive positive definite quadratic forms of

the discriminant (t2 − 4n2)/f2, where

QD = {Ax2 +Bxy+Cy2 :B2 − 4AC =D,A> 0},

and the correspondence is given by

(20)

(
a b

c d

)
←→ 1

f

(
cx2 + (d− a)xy− by2

)
.

Elements γ of SL(2,Z) act on Γn,t,f by conjugation and on Q(t2−4n2)/f2

by change of variable ( xy ) 	→ γ( xy ). Moreover, the two group actions are

compatible with respect to the correspondence above.

http://arxiv.org/abs/arXiv:1110.1810v1
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Lemma 24. The total contribution of elliptic elements in M ∗
n2 to the trace

of the linear operator [M ∗
n2 ] on Sr,s(1) is

2
∑
t,f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ),

where the outer sum runs over all integers t with t2 < 4n2 and all positive

integers f such that (t2 − 4n2)/f2 ≡ 0,1 mod 4; the inner sum runs over

all class representatives of Γn,t,f under conjugation by SL(2,Z); and J(γ)

is defined as in Definition 13.

Proof. From the discussion preceding the lemma, we easily see that every

elliptic element in Mn2 falls in precisely one of Γn,t,f and −Γn,t,f . Also, it is

clear that if γ1, . . . , γm are class representatives of Γn,t,f , then −γ1, . . . ,−γm
are class representatives of −Γn,t,f . We now show that J(−γ) = J(γ). Then

the lemma follows.

Assume that γ = ( a b
c d ) ∈ Γn,t,f and that

γ∗ =

((
a b

c d

)
, u(cτ + d)k+1/2

)
.

Then by Proposition 14, the contribution of the class of γ to the trace is

J(γ) =
ρ1/2−k

wu(ρ− ρ)
,

where ρ= (t+
√
t2 − 4n2)/2. Now we have

(−γ)∗ =

((
−a −b

−c −d

)
, u(cτ + d)k+1/2

)

=

((
−a −b

−c −d

)
, ue2πi(2k+1)/4(−cτ − d)k+1/2

)
.

Thus,

J(−γ) =
(−ρ)1/2−k

wue2πi(2k+1)/4(−ρ+ ρ)
=

e2πi(2k−1)/4ρ1/2−k

wue2πi(2k+1)/4(−ρ+ ρ)
= J(γ).

This proves the lemma.

Remark 25. Since for ( a b
c d ) ∈ Mn2 we have (a, b, c, d) = 1, the integers

n, t, and f need to satisfy the following conditions.
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(1) The common divisor (n, t, f) must be 1.

(2) The integer (t, f) can only be 1 or 2. Moreover, if (t, f) = 2, then because

(t2 − 4n2)/4 is a discriminant, we must have 2 | t, but 4 � t.
(3) The integer (f, t+ 2n, t− 2n) can only be 1, 2, or 4, and if the latter

two cases occur, then 2 | t, but 4 � t.
We first choose a suitable representative γ in each conjugacy class in

Γn,t,f and determine γ∗.

Lemma 26. Each conjugacy class of Γn,t,f contains an element ( a b
c d ) such

that c= fp for some prime p > 4n and (c, d) = 1.

Moreover, in the case 2 | f (which occurs only when 2 ‖ t), we may further

require that d satisfies the congruences

d≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t′ mod 8 if 2 ‖ f,
t′ mod 16 if 4 ‖ f,
t′ mod 8 if 8 ‖ f and (t2 − 4n2)/64 is even,

t′ + 4 mod 8 if 8 ‖ f and (t2 − 4n2)/64 is odd,

t′ mod 8 if 16 | f,

where t′ = t/2.

Proof. It is well known that a primitive positive definite quadratic form

represents infinitely many primes, which implies that each class of quadratic

forms in Q(t2−4n2)/f2 contains elements of the form px2 + uxy + vy2 for

infinitely many primes p. The matrix corresponding to this form under (20)

is (
(t− fu)/2 −fv

fp (t+ fu)/2

)
.

Now if p > 4n, then the relation

f2(u2 − 4pv) = t2 − 4n2

implies that p � (t + fu), and hence (fp, (t + fu)/2) = (f, (t + fu)/2). By

Remark 25, this can only be 1 or 2. However, because the determinant of

the matrix is the odd integer n2, (fp, (t+ fu)/2) cannot be even. That is,

(fp, (t+ fu)/2) = 1. This proves the first part of the statement.

Now assume that 2 ‖ f . From

(21)

(
1 −u

0 1

)(
a b

c d

)(
1 u

0 1

)
=

(
a− cu −cu2 + u(a− d) + b

c d+ cu

)
,

it is clear that we can further assume that d≡ t′ mod 8.
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Assume that 4 ‖ f . Since 32 | (t2−4n2) and (t2−4n2)/16 are discriminant,

we must have 64 | (t2 − 4n2). Then the equality t2 − 4n2 = (d − a)2 + 4bc

shows that 64 | (d− a)2, that is, that 8 | (d− a). Then

d=
1

2

(
t+ (d− a)

)
≡ t′ mod 4.

By (21) again, we may assume that d≡ t′ mod 16.

Assume that 8 ‖ f . We have 64 | (t2 − 4n2) and 8 | b, c. Then (d− a)2 =

t2 − 4n2 − 4bc ≡ (t2 − 4n2) mod 256. If (t2 − 4n2)/64 is even, then d ≡
a mod 16 and d = (t+ d − a)/2 ≡ t′ mod 8. If (t2 − 4n2)/64 is odd, then

d≡ a+ 8 mod 16 and d≡ t′ + 4 mod 8.

Finally, if 16 | f , by a computation similar to the case 8 ‖ f we find that

d≡ t′ mod 8. This proves the lemma.

For our purpose, we also need to recall some properties of genus characters

of integral binary quadratic forms. Let D < 0 be a discriminant; that is,

D ≡ 0,1 mod 4. For each odd prime divisor p of D, one can associate to QD

a character by

χ :Ax2 +Bxy+Cy2 	−→
(A
p

)
=
(p∗
A

)
, p∗ = (−1)(p−1)/2p.

For D ≡ 0 mod 4, there may also exist characters of the form

Ax2 +Bxy+Cy2 	−→
( u

A

)
, u ∈ {−4,8,−8},

depending on the residue of D/4 modulo 8. Any product of these characters

is called a genus character. All genus characters can be written as

χD1 :Ax2 +Bxy+Cy2 	−→
(D1

A

)
for some (positive or negative) divisor D1 of D such that D1 and D/D1 are

both discriminants and vice versa. General properties of genus characters

can be found in [4, Chapter 1]. Here we only quote some properties relevant

to our calculation of traces.

Lemma 27. Let D and D1 be as above, and let χD1 :QD → {±1} be a

genus character. Then we have the following properties.

(1) The value of χD1 for a quadratic form Ax2+Bxy+Cy2 ∈QD depends

only on the genus in which the quadratic form lies. In particular, every

quadratic form in the same class takes the same value of χD1 .
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(2) We have that χD1 is a trivial character (i.e., mapping every quadratic

form to 1) if and only if D1 or D/D1 is a square.

(3) The sum of χD1 over a complete set of class representatives of QD/

SL(2,Z) is

∑
Ax2+Bxy+Cy2∈QD/SL(2,Z)

(D1

A

)
=

{
h(D) if D1 or D/D1 is a square,

0 otherwise,

where h(D) is the number of classes in QD.

Finally, the following formula frequently occurs in our computation.

Lemma 28. Let D be the discriminant of an imaginary quadratic order.

Let u be a positive integer. Then we have

∑
f |u

(D
f

)
H
(u2
f2

D
)
= uH(D).

Proof. We have

∑
f |u

(D
f

)
H
(u2
f2

D
)
=H(D)

∑
f |u

(D
f

)u
f

∑
m|(u/f)

μ(m)

m

(D
m

)

=H(D)
∑
n|u

(D
n

)u
n

∑
m|n

μ(m).

The sum
∑

m|n μ(m) is nonzero only when n = 1. From this, we get the

claimed formula.

3.4.2. Preliminary calculation and notation.

Lemma 29. If ( a b
c d ) ∈ Mn2 satisfies (c, d) = 1 and c > 0, then

(
a b

c d

)∗
=

((
a b

c d

)
, n−k−1/2ε(a, b, c, d)r(cτ + d)k+1/2

)
,

where

ε(a, b, c, d) =

{
(dc )e

2πi(bd(1−c2)+c(a+d−3))/24 if c is odd,

( cd)e
2πi(ac(1−d2)+d(b−c+3)−3)/24 if c is even.
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Proof. Let α,β ∈ Z be integers such that αd+ βc= 1. We have(
a b

c d

)
=

(
1 aβ + bα

0 1

)(
n2 0

0 1

)(
α −β

c d

)
.

Now (
α −β

c d

)∗
=

((
α −β

c d

)
, ε(α,−β, c, d)r(cτ + d)k+1/2

)

and (
1 aβ + bα

0 1

)∗
=

((
1 aβ + bα

0 1

)
, e2πir(aβ+bα)/24

)
.

Then from(
1 aβ + bα

0 1

)(
α −β

c d

)
=

(
a+ (1− n2)α b+ (n2 − 1)β

c d

)

we deduce that

e2πir(aβ+bα)/24ε(α,−β, c, d)r = ε
(
a+ (1− n2)α, b+ (n2 − 1)β, c, d

)r
= ε(a, b, c, d)r.

Then the lemma follows.

All the 24th roots of unity can be expressed in terms of Jacobi symbols,

which we give in the next lemma for future reference.

Lemma 30. If (t,24) = 1, then

e2πit/24 =

√
2

4

(8
t

)
+

√
6

4

(24
t

)
− i

√
2

4

(−8

t

)
+

i
√
6

4

(−24

t

)
.

If (t,12) = 1, then

e2πit/12 =

√
3

2

(12
t

)
+

i

2

(−4

t

)
.

If (t,8) = 1, then

e2πit/8 =

√
2

2

(8
t

)
+

i
√
2

2

(−8

t

)
.

If (t,6) = 1, then

e2πit/6 =
1

2
+

i
√
3

2

(−3

t

)
.



30 Y. YANG

If (t,4) = 1, then

e2πit/4 = i
(−4

t

)
.

If (t,3) = 1, then

e2πit/3 =−1

2
+

i
√
3

2

(−3

t

)
.

Let class representatives ( a b
c d ) of Γn,t,f be chosen as in Lemma 26. Then

by Proposition 14 and Lemma 29, the contribution of the class of ( a b
c d ) to

the trace is

(22) J(γ) =
nk+1/2

wn,t,f
ε(a, b, c, d)−r ρ

1/2−k

ρ− ρ
,

where

(23) wn,t,f =

⎧⎪⎨
⎪⎩
6 if (t2 − 4n2)/f2 =−3,

4 if (t2 − 4n2)/f2 =−4,

2 otherwise

is the number of elements in SL(2,Z) commuting with γ,

ε(a, b, c, d) =
(d
c

)
e−2πic/8e2πi(bd(1−c2)+ct)/24

and ρ= (t+
√
t2 − 4n2)/2. In view of Lemma 30, sums of the form

∑
(d/c)×

(e/c), e=±1,±2,±3,±6, will appear frequently in our computation. So we

first compute such sums.

Notation 31. For e=±1,±2,±3,±6 and nonnegative integers �, we set

Le,�(n, t) :=
ρ1/2−k

ρ− ρ

( ∑
f :2�‖f,(n,t,f)=1

1

wn,t,f

∑
(a b
c d

)∈Γn,t,f/SL(2,Z)

( d

c′

)( e

c′

)

− 3
∑

f :2�‖f,3|f,(n,t,f)=1

1

wn,t,f

∑
(a b
c d

)∈Γn,t,f/SL(2,Z)

( d

c′

)( e

c′

))
,

(24)

where in the inner sums, the representatives ( a b
c d ) are chosen according to

Lemma 26, c′ = c/2� (i.e., c′ is the odd part of c), and ρ= (t+
√
t2 − 4n2)/2.
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Moreover, for e= 1,2,3,6 and integers u, we set

Me,�(n,u) :=
(τ/

√
e)1−2k

τ − τ

( ∑
g:2�‖g,(n,u,g)=1

H
(e2u2 − 4en

g2

)

− 3
∑

g:2�‖g,3|g,(n,u,g)=1

H
(e2u2 − 4en

g2

))
,

(25)

and

M ′
e,�(n,u) :=

(τ/
√
e)1−2k

τ − τ

( ∑
g:2�‖g,(n,u,g)=1

H
(e2u2 − 4en

g2

)

− 3
∑

g:2�‖g,3|g,(n,u,g)=1

H
(e2u2 − 4en

g2

))
,

(26)

where τ = (eu+
√
e2u2 − 4en)/2 and where g runs over all positive integers

satisfying the given conditions such that (e2u2 − 4en)/g2 is a discriminant.

Lemma 32. Let n be a positive integer relatively prime to 6, and let t be

an integer satisfying t2 < 4n2. Let

e ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{±1,±3} if (t,24) = 1,

{±1,±2,±3,±6} if (t,24) = 2,

{±1} if (t,24) = 3,

{±2,±6} if (t,24) = 4 or (t,24) = 8,

{±1,±2} if (t,24) = 6,

{±2} if (t,24) = 12 or (t,24) = 24.

If e(t+ 2n) is a discriminant, that is, if e(t+ 2n)≡ 0,1 mod 4, then there

exists a rational number s such that t2 − 4n2 decomposes into a product of

two discriminants s2e(t+ 2n) and (t− 2n)/(es2).

Proof. Here we consider only the case (t,24) = 2. When e=±1, we have

4 | (t+2n), (t−2n), and the statement holds obviously. When e=±2, we can

decompose t2−4n2 as 2(t+2n) · (t−2n)/2 or (t+2n)/2 ·2(t−2n) according

to whether 8 | (t− 2n) or 8 | (t+ 2n). When e = ±3, the decomposition is

3(t+2n) · (t−2n)/3 or (t+2n)/3 ·3(t−2n) according to whether 3 | (t−2n)

or 3 | (t+ 2n). When e =±6, the rational number s can be one of 1, 1/2,

1/3, or 1/6, depending on whether 8 | (t+ 2n) and whether 3 | (t+ 2n).
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We now evaluate Le,�(n, t). The computation mostly follows that in [14,

Section 4].

Lemma 33. Let n be a positive integer relatively prime to 6. For e ∈
{1,2,3,6} and integers u, let

μe(n,u) =

{
1 if 3 � u,

1 + ( en3 ) if 3 | u.
Then we have the following formulas.

(1) Let t and e be integers satisfying the assumptions in Lemma 32.

If e(t+ 2n)≡ 0,1 mod 4, then

Le,0(n, t) =
1

2

{
0 if e(t+ 2n) is not a square,

μe(n,u)Me,0(n,u) if t+ 2n= eu2,
(27)

where u is the positive square root of (t+ 2n)/e.

Also, if −e(t+ 2n)≡ 0,1 mod 4, then

L−e,0(n, t)

=
i

2

(−4

r

){0 if e(2n− t) is not a square,

μe(n,u)M
′
e,0(n,u) if 2n− t= eu2,

(28)

where u is the positive square root of (2n− t)/e.

(2) Assume that 2 ‖ t and that e ∈ {±1,±3}. Then

Le,1(n, t) =
1

2
Le,0(n, t).

(3) Assume that 2 ‖ t, e ∈ {1,3} and that �≥ 2. Then

Le,�(n, t) =
1

2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if e(t+ 2n) is not a square,

μe(n,u)Me,�−1(n,u)/2 if t+ 2n= eu2 and 2 ‖ u,
μe(n,u)Me,1(n,u)/2

�−1 if t+ 2n= eu2 and 2�−1 ‖ u,
μe(n,u)Me,0(n,u)/2

� if t+ 2n= eu2 and 2� | u,
and

L−e,�(n, t)

=
i

2

(−4

r

)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if e(2n− t) is not a square,

μe(n,u)M
′
e,�−1(n,u)/2 if 2n− t= eu2 and 2 ‖ u,

μe(n,u)M
′
e,1(n,u)/2

�−1 if 2n− t= eu2 and 2�−1 ‖ u,
μe(n,u)M

′
e,0(n,u)/2

� if 2n− t= eu2 and 2� | u.
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Proof. We first prove (27). Note that in the sum defining Le,0(n, t), the

integers f are always odd, and according to the choice of representatives

given in Lemma 26, we have c′ = c. Then from Remark 25, we know that

(f, t + 2n, t − 2n) = 1. Thus, if f1 = (f, t + 2n) and f2 = (f, t − 2n), then

f = f1f2, f
2
1 | (t+ 2n) and f2

2 | (t− 2n). Write (d/c) as

(d
c

)
=
( d

c/f

)( d

f1

)( d

f2

)
.

Since

( d

c/f

)( t+ 2n

c/f

)
=
(ad+ 2nd+ d2

c/f

)
=
(n2 + 2nd+ d2

c/f

)
= 1,

we have ( d

c/f

)
=
((t+ 2n)/f2

1

c/f

)
.

By the same token, we also have

( d

f1

)
=
((t− 2n)/f2

2

f1

)
,

( d

f2

)
=
((t+ 2n)/f2

1

f2

)
,

and hence

(29)
(d
c

)(e
c

)
=
(e(t+ 2n)/f2

1

c/f

)(e(t− 2n)/f2
2

f1

)(e(t+ 2n)/f2
1

f2

)
.

Now e(t+2n) is assumed to be a discriminant. By Lemma 32, we can decom-

pose t2 − 4n2 into a product es2(t+2n) · (t− 2n)/es2 of two discriminants.

So by Lemma 27,

1

wn,t,f

∑
(a b
c d

)∈Γn,t,f/SL(2,Z)

(e(t+ 2n)/f2
1

c/f

)

=

{
H((t2 − 4n2)/f2)/2 if e(t+ 2n) = (eu)2 is a square,

0 otherwise.

(30)

In the case e(t+ 2n) = (eu)2, we have

(31) ρ=
t+

√
t2 − 4n2

2
=
(√e(t+ 2n) +

√
e(t− 2n)

2
√
e

)2
=
( τ√

e

)2
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and

(32) ρ− ρ=
√
t2 − 4n2 = u

√
e2u2 − 4en= u(τ − τ),

where τ = (eu+
√
Δ)/2 with Δ = e2u2 − 4en. Then for the first sum

∑
f

defining Le,0(n, t) in (24), we have

∑
(f,2)=1,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)

=
1

2

∑
(f,2)=1,(n,t,f)=1

(e(t+ 2n)/f2
1

f2

)(e(t− 2n)/f2
2

f1

)
H
( t2 − 4n2

f2

)

=
1

2

∑
(f2,2)=1,(n,t,f2)=1

∑
f1|u,(f1,2)=1,(n,t,f1)=1

(Δ/f2
2

f1

)
H
(u2
f2
1

Δ

f2
2

)
.

(33)

The inner sum running over f1 is the same as

(34)
∑
f1|u

(Δ/f2
2

f1

)
H
(u2
f2
1

Δ

f2
2

)

since if 2 | f1 or (n, t, f1)> 1, then (
Δ/f2

2
f1

) = 0. Then by Lemma 28, the first

sum in (24) is equal to

(35)
∑

(f,2)=1,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)
=

u

2

∑
(f2,2)=1,(n,t,f2)=1

H
(Δ

f2
2

)
.

For the second sum in (24), we have two cases:

{
3 | f1,3 � f2 if 3 | u,
3 | f2,3 � f1 if 3 � u.

If 3 � u, then a computation similar to (33)–(35) yields

(36)
∑

(f,2)=1,3|f,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)
=

u

2

∑
(f2,2)=1,3|f2,(n,t,f2)=1

H
(Δ

f2
2

)
.
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If 3 | u, then
∑

(f,2)=1,3|f,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)

=
1

2

∑
(f,6)=3,(n,t,f)=1

(e(t+ 2n)/f2
1

f2

)(e(t− 2n)/f2
2

f1

)
H
( t2 − 4n

f2

)

=
1

2

∑
(f2,2)=1,(n,t,f2)=1

∑
f1|u,(f1,6)=3,(n,t,f)=1

(Δ/f2
2

f1

)
H
(u2
f2
1

Δ

f2
2

)
.

By Lemma 28, the inner sum is equal to

∑
h|(u/3),(h,2)=1,(n,t,h)=1

(Δ/f2
2

3h

)
H
((u/3)2

f2
1

Δ

f2
2

)
=

u

3

(Δ
3

)
H
(Δ

f2
2

)
,

and we have ∑
(f,2)=1,3|f,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)

=
u

6

(Δ
3

) ∑
(f2,2)=1,(n,t,f2)=1

H
(Δ

f2
2

)
.

(37)

Combining (29)–(32) and (35)–(37), we get (27).

The proof of (28) follows the same line of calculation. Equation (29)

continues to hold when we replace e by −e. By Lemma 27, (30) also remains

valid, provided that the condition that e(t+ 2n) is a square is changed to

the condition that e(2n − t) is a square. The computations in (32), (35),

(36), and (37) are almost the same. The only significant difference lies at

(31). Instead of (31), we have

t+
√
t2 − 4n2

2
=
(
i

√
e(2n− t)−

√
−e(t+ 2n)

2
√
e

)2
=
(
i
τ√
e

)2

and ( t+√
t2 − 4n2

2

)1/2−k
= i1−2k

( τ√
e

)1−2k
= i

(−4

r

)( τ√
e

)1−2k
,(38)

where τ = (eu+
√
Δ)/2 with Δ= e2u2− 4en. Here in the last step, we have

used the assumption k = (r− 1)/2 + s. This establishes (28).
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We now prove the second part of the lemma. Here we consider only the

case e= 1,3. The integers f in the sum defining Le,1(n, t) satisfy 2 ‖ f . Let
f ′ = f/2, and set f1 = (f ′, t+ 2n) and f2 = (f ′, t− 2n). Then as before, we

have f ′ = f1f2, f
2
1 | (t+ 2n) and f2

2 | (t− 2n), and (29) remains valid if we

replace c by c′ and f by f ′. For the first sum in Le,�(n, t), the computation

in (30)–(32) remains unchanged. Now instead of (33), we have

∑
2‖f,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)

=
1

2

∑
2‖f,(n,t,f)=1

(e(t+ 2n)/f2
1

f2

)(e(t− 2n)/f2
2

f1

)
H
( t2 − 4n2

f2

)

=
1

2

∑
(f2,2)=1,(n,t,f2)=1

∑
f1|u,(f1,2)=1,(n,t,f1)=1

(Δ/f2
2

f1

)
H
((u/2)2

f2
1

Δ

f2
2

)
.

Now since 4 | (Δ/f2
2 ) = (e2u2 − 4en)/f2

2 , we have

H
((u/2)2

f2
1

Δ

f2
2

)
=

1

2
H
(u2
f2
1

Δ

f2
2

)
.

Following the remaining computation, we easily see that the first sum in

Le,1(n, t) is equal to one-half of that of Le,0(n, t). Similarly, the second sum

in Le,1(n, t) is equal to one-half of that of Le,0(n, t). This proves the second

part of the lemma.

The proof of the third part is also similar. Again, we consider only the

case e > 0. The computation for the first sum in Le,�(n, t) differs from that

for the first sum in Le,0(n, t) mainly at (33). In the case 2 ‖ u, instead of

(33), we have

∑
2�‖f,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)

=
1

2

∑
(f2,2)=1,(n,t,f2)=1

∑
f1|u,(f1,2)=1,(n,t,f1)=1

(Δ/f2
2

f1

)
H
((u/2)2

f2
1

Δ

(2�−1f2)2

)
,

where Δ= e2u2 − 4en. Then, by Lemma 28, it is equal to

∑
2�‖f,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)
=

u

4

∑
(f2,2)=1,(n,t,f2)=1

H
( Δ

(2�−1f2)2

)
.
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The computation for the case 2�−1 ‖ u is almost the same. In this case, we

have ∑
2�‖f,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)
=

u

2�

∑
(f2,2)=1,(n,t,f2)=1

H
( Δ

(2f2)2

)
.

Now if 2� | u, then instead of (33), we have∑
2�‖f,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)

=
1

2

∑
(f2,2)=1,(n,t,f2)=1

∑
f1|u,(f1,2)=1,(n,t,f1)=1

(Δ/f2
2

f1

)
H
((u/2�)2

f2
1

Δ

f2
2

)
.

Since 4 | (Δ/f2
2 ), we have

H
((u/2�)2

f2
1

Δ

f2
2

)
=

1

2�
H
(u2
f2
1

Δ

f2
2

)
,

and by Lemma 28,∑
2�‖f,(n,t,f)=1

1

wn,t,f

∑
γ

(d
c

)(e
c

)
=

u

2�+1

∑
(f2,2)=1,(n,t,f2)=1

H
(Δ

f2
2

)
.

Together with (31) and (32), this completes the computation for the first

sum in Le,�(n, t). The computation for the second sum is analogous and is

skipped.

We now utilize Lemma 33 to compute the contribution of Γn,t,f to the

trace of [Mn2 ]. This will be done according to the greatest common divisor

of t and 24. To summarize our computation, we fix the following notation.

Notation 34. Given a positive integer n relatively prime to 6, e ∈
{1,2,3,6}, and an integer u with e2u2 < 4en, we let

(39) Pk(e,n,u) =
τ2k−1 − τ2k−1

τ − τ
, τ =

eu+
√
e2u2 − 4en

2
.

For nonnegative integers � and m, we set

A�,m(n) =
(12
n

)∑
3�u

(∑
g

H
(Δ

g2

)
− 3

∑
3|g

H
(Δ

g2

))
Pk(1, n,u)

+
(12
n

)∑
3|u

(
1−

(Δ
3

))∑
g

H
(Δ

g2

)
Pk(1, n,u),
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where Δ= u2 − 4n, the outer sums run over all integers u satisfying

u2 < 4n, 2� ‖ u,

and the given conditions, and the inner sums run over all positive integers

g such that

Δ/g2 ≡ 0,1 mod 4, 2m ‖ g, (n,u, g) = 1,

and the specified conditions are met. We also set

A∗
�,m(n) =

∑
�≤j<∞

Aj,m(n).

Similarly, we define

B�(n) =
1

2k−1

(12
n

)(8
r

)∑
3�u

(∑
g

H
(Δ

g2

)
− 3

∑
3|g

H
(Δ

g2

))
Pk(2, n,u)

+
1

2k−1

(12
n

)(8
r

)∑
3|u

(
1−

(Δ
3

))∑
g

H
(Δ

g2

)
Pk(2, n,u),

where Δ= 4u2 − 8n, the outer sums run over all integers u such that

4u2 < 8n, 2� ‖ u,

and the inner sums run over all positive integers g such that

Δ/g2 ≡ 0,1 mod 4, (n,u, g) = 1.

Also, we set

B∗
� (n) =

∑
�≤j<∞

B�(n).

Likewise, define

C�,m(n) =
1

3k−1

(12
n

)(12
r

) ∑
9u2<12n,2�‖u

∑
g

H
(Δ

g2

)
Pk(3, n,u),

where Δ = 9u2 − 12n, and the inner sum runs over all positive integers g

with

Δ/g2 ≡ 0,1 mod 4, 2m ‖ g, (n,u, g) = 1,
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and let

C∗
�,m(n) =

∑
�≤j<∞

Cj,m(n).

Finally, we let

D�(n) =
1

6k−1

(12
n

)(24
r

) ∑
36u2<24n,2�‖u

∑
g

H
(Δ

g2

)
Pk(6, n,u),

where Δ = 36u2 − 24n, and the inner sum runs over all positive integers g

such that

Δ/g2 ≡ 0,1 mod 4, (n,u, g) = 1.

Also, let

D∗
� (n) =

∑
�≤j<∞

Dj(n).

Here we give alternative expressions for A�,m(n) and B�(n), which will

be used later.

Lemma 35. For a discriminant Δ of an imaginary quadratic order, we

let Δ0 denote the discriminant of the field Q(
√
Δ). Then we have

A�,m(n) = β(n)
(12
n

)∑
u

(
1−

(Δ0

3

)) ∑
g,3�Δ/(Δ0g2)

H
(Δ

g2

)
Pk(1, n,u),

where

β(n) =

{
1 if n≡ 1 mod 3,

1/2 if n≡ 2 mod 3

and the double sum runs over the same u and g as in the definition of A�,m

satisfying the additional condition that 3 does not divide Δ/(Δ0g
2), where

Δ= u2 − 4n. Analogously, we also have

B�(n) =
γ(n)

2k−1

(12
n

)(8
r

)∑
u

(
1−

(Δ0

3

)) ∑
g,3�Δ/(Δ0g2)

H
(Δ

g2

)
Pk(2, n,u),

where

γ(n) =

{
1/2 if n≡ 1 mod 3,

1 if n≡ 2 mod 3.
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Proof. Here we prove only the caseA�,m(n). Consider the case n≡ 1 mod 3

first. Assume that 3 � u. We have Δ≡ 0 mod 3. If 3 ‖Δ, then 3 |Δ0 and the

sum
∑

3|g is empty, which yields

∑
g

H
(Δ

g2

)
−
∑
3|g

H
(Δ

g2

)
=
(
1−

(Δ0

3

))∑
g

H
(Δ

g2

)
.

If 9 |Δ, we have∑
g

H
(Δ

g2

)
− 3

∑
3|g

H
(Δ

g2

)

=
∑
h

H(h2Δ0)− 3
∑
3|h

H
(h2Δ0

9

)

=
∑

(h,3)=1

H(h2Δ0) +
∑
3|h

(
H(h2Δ0)− 3H

(h2Δ0

9

))

=
∑

(h,3)=1

H(h2Δ0)−
∑
3|h

(h2Δ0/9

3

)
H
(h2Δ0

9

)

=
∑

(h,3)=1

H(h2Δ0)−
∑

(h,3)=1

(h2Δ0

3

)
H(h2Δ0)

=
(
1−

(Δ0

3

)) ∑
(h,3)=1

H(h2Δ0).

Either way, we find that the first double sum in the definition of A�,m(n) is

equal to ∑
3�u

(
1−

(Δ0

3

)) ∑
g,3�Δ/(g2Δ0)

H
(Δ

g2

)
Pk(1, n,u).

Now if 3 | u, then Δ is not a multiple of 3, and hence(Δ
3

)
=
(Δ0

3

)
.

There is nothing to do in these cases. This proves the case n≡ 1 mod 3.

Now assume that n ≡ 2 mod 3. We have 3 � Δ. Thus, the sum
∑

3|g is

empty and

1−
(u2 − 4n

3

)
=

{
2 if 3 � u,

0 if 3 | u.
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That is, the second sum in the definition of A�,m(n) vanishes. The assertion

follows.

3.4.3. Case (t,24) = 1.

Lemma 36. For the case (t,24) = 1, we have

∑
(t,24)=1

∑
f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ)

=−n3/2−k

8

{
(A0,0(n) +C0,0(n)) if n≡ 1 mod 3,

C0,0(n) if n≡ 2 mod 3.

Here the outermost sums run over all integers t satisfying t2 < 4n2 and

(t,24) = 1, the middle sums run over positive integers f such that (t2 −
4n2)/f2 is a discriminant, and the functions A0,0(n) and C0,0(n) are defined

as in Notation 34.

Proof. Since (t,24) = 1, the integers f are always odd. Let class represen-

tatives ( a b
c d ) of Γn,t,f/SL(2,Z) be chosen as per Lemma 26. By Lemma 29,

we have

(
a b

c d

)∗
=

((
a b

c d

)
, n−k−1/2ε(a, b, c, d)r(cτ + d)k+1/2

)
,

where

ε(a, b, c, d) =
(d
c

)
e2πi(bd(1−c2)+c(a+d−3))/24.

If 3 � f , then (c,6) = 1 and bd(1 − c2) ≡ 0 mod 24. If 3 | f , then 3 | b and

8 | (1− c2). Either way, we get ε(a, b, c, d) = (d/c)e2πict/24e−2πic/8 and

(40) J(γ) =
nk+1/2

wn,t,f

(d
c

)
e2πirc/8e−2πirct/24 ρ

1/2−k

ρ− ρ
,

where ρ= (t+
√
t2 − 4n2)/2.
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Now for 3 � f , we have, by the formulas in Lemma 30,

e2πirc/8e−2πirct/24

=
1

4

(( 8

rc

)
+ i

(−8

rc

))(( 8

−rct

)
+
√
3
( 24

−rct

)
− i

( −8

−rct

)
+ i

√
3
( −24

−rct

))

=
1

4

((8
t

)
−
(−8

t

))
+

i

4

(−4

rc

)((8
t

)
+
(−8

t

))

+

√
3

4

(12
rc

)((24
t

)
+
(−24

t

))
+

i
√
3

4

(−3

rc

)((24
t

)
−
(−24

t

))

=
1

2

(8
t

)(
δ3(t) + iδ1(t)

(−4

rc

))
+

√
3

2

(24
t

)(12
rc

)(
δ1(t) + iδ3(t)

(−4

rc

))
,

where

(41) δj(t) =

{
1 if t≡ j mod 4,

0 otherwise.

For 3 | f , we have 3 | c and

e2πirc/8e−2πirct/24 =
1

2

(( 8

rc

)
+ i

(−8

rc

))(( 8

rct/3

)
− i

( −8

rct/3

))

=
1

2

(
−
(8
t

)
+
(−8

t

))
− i

2

(−4

rc

)((8
t

)
+
(−8

t

))

=−δ3(t)
(8
t

)
− iδ1(t)

(8
t

)(−4

rc

)
.

Thus, ∑
(t,24)=1

∑
f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ)

=
nk+1/2

2

∑
(t,24)=1

(
δ3(t)

(8
t

)
L1,0(n, t)

+ iδ1(t)
(−4

r

)(8
t

)
L−1,0(n, t)

+
√
3δ1(t)

(12
r

)(24
t

)
L3,0(n, t)

+ i
√
3δ3(t)

(−3

r

)(24
t

)
L−3,0(n, t)

)
,

(42)
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where Le,�(n, t) are defined by (24). (Note that the second sums in the

definition of L3,0(n, t) and L−3,0(n, t) are empty.)

For the term δ3(t)L1,0(n, t), δ3(t) = 0 implies that t+2n is a discriminant,

and Lemma 33 applies. That is, δ3(t)L1,0(n, t) is nonzero only when t+2n=

u2 for some (odd) integer u. If this situation occurs, then t+2n≡ 1 mod 8

and

(43)
(8
t

)
= (−1)(t

2−1)/8 = (−1)n(n−1)/2 =
(−4

n

)
.

Also observe that since (t,24) = 1, if n ≡ 2 mod 3, any integer u such

that u2 = t + 2n must be divisible by 3. This information, together with

Lemma 33, yields

∑
(t,24)=1

δ3(t)
(8
t

)
L1,0(n, t) =

λ1(n)

2

(−4

n

) ∑
(u,6)=1

M1,0(n,u)

+
1

2

(−4

n

) ∑
(u,6)=3

(
1 +

(n
3

))
M1,0(n,u),

(44)

where the sums run over all positive integers u such that u2 < 4n satisfying

the given conditions, Me,�(n,u) are defined by (25), and for j = 1,2,

(45) λj(n) =

{
1 if n≡ j mod 3,

0 otherwise.

Likewise, for the term δ1(t)L−1,0(n, t) in (42), δ1(t) = 0 implies that −(t+

2n) is a discriminant. Therefore, assuming that δ1(t) = 1, Lemma 33 shows

that L−1,0(n, t) is nonzero only when 2n− t= u2 is a square. In such cases,

(43) continues to hold. Then Lemma 33 yields

∑
(t,24)=1

δ1(t)
(8
t

)
L−1,0(n, t) = i

λ1(n)

2

(−4

rn

) ∑
(u,6)=1

M ′
1,0(n,u)

+
i

2

(−4

rn

) ∑
(u,6)=3

(
1 +

(n
3

))
M ′

1,0(n,u).

(46)

The computations for the rest of terms in (42) are similar. We find that,

for t with δ1(t) = 1, 3(t + 2n) is a discriminant. For such t, L3,0(n, t) is
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nonzero only when 3(t+ 2n) = (3u)2 is a square. Then t+ 2n≡ 3 mod 24

and (24
t

)
=
(−3

t

)(−4

t

)(8
t

)
=
(−3

n

)
(−1)(t−1)/2+(t2−1)/8

=
(−3

n

)
(−1)n(n−1)/2 =

(12
n

)
.

Then by Lemma 33,∑
(t,24)=1

δ1(t)
(24

t

)
L3,0(n, t) =

1

2

(12
n

) ∑
(u,2)=1

M3,0(n,u),(47)

where the sum runs over all positive integers u satisfying 9u2 < 12n and the

given conditions. By a similar computation and the same lemma, we also

have ∑
(t,24)=1

δ3(t)
(24

t

)
L−3,0(n, t) =

i

2

(−4

r

)(12
n

) ∑
(u,2)=1

M ′
3,0(n,u).(48)

Combining (42), (44), and (46)–(48), we get∑
(t,24)=1

∑
f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ)

=
λ1(n)n

k+1/2

4

(−4

n

) ∑
(u,6)=1

(
M1,0(n,u)−M ′

1,0(n,u)
)

+
nk+1/2

4

(−4

n

) ∑
(u,6)=3

(
1 +

(n
3

))(
M1,0(n,u)−M ′

1,0(n,u)
)

+
3knk+1/2

4

(12
n

)(12
r

) ∑
(u,2)=1

(
M3,0(n,u)−M ′

3,0(n,u)
)
.

(49)

Notice that for τ = (eu+
√
e2u2 − 4en)/2 we have

τ1−2k − τ1−2k

τ − τ
=−(en)1−2k τ

2k−1 − τ2k−1

τ − τ
.

Now if n≡ 1 mod 3, then (−4/n) = (12/n) and

∑
(t,24)=1

∑
f

∑
γ

J(γ) =−n3/2−k

8

(
A0,0(n) +C0,0(n)

)
.
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(Note that in the definition of A�,m(n), the integers u can be positive or

negative, but in (49), the integers u are always positive. This explains the

additional factor 1/2 above.) If n ≡ 2 mod 3, then the factor 1 + (n/3) in

the middle sum in (49) is equal to 0, and we have

∑
(t,24)=1

∑
f

∑
γ

J(γ) =−n3/2−k

8
C0,0(n).

This completes the proof.

3.4.4. Case (t,24) = 3.

Lemma 37. We have

∑
(t,24)=3

∑
f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ) =−n3/2−k

4

{
0 if n≡ 1 mod 3,

A0,0(n) if n≡ 2 mod 3,

where A0,0(n) is defined as in Notation 34.

3.4.5. Case (t,24) = 4.

Lemma 38. We have

∑
(t,24)=4

∑
f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ) =−n3/2−k

16

⎧⎪⎨
⎪⎩
D0(n) if n≡ 1 mod 4,

0 if n≡ 7 mod 12,

B0(n) if n≡ 11 mod 12.

3.4.6. Case (t,24) = 8.

Lemma 39. We have

∑
(t,24)=4

∑
f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ) =−n3/2−k

16

⎧⎪⎨
⎪⎩
0 if n≡ 1 mod 12,

B0(n) if n≡ 5 mod 12,

D0(n) if n≡ 3 mod 4.

3.4.7. Case (t,24) = 12.

Lemma 40. We have

∑
(t,24)=12

∑
f

∑
γ∈Γn,t,f/SL(2,Z)

=−n3/2−k

8

{
B0(n) if n≡ 7 mod 12,

0 otherwise,

where B0(n) is defined as in Notation 34.
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3.4.8. Case (t,24) = 24.

Lemma 41. We have

∑
(t,24)=24

∑
f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ) =−n3/2−k

8

{
B0(n) if n≡ 1 mod 12,

0 otherwise,

where B0(n) is defined as in Notation 34.

3.4.9. Case (t,24) = 2 and 2 � f .

Lemma 42. When (t,24) = 2 and f is odd, we have∑
(t,24)=2

∑
fodd

∑
γ∈Γn,t,f/SL(2,Z)

J(γ)

=−n3/2−k

16

{
D∗

1(n) if n≡ 1 mod 3,

(B∗
1(n) +D∗

1(n)) if n≡ 2 mod 3.

3.4.10. Case (t,24) = 2 and 2 | f .

Lemma 43. Assume that 2 ‖ t, and write t = 2t′. For class representa-

tives ( a b
c d ) of Γn,t,f/SL(2,Z) given in Lemma 26, define ε(a, b, c, d) as in

Lemma 29. Denote the odd part of c by c′.

(1) If 2 ‖ f , then

ε(a, b, c, d) =
( 2

n

)(c′
d

)
e−2πic′t′/12e2πi(t

′−1)/8.

(2) If 4 ‖ f , then

ε(a, b, c, d) =−(−1)(t
2−4n2)/64

(c′
d

)
e2πic

′t′/3e2πi(t
′−1)/8.

(3) If 2v ‖ f , v ≥ 3, then

ε(a, b, c, d) =
( 2

t′

)v(c′
d

)
e2πi2

v−2c′t′/3e2πi(t
′−1)/8.

Proof. We have(
ac(1− d2) + d(b− c+ 3)− 3

)
−
(
bd(1− c2) + c(a+ d)

)
=−(n2 + 2)cd+ 3d− 3≡−3cd+ 3d− 3 mod 24.
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Thus,

(50) ε(a, b, c, d) =
( c
d

)
e2πi(bd(1−c2)+ct)/24e2πi(−cd+d−1)/8.

From now on, we let c′, f ′, and t′ be the odd parts of c, f , and t, respectively.

Consider the case 2 ‖ f . By Lemma 26, we may assume that 2 ‖ c and that

d≡ t′ mod 8. For such representatives, we have a= t−d= 2t′−d≡ t′ mod 8

and

t2 − 4n2 = (d− a)2 + 4bc≡ 4bc mod 64.

Now

t2 − 4n2 = 32
(t′)2 − n2

8
≡
{
32 mod 64 if ( 2t′ )(

2
n) =−1,

0 mod 64 if ( 2t′ )(
2
n) = 1,

which shows that b is divisible by 4 and 8 | b if and only if (2/t′)(2/n) = 1.

Now if 3 � f , then c2 ≡ 4 mod 24 so that

bd(1− c2)≡
{
12 mod 24 if 4 ‖ b,
0 mod 24 if 8 | b.

The same congruences also hold when 3 | f . Therefore, from (50), we have

ε(a, b, c, d) =
(2
d

)(c′
d

)( 2

n

)( 2

t′

)
e2πic

′t′/6e2πi(−ct′+t′−1)/8

=
( 2

n

)(c′
d

)
e−2πic′t′/12e2πi(t

′−1)/8.

This proves statement (1) of the lemma.

We next consider the case 4 ‖ f . By Lemma 26, we may assume that

d≡ t′ mod 16. For such representatives, we also have a= 2t′−d≡ t′ mod 16.

Thus, from t2 − 4n2 = (d− a)2 + 4bc, we see that 4bc≡ t2 − 4n2 mod 256.

That is,
b

4

c

4
≡ t2 − 4n2

64
mod 4,

from which we obtain e2πibd(1−c2)/24 = (−1)b/4 = (−1)(t
2−4n2)/64. It follows

that

ε(a, b, c, d) = (−1)(t
2−4n2)/64

( c
d

)
e2πict/24e−2πicd/8e2πi(d−1)/8

=−(−1)(t
2−4n2)/64

(c′
d

)
e2πic

′t′/3e2πi(t
′−1)/8.
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This proves statement (2).

For 8 ‖ f , class representatives given in Lemma 26 satisfy either d ≡
t′ + 4 mod 8 or d≡ t′ mod 8. In either case, we have

(2
d

)
e2πi(d−1)/8 =

( 2

t′

)
e2πi(t

′−1)/8.

Then from (50), we get

ε(a, b, c, d) =
(2
d

)(c′
d

)
e2πict/24e2πi(d−1)/8 =

( 2

t′

)(c′
d

)
e4πic

′t′/3e2πi(t
′−1)/8.

This proves the case 8 ‖ f . The proof of the case 16 | f is similar and is

omitted.

Lemma 44. We have

∑
(t,24)=2

∑
2‖f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ)

=−n3/2−k

16

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A∗
2,0(n) +C1,0(n) if n≡ 1 mod 12,

C1,0(n) if n≡ 5 mod 12,

A1,0(n) +C∗
2,0(n) if n≡ 7 mod 12,

C∗
2,0(n) if n≡ 11 mod 12.

Proof. Let class representatives γ = ( a b
c d ) be chosen as per Lemma 26. In

particular, we have d≡ (t/2) mod 8. Let c′ and t′ denote the odd parts of c

and t, respectively. By (22) and Lemma 43, we have

J(γ) =
nk+1/2

wn,t,f

( 2

n

)(c′
d

)
e2πirc

′t′/12e−2πir(t′−1)/8 ρ
1/2−k

ρ− ρ
,

where ρ = (t +
√
t2 − 4n2)/2. We check directly using the quadratic reci-

procity law that

(51)
(c′
d

)
e−2πir(t′−1)/8 =

( d

c′

)( 8

t′

){1 if t′ ≡ 1 mod 4,

i(−4
rc′ ) if t′ ≡ 3 mod 4.
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If 3 � f , then

(c′
d

)
e2πirc

′t′/12e−2πir(t′−1)/8

=
1

2

( d

c′

)( 8

t′

)(√
3
( 12

rc′t′

)
+ i

( −4

rc′t′

))(
δ1(t

′) + iδ3(t
′)
(−4

rc′

))

=
1

2

( d

c′

)( 8

t′

)(
δ3(t

′) + iδ1(t
′)
(−4

rc′

))

+

√
3

2

( d

c′

)(24
t′

)( 12

rc′

)(
δ1(t

′) + iδ3(t
′)
(−4

rc′

))
,

where δ1(t
′) and δ3(t

′) are defined by (41). If 3 | f , then 3 | c′ and
(c′
d

)
e2πirc

′t′/12e−2πir(t′−1)/8 = i
( d

c′

)( 8

t′

)( −4

rc′t′/3

)(
δ1(t

′) + iδ3(t
′)
(−4

rc′

))

=−
( d

c′

)( 8

t′

)(
δ3(t

′) + iδ1(t
′)
(−4

rc′

))
.

It follows that∑
(t,24)=2

∑
2‖f

∑
γ

J(γ)

=
nk+1/2

2

( 2

n

) ∑
(t,24)=2

(( 8

t′

)(
δ3(t

′)L1,1(n, t) + iδ1(t
′)
(−4

r

)
L−1,1(n, t)

)
(52)

+
√
3
(24
t′

)(12
r

)(
δ1(t

′)L3,1(n, t) + iδ3(t
′)
(−4

r

)
L−3,1(n, t)

))
.

By Lemma 33, L1,1(n, t) is nonzero only when t+2n is a square. If t+2n=

u2 is indeed a square, then we have u2/2 = t′ + n ≡ 0,2 mod 8. Then the

condition δ3(t
′) = 0 forces u to satisfy

(53)

{
4 | u if n≡ 1 mod 4,

2 ‖ u if n≡ 3 mod 4,

and also

(54)
( 8

t′

)
=
(−4

n

)( 8

n

)
.

Furthermore, since 3 � t, when n≡ 2 mod 3, we must have 3 | u.
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Similarly, L−1,1(n, t) is nonzero only when 2n− t is a square. If 2n− t= u2

is indeed a square, then the condition δ1(t) = 1 forces (53) and (54) to hold.

Furthermore, if n≡ 2 mod 3, then we must have 3 | u. Thus, by Lemma 33,

when n≡ 1 mod 4,

( 2

n

) ∑
(t,24)=2

( 8

t′

)(
δ3(t

′)L1,1(n, t) + iδ1(t
′)
(−4

r

)
L−1,1(n, t)

)

=
1

4
λ1(n)

∑
4|u,3�u

(
M1,0(n,u)−M ′

1,0(n,u)
)

+
1

4

∑
12|u

(
1 +

(n
3

))(
M1,0(n,u)−M ′

1,0(n,u)
)
,

(55)

and when n≡ 3 mod 4,

( 2

n

) ∑
(t,24)=2

( 8

t′

)(
δ3(t

′)L1,1(n, t) + iδ1(t
′)
(−4

r

)
L−1,1(n, t)

)

=−1

4
λ1(n)

∑
2‖u,3�u

(
M1,0(n,u)−M ′

1,0(n,u)
)

− 1

4

∑
2‖u,3|u

(
1 +

(n
3

))(
M1,0(n,u)−M ′

1,0(n,u)
)
,

(56)

where the sums run over all positive integers u satisfying u2 < 4n and the

specified conditions and λ1(n) is defined by (45).

Likewise, L3,1(n, t) (resp., L−3,1(n, t)) is nonzero only when (t + 2n)/3

(resp., (2n− t)/3) is a square. If (t+ 2n)/3 = u2 (resp., (2n− t)/3 = u2) is

indeed a square, then t′ + n≡ 0,6 mod 8 (resp., n− t′ ≡ 0,6 mod 8). The

condition δ1(t
′) = 0 (resp., δ3(t

′) = 0) forces that

{
2 ‖ u if n≡ 1 mod 4,

4 | u if n≡ 3 mod 4,

and also checking case by case, we find that

(24
t′

)
=
(24
n

)
.
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Then by Lemma 33, for n≡ 1 mod 4,

( 2

n

) ∑
(t,24)=2

(24
t′

)(
δ1(t

′)L3,1(n, t) + iδ3(t
′)
(−4

r

)
L−3,1(n, t)

)

=
1

4

(12
n

)∑
2‖u

(
M3,0(n,u)−M ′

3,0(n,u)
)
,

(57)

and for n≡ 3 mod 4,

( 2

n

) ∑
(t,24)=2

(24
t′

)(
δ1(t

′)L3,1(n, t) + iδ3(t
′)
(−4

r

)
L−3,1(n, t)

)

=
1

4

(12
n

)∑
4|u

(
M3,0(n,u)−M ′

3,0(n,u)
)
,

(58)

where the sums run over all positive integers u such that 9u2 < 12n and the

specified conditions are met. Substituting (55)–(58) into (52) and simplify-

ing, we obtain the claimed formula.

3.4.11. Case (t,24) = 2 and 4 ‖ f .

Lemma 45. We have

∑
(t,24)=2

∑
4‖f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ)

=−n3/2−k

32

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2A1,1(n)−C2,0(n) +C∗
3,0(n)) if n≡ 1 mod 24,

(C2,0(n)−C∗
3,0(n)) if n≡ 5 mod 24,

(A2,0(n)−A∗
3,0(n) + 2C1,1(n)) if n≡ 7 mod 24,

2C1,1(n) if n≡ 11 mod 24,

(2A1,1(n) +C2,0(n)−C∗
3,0(n)) if n≡ 13 mod 24,

(−C2,0(n) +C∗
3,0(n)) if n≡ 17 mod 24,

(−A2,0(n) +A∗
3,0(n) + 2C1,1(n)) if n≡ 19 mod 24,

2C1,1(n) if n≡ 23 mod 24.
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3.4.12. Case (t,24) = 2 and 8 | f .
Lemma 46. Assume that v ≥ 3. When n≡ 1 mod 4,∑

(t,24)=2

∑
2v‖f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ)

= n3/2−k
( 8

n

)v−1(λ1(n)

16
A1,v−1(n)

− (−1)v−1

2v+2
Cv−1,1(n)−

(−1)v−1

2v+3
C∗
v,0(n)

)
,

and when n≡ 3 mod 4,∑
(t,24)=2

∑
2v‖f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ)

= n3/2−k
( 8

n

)v−1(
−λ1(n)

2v+2
Av−1,1(n)

− λ1(n)

2v+3
A∗

v,0(n) +
(−1)v−1

16
C1,v−1(n)

)
,

where λ1(n) is defined by (45).

3.4.13. Case (t,24) = 6 and 2 � f .

Lemma 47. We have∑
(t,24)=6

∑
fodd

∑
γ∈Γn,t,f/SL(2,Z)

J(γ) =−n3/2−k

8

{
B∗

1(n) if n≡ 1 mod 3,

0 if n≡ 2 mod 3.

3.4.14. Case (t,24) = 6 and 2 ‖ f .
Lemma 48. We have

∑
(t,24)=6

∑
2‖f

∑
γ∈Γn,t,f/SL(2,Z)

J(γ) =−n3/2−k

8

⎧⎪⎨
⎪⎩
0 if n≡ 1 mod 3,

A∗
2,0(n) if n≡ 5 mod 12,

A1,0(n) if n≡ 11 mod 12.

3.4.15. Case (t,24) = 6 and 4 ‖ f .
Lemma 49. We have

∑
(t,24)=6

∑
4‖f

∑
γ

J(γ) =−n3/2−k

16

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if n≡ 1 mod 3,

2A1,1(n) if n≡ 5 mod 12,

(−A2,0(n) +A∗
3,0(n)) if n≡ 11 mod 24,

(A2,0(n)−A∗
3,0(n)) if n≡ 23 mod 24.



MODULAR FORMS OF HALF-INTEGRAL WEIGHTS ON SL(2,Z) 53

3.4.16. Case (t,24) = 6 and 8 | f .

Lemma 50. Let v ≥ 3 be an integer. When n≡ 1 mod 3,∑
(t,24)=6

∑
2v‖f

∑
γ

J(γ) = 0.

When n≡ 5 mod 12,

∑
(t,24)=6

∑
2v‖f

∑
γ

J(γ) = n3/2−k
( 8

n

)v−1A1,v−1(n)

8
.

When n≡ 11 mod 12,

∑
(t,24)=6

∑
2v‖f

∑
γ

J(γ) =−n3/2−k
( 8

n

)v−1(Av−1,1(n)

2v+1
+

Av,0(n)

2v+2

)
.

§4. Traces of Hecke operators on Snew
2k (6)

Let We, e = 1,2,3,6, be the Atkin–Lehner involutions on S2k(6). For

ε2, ε3 ∈ {±1}, let S2k(6, ε2, ε3) be the Atkin–Lehner eigensubspace of S2k(6)

with eigenvalues ε2 and ε3 forW2 andW3, respectively, and let Snew
2k (6, ε2, ε3)

be its newform subspace. We have

tr
(
Tn

∣∣ Snew
2k (6, ε2, ε3)

)
= tr

(
Tn

∣∣ S2k(6, ε2, ε3)
)
− tr

(
Tn

∣∣ S2k(3, ε3)
)

− tr
(
Tn

∣∣ S2k(2, ε2)
)
+ tr

(
Tn

∣∣ S2k(1)
)

=
1

4

(
tr
(
Tn

∣∣ S2k(6)
)
+ ε2 tr

(
TnW2

∣∣ S2k(6)
)
+ ε3 tr

(
TnW3

∣∣ S2k(6)
)

+ ε6 tr
(
TnW6

∣∣ S2k(6)
))

− 1

2

(
tr
(
Tn

∣∣ S2k(3)
)

+ ε3 tr
(
TnW3

∣∣ S2k(3)
))

− 1

2

(
tr
(
Tn

∣∣ S2k(2)
)
+ ε2 tr

(
TnW2

∣∣ S2k(2)
))

+ tr
(
Tn

∣∣ S2k(1)
)
,

(59)

where ε6 = ε2ε3. Thus, in order to obtain a formula for the trace of Tn on

Snew
2k (6, ε2, ε3), we need to evaluate tr(TnWe | S2k(N)) for various N and e.

The traces of tr(Tn | S2k(N)) have been computed by [5] and [12], while

those of tr(TnWe | S2k(N)) are given by [27]. The formulas are summa-

rized in the following proposition. Note that in [27], the numbers of optimal
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embeddings are expressed simply as the number of solutions to some con-

gruence equations. Here we use the formula for the numbers of optimal

embedding from [17, Section 1]. Note also that here we give the formulas

only in cases relevant to our discussion; the general cases are much more

complicated.

Proposition 51. Let N be a positive square-free integer, let e be a posi-

tive divisor of N , and let k be an integer greater than 1. For a discriminant

Δ< 0 of an imaginary quadratic order, we let Δ0 denote the discriminant

of the field Q(
√
Δ), and for a prime p, let

α(Δ, p) =

{
1 + (Δ0

p ) if p � (Δ/Δ0),

2 if p | (Δ/Δ0).

Then for a positive divisor e of N and a positive integer n relatively prime

to N , we have

tr
(
TnWe

∣∣ S2k(N)
)

=− 1

2ek−1

∑
Δ=e2u2−4en<0

∑
g2|(Δ/Δ0),
(g,e)=1

∏
p|(N/e)

α(g2Δ0, p)

·H(g2Δ0)
τ2k−1 − τ2k−1

τ − τ

− 2ω(N)−1δ1(e)
∑
a|n

min(a,n/a)2k−1 +
2k− 1

12
δ2(e,n)n

k−1
∏
p|N

(p+ 1),

where τ = (eu+
√
Δ)/2, ω(N) is the number of prime divisors of N and

δ1(e) =

{
1 if e= 1,

0 otherwise,
δ2(e,n) =

{
1 if e= 1 and n is a square,

0 else.

Using this formula, we now compute the trace of Tn on S2k(6, ε2, ε3).
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Proposition 52. Let n be a positive integer relatively prime to 6. Then

for ε2, ε3 ∈ {±1}, the trace of Tn on Snew
2k (Γ0(6), ε2, ε3) is

−1

8

∑
u2<4n,(g,6)=1

(
1−

(Δ0

2

))(
1−

(Δ0

3

))
H(g2Δ0)Pk(1, n,u)

+
ε2

8 · 2k−1

∑
4u2<8n,(g,3)=1

(
1−

(Δ0

3

))
H(g2Δ0)Pk(2, n,u)

+
ε3

8 · 3k−1

∑
9u2<12n,(g,2)=1

(
1−

(Δ0

2

))
H(g2Δ0)Pk(3, n,u)

− ε2ε3
8 · 6k−1

∑
36u2<24n,g

H(g2Δ0)Pk(6, n,u) +
2k− 1

24
δ(n)nk−1,

where

δ(n) =

{
1 if n is a square,

0 otherwise.

Proof. We first consider the terms

1

4
tr
(
Tn

∣∣ S2k(6)
)
− 1

2
tr
(
Tn

∣∣ S2k(3)
)

− 1

2
tr
(
Tn

∣∣ S2k(2)
)
+ tr

(
Tn

∣∣ S2k(1)
)(60)

in (59). By Proposition 51, we have

tr
(
Tn

∣∣ S2k(1)
)
=−1

2

∑
u

∑
g

H(g2Δ0)Pk(1, n,u)

− 1

2

∑
a|n

min(a,n/a)2k−1 +
2k− 1

12
δ(n)nk−1,

(61)

tr
(
Tn

∣∣ S2k(2)
)

=−1

2

∑
u

(
2
∑
2|g

H(g2Δ0) +
(
1 +

(Δ0

2

))∑
2�g

H(g2Δ0)
)

× Pk(1, n,u)−
∑
a|n

min(a,n/a)2k−1 +
2k− 1

4
δ(n)nk−1,

(62)
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tr
(
Tn

∣∣ S2k(3)
)

=−1

2

∑
u

(
2
∑
3|g

H(g2Δ0) +
(
1 +

(Δ0

3

))∑
3�g

H(g2Δ0)
)

× Pk(1, n,u)−
∑
a|n

min(a,n/a)2k−1 +
2k− 1

3
δ(n)nk−1,

(63)

tr
(
Tn

∣∣ S2k(6)
)

=−1

2

∑
u

(
4

∑
(g,6)=6

H(g2Δ0) + 2
∑

(g,6)=3

(
1 +

(Δ0

2

))
H(g2Δ0)

+ 2
∑

(g,6)=2

(
1 +

(Δ0

3

))
H(g2Δ0)

+
∑

(g,6)=1

(
1 +

(Δ0

2

))(
1 +

(Δ0

3

))
H(g2Δ0)

)
Pk(1, n,u)

+ 2
∑
a|n

min(a,n/a)2k−1 + (2k− 1)δ(n)nk−1,

(64)

where

δ(n) =

{
1 if n is a square,

0 otherwise.

Substituting (61)–(64) into (60) and simplifying, we get

1

4
tr
(
Tn

∣∣ S2k(6)
)
− 1

2
tr
(
Tn

∣∣ S2k(3)
)

− 1

2
tr
(
Tn

∣∣ S2k(2)
)
+ tr

(
Tn

∣∣ S2k(1)
)

=−1

8

∑
u

∑
(g,6)=1

(
1−

(Δ0

2

))(
1−

(Δ0

3

))
H(g2Δ0)Pk(1, n,u)

+
2k− 1

24
δ(n)nk−1.

(65)

We next consider the terms

ε2
4
tr
(
TnW2

∣∣ S2k(6)
)
− ε2

2
tr
(
TnW2

∣∣ S2k(2)
)
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in (59). We have, by Proposition 51,

tr
(
TnW2

∣∣ S2k(6)
)
=− 1

2 · 2k−1

∑
4u2<8n

(
2
∑
3|g

H(g2Δ0)

+
∑
3�g

(
1 +

(Δ0

3

))
H(g2Δ0)

)
Pk(2, n,u)

and

tr
(
TnW2

∣∣ S2k(2)
)
=− 1

2 · 2k−1

∑
4u2<8n

∑
g

H(g2Δ0)Pk(2, n,u).

Thus,

ε2
4
tr
(
TnW2

∣∣ S2k(6)
)
− ε2

2
tr
(
TnW2

∣∣ S2k(2)
)

=
ε2

8 · 2k−1

∑
4u2<8n

∑
(g,3)=1

(
1−

(Δ0

3

))
H(g2Δ0)Pk(2, n,u).

(66)

Similarly, we have

ε3
4
tr
(
TnW3

∣∣ S2k(6)
)
− ε3

2
tr
(
TnW3

∣∣ S2k(3)
)

=
ε2

8 · 3k−1

∑
9u2<12n

∑
(g,2)=1

(
1−

(Δ0

2

))
H(g2Δ0)Pk(3, n,u)

(67)

and

(68)
ε6
4
tr
(
TnW6

∣∣ S2k(6)
)
=− ε6

8 · 6k−1

∑
36u2<24n

∑
g

H(g2Δ0)Pk(6, n,u).

Summarizing (59) and (65)–(68), we obtain the claimed formula. This proves

the proposition.

§5. Comparison of traces

In this section, we will prove

tr
(
Tn2

∣∣ Sr,s(1)
)
=
(12
n

)
tr
(
Tn

∣∣∣ Snew
2k

(
6,−

(8
r

)
,−

(12
r

)))
for positive integers n relatively prime to 6 and thereby establish Theorem 1.

The verification is done case by case according to the residue of nmodulo 24.
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Here we work out only the cases n≡ 1 mod 24 and n≡ 11 mod 24 and omit

the proof for the other cases.

Recall that the Hecke operator Tn2 on Sr,s(1) is defined by

Tn2 : f 	−→ nk−3/2
∑

ad=n,a|d
af | [M ∗

(d/a)2 ] = nk−3/2
∑
a|m

af | [M ∗
(n/a2)2 ],

where m is the positive integer such that n/m2 is square-free and where

the action of [M ∗
(n/a2)2 ] = [M(n/a2)2(1)

∗] is defined as in Lemma 9. We first

consider the case n ≡ 1 mod 24. Write � = n/a2. Note that we have � ≡
1 mod 24. According to Propositions 15, 21, and 23 and Lemmas 24, 36–42,

and 44–50, we have

tr[M ∗
�2 ] =

√
�

8

∑
e=1,2,3,6

(−4e

r

)(
1−

(−e

3

))(
H(−4e�)−H(−e�)

)

− �3/2−k

4

(
A0,0(�) +C0,0(�)

)
− �3/2−k

8
D0(�)−

�3/2−k

4
B0(�)

− �3/2−k

8
D∗

1(�)−
�3/2−k

8

(
A∗

2,0(�) +C1,0(�)
)

(69)

− �3/2−k

16

(
2A1,1(�)−C2,0(�) +C∗

3,0(�)
)

+ �3/2−k
∑
v≥3

(1
8
A1,v−1(�) +

(−1)v

2v+1
Cv−1,1(�) +

(−1)v

2v+2
C∗
v,0(�)

)

− �3/2−k

4
B∗

1(�) + δ1(�)
2k− 1

24
,

where

δ1(�) =

{
1 if �= 1,

0 otherwise.

For the first sum above, we observe that

Pk(e, �,0) = (e�)k−1 i
2k−1 − i1−2k

2i
= (−e�)k−1 =−

(−4

r

)
(e�)k−1,

and the sum, including the factor
√
�/8 in front, can be written as

−�3/2−k

8

∑
e=1,2,3,6

1

ek−1

(e
r

)(
1−

(−e

3

))(
H(−4e�)−H(−e�)

)
Pk(e, �,0).
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Now we have H(−e�) = 0 except for e= 3, in which case we have

H(−12�)−H(−3�) =
(
1−

(−3�

2

))
H(−3�).

Thus,
√
�

8

∑
e=1,2,3,6

(−4e

r

)(
1−

(−e

3

))(
H(−4e�)−H(−e�)

)

=−�3/2−k

8

((
1−

(−4�

2

))(
1−

(−4�

3

))
H(−4�)Pk(1, �,0)

+
1

2k−1

(8
r

)(
1−

(−8�

3

))
H(−8�)Pk(2, �,0)

+
1

3k−1

(12
r

)(
1−

(−3�

2

))
H(−3�)Pk(3, �,0)

+
1

6k−1

(24
r

)
H(−24�)Pk(6, �,0)

)
.

(70)

We next consider the terms Ai,j(�) in (69). Here we remind the reader that

the summations
∑

u

∑
g in the subsequent discussion are all subject to the

condition (�, u,Δ/g2Δ0) = 1 inherited from the definition of Ai,j(�).

For an integer u contributing to the sums Ai,j(�), let Δ = u2 − 4�, and

let Δ0 be the discriminant of the field Q(
√
Δ). For A0,0(�), we have(Δ0

2

)
=
(5
2

)
=−1,

and by Lemma 35,

(71) A0,0(�) =
1

2

∑
2�u

(
1−

(Δ0

2

))(
1−

(Δ0

3

)) ∑
(g,6)=1

H(g2Δ0)Pk(1, �, u).

For A∗
2,0(�), we have 4 |Δ0 and

(72) A∗
2,0(�) =

∑
4|u

(
1−

(Δ0

2

))(
1−

(Δ0

3

)) ∑
(g,6)=1

H(g2Δ0)Pk(1, �, u).

For A1,j(�), we let v = ord2(Δ/Δ0)/2, that is, the 2-adic valuation of the

conductor of Δ. If v = 1, then since 32 | (u2 − 4n) for u with 2 ‖ u, we have

8 |Δ0 and

(73) −
∑
2‖g

H
(Δ

g2

)
=−

(
1−

(Δ0

2

))∑
2�g

H(g2Δ0).
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If v ≥ 2, then

−
∑
2‖g

H
(Δ

g2

)
+
∑
4|g

H
(Δ

g2

)

=−
∑

2v−1‖g
H(g2Δ0) +

v−2∑
j=0

∑
2j‖g

H(g2Δ0)

=
∑
2�g

(
−2v−2

(
2−

(Δ0

2

))
+

v−2∑
j=1

2j−1
(
2−

(Δ0

2

))
+ 1

)
H(g2Δ0)

=−
∑
2�g

(
1−

(Δ0

2

))
H(g2Δ0).

(74)

It follows from (73), (74), and Lemma 35 that

−A1,1(�) +
∑

2≤j<∞
A1,j(�)

=−
∑
2‖u

∑
(g,6)=1

(
1−

(Δ0

2

))(
1−

(Δ0

3

))
H(g2Δ0)Pk(1, �, u).

(75)

In summary, from (71), (72), and (75), we get

−1

4
A0,0(�)−

1

8
A∗

2,0(�)−
1

8
A1,1(�) +

1

8

∑
j≥2

A1,j(�)

=−1

8

∑
u
=0

∑
(g,6)=1

(
1−

(Δ0

2

))(
1−

(Δ0

3

))
H(g2Δ0)Pk(1, �, u),

(76)

where the outer summation runs over all nonzero integers u with u2 < 4� and

the inner summation runs over all positive integers g dividing the conductor

of Δ = u2 − 4� such that (g,6) = 1 and (�, u,Δ/g2Δ0) = 1.

The terms Bj(�) in (69) are easy to deal with. By Lemma 35, we have

−B0(�)−B∗
1(�)

=− 1

2 · 2k−1

(8
r

)∑
u
=0

∑
(g,3)=1

(
1−

(Δ0

3

))
H(g2Δ0)Pk(2, �, u).

(77)
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Here, as above, the outer summation runs over all nonzero integers u with

4u2 < 8� and the inner summation runs over all positive integers g dividing

the conductor of Δ = 4u2 − 8� such that (g,3) = 1 and (�, u,Δ/g2Δ0) = 1.

We next consider Ci,j(�) in (69). If Δ = 9u2 − 12n with 2 � u, then Δ0 ≡
5 mod 8, and we have

(78) C0,0(�) =
1

2 · 3k−1

(12
r

)∑
2�u

(
1−

(Δ0

2

))∑
g

H(g2Δ0)Pk(3, �, u).

If Δ = 9u2 − 12n with 2 ‖ u, then 4 |Δ0 and

(79) C1,0(�) =
1

2 · 3k−1

(12
r

)∑
2‖u

(
1−

(Δ0

2

))∑
g

H(g2Δ0)Pk(3, �, u).

If Δ = 9u2 − 12n with 22 ‖ u, then Δ0 ≡ 1 mod 8, and for any odd integer

g, we have H(4g2Δ0) =H(g2Δ0). Thus,

C2,0(�)−C2,1(�)

= 0

=
1

3k−1

(12
r

)∑
22‖u

(
1−

(Δ0

2

)) ∑
(g,2)=1

H(g2Δ0)Pk(3, �, u).

(80)

If Δ = 9u2 − 12n with 8 | u, then Δ0 ≡ 5 mod 8, and for any odd integer g,

we have H(4g2Δ0) = 3H(g2Δ0). It follows that Cj,0(�) = 3Cj,1(�) and that

− 1

16
C∗
3,0(�)−

∑
3≤j<∞

(−1)j

2j+2
Cj,1(�) +

∑
3≤j<∞

(−1)j

2j+2
C∗
j,0(�)

=− 3

16
C∗
3,1(�)−

∑
3≤j<∞

(−1)j

2j+2
Cj,1(�) +

∑
3≤j<∞

3(−1)j

2j+2

∑
j≤i<∞

Ci,1(�)

=
∑

3≤i<∞
Ci,1(�)

(
− 3

16
− (−1)i

2i+2
+

∑
3≤j≤i

3(−1)j

2j+2

)
=−1

4

∑
3≤i<∞

Ci,1(�)

=− 1

8 · 3k−1

(12
r

) ∑
8|u,u
=0

(
1−

(Δ0

2

)) ∑
(g,2)=1

H(g2Δ0)Pk(3, �, u).

(81)
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Combining (78)–(81), we get

−1

4
C0,0(�)−

1

8
C1,0(�) +

1

16
C2,0(�)−

1

16
C∗
3,0(�)

+
∑
v≥3

((−1)v

2v+1
Cv−1,1(�) +

(−1)v

2v+2
C∗
v,0(�)

)

=− 1

8 · 3k−1

(12
r

)∑
u
=0

∑
(g,2)=1

(
1−

(Δ0

2

))
H(g2Δ0)Pk(3, �, u).

(82)

Again, here the outer summation runs over all nonzero integers u with

9u2 < 12�, and the inner summation runs over all positive divisors of the

conductor of Δ satisfying (g,2) = 1 and (�, u,Δ/g2Δ0) = 1.

The terms Dj(�) in (69) are easy. We have

(83) −D0(�)−D∗
1(�) =− 1

6k−1

(24
r

)∑
u
=0

∑
g

H(g2Δ0)Pk(6, �, u).

Here the summation over g is subject to the condition (�, u,Δ/g2Δ0) = 1.

Substituting (70), (76), (77), (82), and (83) into (69), we get

tr[M�2 ] =−�3/2−k

8

∑
u

∑
(g,6)=1

(
1−

(Δ0

2

))(
1−

(Δ0

3

))
H(g2Δ0)Pk(1, �, u)

− �3/2−k

8 · 2k−1

(8
r

)∑
u

∑
(g,3)=1

(
1−

(Δ0

3

))
H(g2Δ0)Pk(2, �, u)

(84)

− �3/2−k

8 · 3k−1

(12
r

)∑
u

∑
(g,2)=1

(
1−

(Δ0

2

))
H(g2Δ0)Pk(3, �, u)

− �3/2−k

8 · 6k−1

(24
r

)∑
u

∑
g

H(g2Δ0)Pk(6, �, u) + δ1(�)
2k− 1

24
.

Here the summations
∑

g are all subject to the condition (�, u,Δ/g2Δ0) = 1.

Now recall from the definition of Tn2 that

tr
(
Tn2

∣∣ Sr,s(1)
)
= nk−3/2

∑
a|m

a tr[M(n/a2)2 ],
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where m is the integer such that n/m2 is square-free. Thus, we need to sum

up (84) over all �= n/a2. Observe that

Pk(e,n/a
2, u) = a2−2kPk(e,n, au).

Take the fourth sum in (84), for example. We find that

nk−3/2
∑
a|m

a(n/a2)3/2−k
∑
u

∑
(n/a2,u,Δ/g2Δ0)=1

H(g2Δ0)Pk(6, n/a
2, u)

=
∑
a|m

∑
u

∑
(n,au,ah)=a

H
(a2u2 − 24n

(ah)2

)
Pk(6, n, au)

=
∑
u

∑
g

H(g2Δ0)Pk(6, n,u),

where there is no longer any restriction to g in the inner sum. Similar

formulas hold for other three sums in (84). Also,

nk−3/2
∑
a|m

aδ1(n/a
2) =

{
nk−1 if n is a square,

0 otherwise.

Therefore, we find that

tr
(
Tn2

∣∣ Sr,s(1)
)

=−1

8

∑
u

∑
(g,6)=1

(
1−

(Δ0

2

))(
1−

(Δ0

3

))
H(g2Δ0)Pk(1, n,u)

− 1

8 · 2k−1

(8
r

)∑
u

∑
(g,3)=1

(
1−

(Δ0

3

))
H(g2Δ0)Pk(2, n,u)

− 1

8 · 3k−1

(12
r

)∑
u

∑
(g,2)=1

(
1−

(Δ0

2

))
H(g2Δ0)Pk(3, n,u)

− 1

8 · 6k−1

(24
r

)∑
u

∑
g

H(g2Δ0)Pk(6, n,u) +
2k− 1

24
δ(n)nk−1.

Comparing the trace of Tn on S2k(6, ε2, ε3) given in Proposition 52, we find

that

tr
(
Tn2

∣∣ Sr,s(1)
)
=
(12
n

)
tr
(
Tn | S2k

(
6,−

(8
r

)
,−

(12
r

)))
.
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This proves the case n≡ 1 mod 24. (Note that in this case (12/n) = 1.) We

now consider the case n≡ 11 mod 24.

Assume that n≡ 11 mod 24. By Propositions 15, 21, and 23 and Lemmas

24, 36–42, and 44–50, we have

tr[M ∗
�2 ] =

√
�

8

∑
e=1,2,3,6

(−4e

r

)(
1−

(−4e�

3

))(
H(−4e�)−H(−e�)

)

+ �3/2−k
(
−1

2
A0,0(�)−

1

4
A1,0(�) +

1

8
A2,0(�)−

1

8
A∗

3,0(�)

+
∑

3≤v<∞

((−1)v

2v
Av−1,1(�) +

(−1)v

2v+1
Av,0(�)

)
− 1

8
B∗

0(�)

− 1

4
C0,0(�)−

1

8
C∗
2,0(�)−

1

8
C1,1(�) +

1

8

∑
v≥2

C1,v(�)−
1

8
D∗

0(�)
)
.

The computation for Ai,j(�) (resp., Ci,j(�)) is parallel to that for Ci,j(�)

(resp., Ai,j(�)) in the case n ≡ 1 mod 24. The computation for B∗
0(�) and

D∗
0(�) is almost the same as before. (The reader is reminded that there is a

difference of 1/2 between the case n≡ 1 mod 3 and the case n≡ 2 mod 3 in

the formulas for Ai,j(�) and Bj(�) in Lemma 35.) For the first sum above,

instead of (70), we have

√
�

8

∑
e=1,2,3,6

(−4e

r

)(
1−

(−e�

3

))(
H(−4e�)−H(−e�)

)

=−�3/2−k

8

((
1−

(−�

2

))(
1−

(−�

3

))
H(−�)Pk(1, �,0)

+
1

2k−1

(8
r

)(
1−

(−8�

3

))
H(−8�)Pk(2, �,0)

+
1

3k−1

(12
r

)(
1−

(−12�

2

))
H(−12�)Pk(3, �,0)

+
1

6k−1

(24
r

)
H(−24�)Pk(6, �,0)

)
.

Therefore, (84) remains valid, from which we conclude that

tr
(
Tn2

∣∣ Sr,s(1)
)
= tr

(
Tn

∣∣∣ S2k

(
6,−

(8
r

)
,−

(12
r

)))
.

This proves the case n≡ 11 mod 24. We skip the proof of the other cases.
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