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THE ASYMPTOTIC DISTRIBUTION OF THE SUPREMUM OF THE
STANDARDIZED EMPIRICAL DISTRIBUTION FUNCTION ON
SUBINTERVALS

By D. JAESCHKE
Dortmund University

It is well known that the limit distribution of the supremum of the
empirical distribution function F, centered at its expectation F and standar-
dized by division by its standard deviation is degenerate, if the supremum is
taken on too large regions ¢, < F(u) < 8,. So it is natural to look for sequences
of linear transformations, so that for given sequences of sup-regwns (¢, 0,) the
limit of the transformed ‘sup-statistics is nondegenerate.

In this paper a partial answer is given to this problem, including the case
e, =0, 8, = 1. The results are also valid for the Studentized version of the
above statistic, and the corresponding two-sided statistics are treated, too.

1. Introduction. Let X,, X,, - - - be independent random variables (irv’s) with
continuous distribution function (df) F. Let F,(u) = n"'37_,1 (x.<uy be the
associated empirical distribution function and ® an arbitrary positive function on
the open unit interval. Anderson and Darling (1952) 1nvest1gated the limit distribu-
tion of the generalized Kolmogorov statistic :

Kn,(b = sup0<F(u)<1’?E|Fn(u) - F(u)lq)[F(u)]‘

As the variance of n%(F,,(u) - F(u)) is Fu)(1 — F(u)) they assumed that the
weight function ®g(u) = [u(l — u)]“ ‘in some sense” assigns to each point u
equal weights. But according to Theorem 2 of Cibisov (1966) K, .o, —p holds, so
that in a very strong sense ®, cannot yield equal weights. By giving the limit
distribution of the supremum of the standardized empirical distribution function
on subintervals, our main result will show how slow the divergence of K, 4 is and
which F(u)-values are responsible. For the construction of confidence contours for
F,'it is more convenient to substitute ®y(F(u)) in the definition of K, 4 by
®y(F,(u)), cf. Eicker (1978). We will see that for the resulting “Studentized”
versions of the standardized Kolmogorov-Smirnov statistics the limits remain the
same, even if 'subintervals are taken.

But since a comparison with the studies of Steck (1971) and Noé (1972) has
shown that the rate of convergence of our generalized K-S statistics to the extreme
value distribution E is very slow, we would not encourage anyone to use the
confidence intervals based on the asymptotic analysis.
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LIMIT DISTRIBUTION OF THE SUPREMUM 109
2. Main results. We will use the following definitions:
V() = nd(E, () = Fa)(F)(1 = Fw))™* 0 < F(u) <1
P, = nh(E(w) — Fa)(E)(1 = F;@)) 7 for 0<F(u) <1,
=0 for F,(u)€{0,1}
V(e 8) = SUp,cpuy<sVul),  Wo(e, 8) = sup, <ol Val¥)ls
V(e 8) = Supe<F(u)<SI}n(u)’ W,(e, 8) = SUp, puy <sl V(w0 <e<d<1,
suprema over empty sets are defined as — o0)
a(x) = (2log x)%, b(x)=2logx +2'log,x —27"'logm, a,= a(log n),
b, = b(log n)(x > e, log, x = log(log x)etc.)
t(1) = (t + b(x))/a(x),
E(t) = exp[ —exp(—1)] teER
p, = (log n)’/n n>3
£@) =l VOAQ-—p) (w€[01], aAb=min(ab),
a\/ b = max(a, b))
p(e, 8) =27 "log[8(1 — &)/ (e(1 — )] 0<e<dé<l
0n = 0alens 8,) = p(fu(e). £:(8,))  ({&,}, (8,) given sequences from the
unit interval).

TueoReM. If lim, ., p,(¢,, 8,)/log n = c, then

(1) lim,_, 0 P(Vo(& 8,) < tiogn(1)) = [ E(®)]°

) lim, o, P(W,(60 8,) < tioga(1)) =[ E()]*

(3) lim, o0 P(Po(& 8,) < tiogn(1)) =[ E(®)]°

(4) lim, o P(Wy(en 8,) < tioga(1)) =[E(]™
REMARKS.

1. Due to the definition of p,, ¢ can only lie in [0, 1].
2. A simple calculation shows that for ¢ > 0, (1)-(4) is equivalent to

5) lim,_., P(V, (e, 8,) <1,(1) = E(2)
(6) lim,_, . P(W,(g, 8,) < t,p"(t)) = EX1)
7 lim, ., P(V,(e 8,) < 1,,(0)) = E()

(8) : lim, ., P(W,(e, 8,) <1, (1) = EX().



110 D. JAESCHKE

3. Analogously to the proof of the theorem one shows that the above statements
remain true when F,(u) — F(u) in the definitions of V,(«) and V,(u) is replaced by
F(u) — F,(u).

ExaMPLE 1. Fore, =0, §, = 1, (1) leads to
. 1 _1
lim, ,, P(suPoc rruy<1 72 (F(4) = F(u))(F(u)(1 — F(u)))
<(t+2log,n+1logyn—1log 7)(2 log, n)_%)= exp[ —exp(—1)].

This and the corresponding version of (2) was already given in Jaeschke (1975),
while (3) and (4) for this special case was found by Eicker (1978).

ExaMPLE 2. For 0 <a, B < o0; ¢, = n~ 0+ and § =1 — n~ A0+ we
have

lim, ., p,/logn=((1Aa)+(1AB))/2=c.

ExampLE 3. While, e.g., in the case lim sup,_, (log §,)/logn < —1 (0 <¢, <
8, < 1) we only have the degenerate statements (1)-(4) with ¢ = 0, if ¢, A (1 — 8,)
> p, and p, — oo, (5)-(8) remain true due to Lemmas 1, 2 and 5 below, then
leading to nondegenerate limits even if lim, . p,/logn does not exist. The
following corollaries to the theorem are stated only for ¥, but they are also true
for W, 17,, and Vf/,,.

CoRrOLLARY 1. If lim inf, , p,/logn > O, then

9) (2 log, 1)~ 2 ¥, (e, 8,) >pl.

COROLLARY 2. lim sup,_, (loge,)/logn < — 1 iff
a,[V,(0,¢)\V V,(1 =g, 1)] — b, >p — .

COROLLARY 3. Let e, <3 for all n € N. Then lim,_,_(log ¢,)/log n = 0 iff
a,V,(e, 1 —¢,) — b, >p — 0.

PROOF OF THE THEOREM. While in [6] and [7] the special case ¢, = 0 and §, = 1
has been reduced to the maximum of standardized partial sums
maxy_, ... , k“éz',; 1Y; with limit distribution given by Darling and Erdés (1956),
in the following the invariance principle of Komlos, Major and Tusnady (1975) will
be applied, using the corresponding results for the standardized Brownian bridge
process and some modified results of [6] and [7]. As F is continuous, we may from
now on assume F to be U(0, 1), the uniform distribution over the unit interval.
First we investigate the standardized Brownian bridge and state

LemMAa 1. Let 0<¢, <9, <1, 7, = p(e,, 8,) > 00 and B a Brownian bridge
(B.B.), i.e., a Gauss process with E(B(u)) = 0, E(B(#)B(v)) = u(1 — v) for 0 < u <
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v < 1. Then for t € R

(10) P, = P(sup, cucs, B)(u(1 — )73 <1,(8)) > E()
and
(11) P(suP, <ucs, BI((1 — )77 < 1,(1)) - EX().

ProOF. It is well known that there is an Uhlenbeck process U, i.e., a stationary
Gauss-Markov process with mean 0 and E(U(x) U(v)) = exp[—|u — v|] (4, v € R),
so that B(u) = (u(1 — u))% X UQR ™ 'log(u/(1 — u))) (0 <u < 1). Therefore P, =
P(supoc,<., U(w) <t, (1)) — E(t), where the last statement follows from Lemma
3.4 and Lemma 3.10 of Darling and Erdos (1956). Similarly, (11) follows. []

LemMMmA 2. Let e, A (1 — 8,) > u, = (log n)*/n. Then on a rich enough probabil-
ity space there is a sequence of B.B.’s { B,}, so that (with — o0 + o0 = 0)

(12) V(e 8,) — sup, cucs, Bo(w)(u(l — w))
= o((log2 n)_%)[ = o(1/a(r,))] as.

PrROOF. According to Theorem 3 of Komlds, Major and Tusnady (1975), on a
rich enough probability space there are B.B.’s B,, such that

sup0<u<,|n%(Fn(u) —u) — B,(u)| = O(n_% log n) a.s.
Therefore

V,(u) — B(u)(u(1 = u)) 3| = O((2 log, n)*(log n)(np,) %)
=0(1) as. [

a, SUP, ~y<p,

In (16) we shall apply
LEMMA 3.  Let {v(u)}, ¢ a Poisson process (\ = 1) with paths constant except for
upward jumps of height 1, ¢ > 0, a € R. Then for y(u) = u_%(u(u) — u)
(]3) aa, Sup0<u<(log n)°

Proor. We now follow the line of proof of Lemma (6.1) in [7]. Of course we
only need to show (13) for a > 0. Then (13) is equivalent to

V(W) = b, >p — .

lim, o, P(SUPou<qog nyl Y()| > a~'(2 log, n)?

+a~ (1 + 27" log, n)(2logy n) ") = 0
for all t € R. So it suffices to show
(14) lim, _,, P(sup, <, <[ v(#)] > a~'(2 log n)?) = 0.

For the proof of (14) we choose some d > 1, define n, = d* and ¢, = c¢/log d.

Then
1
IF”(Supl<u<nf Y(u)l > a-_l(2 lOg n)z)

< SeekeMP(sup, e, [7(w) = ulni T > a”'(2log n)?) = P,
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Since
P(SUP, << |7(1) — u] > 2) < 2P(|2(b) — b] > z — 2(b — a)?)
(cf. (4.2) in O’Reilly (1974)) we have for large enough n
P(sup,,k<u<,,m|v(u) —u| > a”'(2n, log n)%)
<3P(p(rs) = sl > a7'd*/(log n)?) = p(n, k).
The upper bound (c,, ¢, > 0 suitable constants)
p(|p(x) — x| >2) < 2exp[ —¢;z% '] + 2 exp[ —c,z]
(cf. (8) in Cibisov (1966)) yields constants c,, ¢, > 0 so that
P(n, k) < %{exp[ —cylogn] + exp[ —c,d*'*(log n)%]}
=${pi(n, &) + pyln, K)).
In p,(n, k), k no longer occurs, so that '
Sheleenlp (n, k) < n=(1 + ¢, log n) — 0.
With ¢(n) = c,(log n)?, since ¢(n) — oo and [Px~le™* dx < o0, we obtain
Sleleenlp (n, k) < fleotognl+1 exp| —c(n)d(x")/z] dx
< 2(log d) '[P A mx e > dx 0,
completing the proof of (14). []
LEMMA 4. Let u, = (log n)®/n. Then

(15) an[ Wn(o’ y‘n) V Wn(l = My, 1)] - bn —p — 0.

Proor. Following the ideas of the proof of Lemma 7.2 in [7], let £, &, - - -+ be
strictly positive irv’s distributed according to the density function 1, wy(W)e " and
N = Zj;,ij. If U} < - -+ < UJ are the order statistics of independent U(0, 1) —

v’s U]’ ) Un’ we then have B(Uln’ R Unn) = B(nl/nn+l’ Y nn/nn+1) (Cf
e.g. Breiman (1968), page 285). We therefore may assume F, to be the empirical df
of the m;/n,,,. Then »(u) = Z,,,1,, <up # > 0 is a Poisson process according to
Lemma 3 with F,(u) = n~w(un,,,) (0 <u < 1). So we get

1 _1
Wln = sup0<u<y,, nzu 2IF'n(u) - ul

1
= Sup0<u<;t,,(nu)_ 2|1}(u'r'n+l) - nul = Sup0<u<17,,+|p,,(nn+l/n)2|Y(u) + An(u)l’

where y(u) = u~2(»(u) — u) and A,(u) = u(l — n/n,,,). For a, = ((log n)/n)3
we define &, = {|1 — n,,,/n| <a,}. From ni(l — Mas1/1) —=4NO, 1), P(1 —
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st/ n)%l < a,) > P(Q,) — 1 follows. On @, we have

(16) a,W,(0, 1) — b, < a,(1 — u,) " 2 W,, — b,

< (1 + o(l))an[sup0<u<ny,,(l+a,,) Y(u)l
1
+ (1 + @)L = n/n,pil] = b,

Now a,,u,,%—» 0, implying a,(nu,(1 + a,,))%|1 — n/1M,+1| =0, so that by Lemma 3,
a,W,(0, u,) — b, »p — oo. The proof is completed by symmetry arguments for the
region (1 — p,, 1).

PrOOF OF (1). Of course we only need to consider.c > 0, for then the case
¢ = 0 is a trivial consequence. According to Remark 2 it here suffices to show (5).
Now except for at most finitely many » we have yu, <§,, ¢, < 1 — p,, so that for
large enough n

(17) Vn(sn’ 8,,) = Vn(En, eV en) Vv Vn( U \V &y 6n N\ (l - :u'n))
vVn(an N\ (1 - y‘n)’ 8,,),

and, due to (15), we need only consider the middle expression on the right side of
(17), for which we get the limit distribution from (10) and (12). [J

Similarly, one obtains (2). For the proofs of (3) and (4), we need two more
lemmas.

LEMMA 5. Fore, 1 — 6, > A\, = n~!log n we have
Vlew 8,) = Vilen 8,) = 0p(1/a)[ = 0p(1/a(r,)].
Proor. Due to Theorem 3.1 of Cséaki (1977), we have
SUpy il — u~'F,(u)| = O((log2 n/ (nkn))%) a.s.
and
uPocci a1 = (1= F(w)/ (1 = )] = 0((log, n/ (mA,))) as.
Now a,7,(&, 8,) = a,V,(&,, 8,)(1 + 0((log, n/log n)?)) a.s. By (9),
@,V (e 8,)0((10g; /10 m)7) 50,
from which the assertion follows. []

LEMMA 6. With A\, = n~" log n, we have
a,[ W,(0,\,)V W,(1 = A, 1)] = b, »p — .

Proor. Here we follow the line of the proof of (2.15) in Eicker (1978). Let
0 < U < - -+ < U’ < 1 be the order statistics of a random sample from U(0, 1).
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First, since
n(log n) ™! Ullogin) = ®©  as.
(cf. Theorem 6 in Kiefer (1970)), we have on some Q,, with P(2,,) — 1
Supur<u<7\"| I7n(“)| < SuPU{'<u<U{'|og2,.]| I7»:(“)|
Defining
Wir = (K(L = k/m)/n)%,

By = {k/n — tigumian™3 S UL < (k= 1)/n+ tog Wy, n )
and

Bn = {Supr<u<Uﬁog2n]|Vn(u)| < tlogn}’
we have B, = N% "B, . With the notations of the proof of our Lemma 4, we
obtain

Bin > (1 + &)k = tigg W) < < (1= @)k = 1 + tog iy, un?))
> (k™ 3|n, — k| <),
where

i = (2 logg n)? (1 + ((logs n) + 20)/ (4 logy m))(1 = @,)(1 = k~)3(1 = k/m)?

—¢,(k/n)? = (1 + o(1))k~3.

In the region 2 < k < log? n we have

u, > (2 log, n)%{2"(l + (logs n + 2t + o(t))/ (4 log, n))
— (L+ o(1))(tog, n) "7}

1
= (log, n)2(1 + o(1)) > fiog(iog? my(1/0(1))
for some o(1)}0 with sufficient slowness. Theorem 2 of [5] yields for [log® n] partial
sums

. . . _1
lim lnfn—mo P(02<k<1ogankn) > hmn-—aoo lp(maxk=l, ce [log2 n] k 2I""k - kl
< Byogqiog m(1/0(1))) = L. 0

Now (3) follows from (1) and the last two lemmas. Similarly, (4) follows.
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