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THE GEOMETRY OF EXPONENTIAL FAMILIES

By BRADLEY EFRON
Stanford University

There are two important spaces connected with every multivariate
exponential family, the natural parameter space and the expectation par-
ameter space. We describe some geometric results relating the two. (In
the simplest case, that of a normal translation family, the two spaces coin-
cide and the geometry is the familiar Euclidean one.) Maximum likelihood
estimation, within one-parameter curved subfamilies of the multivariate
family, has two simple and useful geometric interpretations. The geometry
also relates to the Fisherian question: to what extent can the Fisher infor-
mation be replaced by —o2/d6%[log fy(x)]ls=4 in the variance bound for d,
the maximum likelihood estimator?

1. Introduction. The most interesting and challenging one-parameter statisti-
cal problems are those for which there does not exist a one dimensional sufficient
statistic. “‘Curved exponential families,” which are the vehicle for the results
we present, offer a simple paradigm for such problems, see Efron [5]. Using
curved exponential families allows us to graphically picture the maximum likeli-
hood estimation process, and important attendant concepts such as partial suf-
ficiency and ancillarity. The author has found these pictures, which are the
main topic of this paper, helpful in understanding finite sample size phenomena,
avoiding the all too familiar complete dependence upon asymptotic formulae.

There is an intimate relationship between ordinary Euclidean geometry and
the multivariate normal distribution. Analysis of variance and multivariate
analysis depend upon this relationship. Exponential families, of which the
normal is an example, do not in general enjoy simple Euclidean geometry. A
secondary purpose of this article, which is partly expository in nature, is to
point out that some Euclidean-like results, particulary those relating to maximum
likelihood estimation, hold in all exponential families. Sections 3—7 review
results from Barndorff-Nielsén [1], Cobb [2], Efron [5], Fisher [7, 8], Kullback
[11], Hoeffding [10], and Simon [15], as well as some new material, including
work with David Hinkley [6].

Section 6, based on [6], uses the geometrical approach to discuss an important
statistical question: to what extent can the Fisher information be replaced by
— 0%/06°[10g f,(x)]|ss in the variance bound for §, the maximum likelihood esti-
mator? A very simple geometric model, based on the “curvature” considerations
introduced in [5], and also on earlier work of Fisher [9], gives insight into the
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GEOMETRY OF EXPONENTIAL FAMILIES 363

answer. A Monte Carlo study of the Cauchy translation family supports the
predictions of this model.

Throughout the paper proofs and special examples are clearly marked as such,
inviting omission by readers not interested in the technical details.

2. Exponential families. This section reviews basic facts about exponential
families. An exponential family & is a family of density functions

2.1) Go(x) = e 4@, aecA

with respect to some carrier measure v(x) on the sample space 22°. The natural
parameter space A consists of all « having the normalizing function

(2.2) e/ = { e¥'" dy(x)

less than infinity. The sufficient statistic x takes values in 22", It will be con-
venient here for both 4 and 227 to be subsets of the plane R®. All of our results,
with one exception noted later, extend easily to higher dimensions. To avoid
trivialities, we assume that & does not assign probability one to any line in R?,
i.e., that v is genuinely two dimensional.

The expectation and covariance of the random vector x,

(2.3) B=E,x, ¥, =Cov,x,

exist finitely in the interior of the convex set 4, and can be obtained by differ-
entiation of ¢ : B(i) = d/da(i)[¢(a)], L.(i, j) = 0*/0a(i) da(j)[¢(a)]. The vector
B is the expectation parameter. The mapping from a to 8 is one to one, taking
the interior of 4 into the expectation parameter space B (not necessarily convex,
as the example at the end of this section shows). Locally this mapping is ex-
pressed by the differential relation
(2.4) dp = X, da .
The matrix X, is assumed to be of full rank for all a, which is equivalent
to requiring that & not be reducible to a one-parameter exponential family.
Lehmann [11], Chapter 2, is a good reference for these definitions and results.
The expectation parameter 3 indexes & just as well as does a. We will write
95 Eﬁ, ¢(B), etc. when it is convenient to work in B rather than 4. Further
notational shortcuts such as g, = g¢,,, £, = £,, ¢ = ¢(a) = ¢(8), will be used
in unambiguous contexts.
Let V, be the gradient operator (9/da(1), 6/0a(2))’, so that the differentiation
results following (2.3) can be written as

@.5) V,o=8 and V8 =V,oV/ =1X,.

(The last of these gives (2.4).) Similarly if V, = (8/dp(1), 9/05(2))’ then V,a’ =
X, and for any function 4, Vﬁh = Eﬂ-lvah, h being thought of as defined on
both 4 and B. In particular

(2.6) Voo =X,78.
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The Kullback-Leibler “distance” between two members of & is defined to be

2.7) Kaya)=E, 1oggax_§xx; = (@ — @) — [d(ar) — Plar)]
]

which we will also denote /(8,, 8,) as convenient. From (2.5)—(2.7) it is easy

to derive

(2.8) Vi l(Br B) = L,7(B — Bo) -

The role of the Kullback-Leibler distance is clearer in the framework of convex

duality, as introduced into exponential family theory by Barndorff-Nielsen [1],

see Section 7.

The simplest example of a two-dimensional exponential family is the normal
translation family x ~ .#7(8, ¥), I fixed and known. Theusual density function
can be written as

—ta' 1z
29 e[0T,
(29) 27|
showing that we can take @ = £-8, ¢ = $#/£18, v ~ 4750, X). In this case,
and only in this case, the local linear mapping (2.4) is globally valid, B = ¥4,
the crucial fact being that I, does not depend on a. By transforming to % =
L-ix we make £ = /, in which case 4 and B exactly coincide.

Example of B not convex. Define & = {(x;,0): —oo < x; < 0}, £, =
{(0, x,): 0 < x, < oo}, and let v(x) be the probability measure putting probability
one on % U .7, as follows: v(<£) = v(<£,) = }, the conditional density of x,
given x on &, is e~%, while the conditional density of x, given x on & is

—l2ql
2.10 h(x _=_c_e__.~, —o0 < x;, < o0,
(2.10) (w) = e <x
¢, a normalizing constant. The exponential family (2.1) with respect to this
carrier v has 4 = {(a, a,): —1 < a; < 1, a, < 1}. The expectation space B is
not convex. Its closure includes .~ and a finite subinterval of &£, say (—¢,, ¢,)
where ¢, = (>, x,emh(x,) dx,. It is easy to verify that for a fixed value of 5, > 0

the set of points (8,, 8,) in B is the interval

(2.11) 18 < ¢, [1 _ (B + 45;(1(1)& — ,BZJ

where k;, = (=, e"1h(x,) dx,. Blooks like an infinitely tall concave Christmas tree.

3. Two pictures of the MLE. Consider a one-parameter subfamily . of the
two-parameter exponential family &, represented, say, by the densities
3.1 fo(X) = ext*%0, 0e0O,

with respect to the carrier v for . Here O is an interval of the real line, a, a
continuously twice differentiable function from O into 4, and ¢, = ¢(a,). We
are interested in the maximum likelihood estimation of ¢ from the data x. Two
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complementary pictures of the estimation process will be presented, one due to
Fisher [7], and the other to Hoeffding [10].

" is a curved exponential family in the terminology of Efron [5]. It is repre-
sented by the curve &, = {a,: 0 € O} in A, and equally well by &, = [, =
B(ays): 0 €O} in B. If &, is a straight line segment then .& is contained in a
one-parameter exponential family. (This does not imply that &, is straight.)
In the more challenging cases .5 , is curved. An example is repeated sampling
from a normal distribution with fixed coefficient of variation, i.e., y,, y;, -+, y,
are independent and .#7(f, c#*), ¢ > 0 known. In this case x is the two di-
mensional sufficient statistic (X7 y,/n, 2.7 y[n).

In a certain sense curved exponential families are a paradigm for all smoothly
defined statistical problems in which the minimal sufficient statistic has higher
dimension than the parameter space. Fisher particularly liked to use curved
multinomial families to represent general statistical problems. See Efron [5]
for more background and properties.

Let
(3.2) ly(x) = log fy(x) = g,,’x — ¢,
so that
(3.3) Iy(x) = a/(x = By)

the dot indicating differentiation with respect to . Here we have used ¢, =

P

&, By, derived from the first line of (2.5). The maximum likelihood estimate ¢
satisfies

(3.4) 0 = [j(x) = ay'(x — ;) ,
A
%
ag
a

F1G. 1. The curved exponential family % is represented by the curve 4 = {a,;: 0 €O} is
A and also by %5 = {fs:6€0} in B. The MLE p; is obtained by ‘‘projecting’’ the data
point x onto % p orthogonally to &y. It is also obtained by finding the nearest point to x
on & in terms of the Kullback-Leibler distance I(x, ).
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assuming, as we shall, that the maximum is not achieved at an endpoint of .& .
In Figure 1 the sample space 2”7 is superimposed on B. (See Section 7 for a
discussion of B’s relation to -27) For a given value of 4, the set of x points
having 0 as a solution to the MLE equation (3.4), say

(3.5) L = {x:li(x) = 0}

is a straight line orthogonal to d&; and intersecting .% , at $;. This is Fisher’s
[7] picture, as illustrated in Figure 2. If it should happen that x falls on & 4,
say x = f8,, then the MLE equals ¢. In other words, the MLE is “Fisher

consistent.”
Hoeffding’s [10] picture relies on the relationship

(3.6) 94(x) = g (x)e~ =P,
g, indicating the density function of x when 8 = x. From (2.1) we get

(3.7) tog £2%) — (o — a,)x — [9(@) — p(a,)] .

9.(x)
where a and a, are the points in 4 corresponding to 8 and x respectively.
Comparison of (3.7) with (2.7) gives (3.6).

The “circle” of 8 values {f: I(x, 8) = c} grows larger as the constant ¢ is
increased. The smallest value of ¢ for which such a circle touches .5, gives
the maximum likelihood value B; at the point of contact, by (3.6). Figure 1
illustrates Hoeffding’s picture, showing f; as the nearest point to x on % in
terms of the Kullback-Leibler distance function /(x, 8). Hoeffding’s approach,
unlike Fisher’s, seems to require x € B, but that this is not actually the case is
shown in Section 7.

Of course (3.4) is just a differential condition for & to locally minimize /(x, 8,),
so that the two pictures are simple variations on the same theme. Both are
interesting nevertheless, and in different situations can be individually useful
for visualizing the maximum likelihood process. See for example Dempster [4],
and Hoeffding [10].

The local curvature of %, at a; plays an important role in the subsequent
theory, both geometrically and statistically. Letting £; = £,;andv,, = &,'Ejd,
vy = ay'¥yay, vy, = @y’ Xsd,, this curvature is defined to be
(3.8) rs = [igz — ”_ﬂ* .

V2o Vao

The quantity 7, called the statistical curvature of . at @ in Efron [5], is invari-
ant under any smooth reparametrization of .5, The radius of curvature is the
inverse quantity

(3.9) 0 =1/75-

If %" is a one-parameter exponential family, uncurved, then 7, = 0, p, = oo
for all 6.
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4. Constant information “circles.” The equivalence of Fisher’s and Hoeff-
ding’s characterizations of the MLE results in curves of constant Kullback—
Leibler information distance having some circle-like properties. For a fixed §,
in B and ¢ = 0 define
4.1) Cp={B: 1B B) = ¢},
it being assumed that & is contained in the interior of B. The corresponding
curve in 4 is
(4.2) &, = {a: ay, a) = c},
obtained by mapping $, to a, and every point 8 on &, to a point @ on &,.
Figure 2 illustrates the situation.

F1G. 2. & is the set of points 8 in B satisfying (), ) = ¢. The corresponding set in 4

is 4. The radius of g from B, to B is perpendicular to the tangent of 4 at as.

Let da, represent a tangent vector to &, at point @, corresponding to point
B, on & . Let p, be the radius of curvature of &, at a, as defined at (3.8)
(using any parametrization of &,).

THEOREM 1.
(4.3) (i) (da)' (B, — By)) =0.
(4'4) (ii) [(‘81 - ﬂo),Eﬁ—ll(‘Bl — Bt =0,

For the normal translation family x ~ .#7%(8, I), A and B are identical, and
%, and &, are circles of radius (2c)t. In this case (4.3) says that a circle’s
radius is orthogonal to the tangent where it touches, while (4.4) expresses the
fact, almost a definition, that the radius of curvature of a circle equals its radius.
Theorem 1 generalizes these statements, it once again being necessary to con-
sider spaces 4 and B simultaneously in general exponential families.

Proor oF (4.3). From (2.4) we see that d, = ¥, de, is tangent to &, at §,.
Since &7 is a level curve of I(8,, ), (2.8) gives

(4.5) 0 = (dB)'E5}(B — Bo) = (dao))'(B, — By) -
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The proof of (4.4) is deferred to Section 5. The generalization of (4.4) to
dimensions greater than 2 is not straightforward, unlike all of our other results.

Since I(«, a) is convex in a, (V,I(a,, a)V,’ = £, by (2.5)—(2.8)), &, is the
boundary of a convex set. Counterexamples can be constructed to show that
the region bounded by &, is not necessarily convex.

The gradient relation (2.8) which leads to (4.3) has an important statistical
implication. Suppose .2 is a genuine one-parameter exponential family (un-
curved) contained in &, corresponding say to the straight line segment of a
vectors a, + fa, for some interval ® C R'. Let x be the data point, 6 the MLE,
which is assumed to be in the interior of ©, and 6 any point in ©. Then we have
the Pythagorean relationship
(4.6) I(x, By) = I(x, B3) + 1(B;, By)

a result first given in full generality by Simon [15]. See also Efron [5].
normal families (4.6) is a typical additivity result for sums of squares in linear
models.

PROOF OF (4.6). &, = a, s0 , = ¥, a, by (2.4). Combining this with (2.8)
gives
(4.7) a[I(x’ ﬁﬁ) 3_0 1(189’ 180)] — all(‘@9 _ x) =0,

the last equality following from (3.4). This says that I(x, B,) — I(8;, B,) is a
constant, which is seen to equal /(x, ;) upon substituting 6 = 4.

5. Second derivative of the log likelihood. In this section we consider the
variation of 7,;(x) = 0*/00°[log fy(x)]|,-s along lines & of constant maximum
likelihood estimate, for curved exponential families. See Figure 2 and the defi-
nitions at the beginning of Section 3. From (3.3) we see that the Fisher infor-
mation i, = E[l,(x)]* is given by

(5'1) iy = do'zodo >

I, =%, = I, Differentiating (3.3) gives

(5.2) i)(x) = d@,/(x — B,) — iy,
&, = 0°/06*[@,], where we have used ’
(5’3) ‘Bo = Eodo

derived from (2.4).

Equation (5.2) shows that I3(x) varies linearly in x along the line <¢,. This
means that there is a critical point ¢; on < such that [3(c;) = 0. The location
of ¢; is “above” .27, (i.e., in the direction along 7 most closely aligned with
@y, as in Figure 3) at a position determined by pj, the radius of curvature (3.9).

THEOREM 2. The critical point c; is Mahalanobis distance py above . ,

(5.4) ps = ((cs — Bp)' E57"(cs — By))t -
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/

&
B and X <
5

g

FiG. 3. If x is a proportion R of the way from the critical point ¢4 to 34 then
—I5(x) = Rij. ¢ is a local maximum of the likelihood function for R > 0 and a
local minimum for R < 0. The critical point is on the side of &g determined by
the direction of &y, at Mahalanobis distance pj from 3.

If x on &% is a proportion R of the distance from c; to B; then
(5.5) —Ij(x) = Riy.

Several comments precede the proof of Theorem 2.

(1) Why should we be interested in the variation of [3(x) along ;7 Fisher
[8] thought of this as a (primary) explanation for the insufficiency of the MLE
when & is not an exponential family. The importance of Fisher’s consider-
ations is illustrated by the two examples in Section 6.

(2) If & is an exponential family then p, = co for all ¢, since &, is
straight, and —l}(x) = iy for all x on &% in accordance with (5.5). In this case
@ is sufficient, of course, so the entire likelihood function up to constant multi-
ples, and not just ié(x), is a function of x only through 4.

(3) If & is a curved exponential family and x,, x,, - - -, x,, a random sample
from f,(x) in &, it is possible to show that the coefficient of variation of R =
—l';g(xl, <+, X,)/niy goes to zero as (nip,)~* as n goes to infinity. The proof,
which depends on Theorem 2 and Efron [5] will not be given here. The quantity
(n*p,)~! is the statistical curvature based on all the available data, which suggests
that this last quantity be used to approximate the coefficient of variation of R,
as in the examples of Section 6.

(4) The proportion R referred to in Theorem 2 does not depend on which
metric (Mahalanobis or ordinary) is used to measure distance, since .27 is one
dimensional.
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(5) If x = p; then R = 1 implying —2.5(‘85) = ij. We see that —i;;(x) is Fisher
consistent for i, = E,{—Ij(x)}, and hence consistent in the usual sense, though
it is not in general unbiased. (Of course, —/} is consistent for i, in more general
contexts than curved exponential families.)

(6) As x moves along .5 away from .% ,, § changes from a local maximum
of the likelihood function to a local minimum at x = cj.

(7) Fori.i.d. samplingas in Remark 3, Theorem 2 becomes —ij(x,, - - -, x,) =
Rni;, where R is as pictured in Figure 3 with “x” replaced by X = Y7 x,/n. All
of the other quantities in Figure 3 remain exactly as defined before, see Efron
[5], Section 6.

(8) If ¥isak dimensional exponential family and .5 a one-parameter curved
subfamily then < is a k — 1 dimensional hyperplalfe orthogonal to d&;, passing
through gs. The critical “point” ¢, is now a k — 2 dimensional hyperplane
contained in %% and perpendicular to the projection of @; into .~7; (5.4) takes
the form

(5.6) min,. 5 [(y — B3)Ts~(y — B3t = 05 -
If x in & lies on the parallel to ¢; proportion R of the way from c; to 8; then
(5.5) holds.

ProoF oF THEOREM 2. There is no loss of generality in assuming that .5 is
in “standard form at 6§ = 4,” Section 4, Efron [5],

and
(5.8) ay = By = ige,, ;= a()e, + (is/ps)e, -

Here ¢, and ¢, are the coordinate axes in R?, and a(0) = &,'%,&,/i,*.
Comparing (3.4) with (5.7)—(5.8) shows that in the standard form coordinates,
x must lie along e,, x = (0, x,)’. Then (5.2) yields

(5.9) Iy(x) = (alonyxs — iy = is(xofps — 1) -
The condition l'},(x) = 0 is equivalent to x, = pj, x = (0, p;)’, which implies
(5.4). (The transformation to standard form preserves Mahalanobis distance.)

The special case where x lies exactly on . has x, = 0, so by (5.9) —ij(x) = i;.
Finally (5.5) follows by the linearity of /3(x) along 5.

PROOF OF (4.4). If we parametrize &, by some parameter 6, and take x equal
to B, in (3.6), then it is obvious from definition (4.1) that —/,(8,) = O for every
6. In other words, c; = B, for every 6. Then (5.3) implies (4.4).

6. A simple example. A particularly simple curved exponential family due
to Fisher [9] is discussed next, for which the relationships of Section 5 can be
explicitly displayed. Some of Fisher’s ideas on ancillarity and conditional in-
ference are illustrated using this example, and a connection made to the Cauchy
translation family.
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The model for & is bivariate normal with identity covariance matrix and
mean vector on the circle of radius p centered at (0, p)’,

(6.1) X ~ AyBy, I) s Bﬂzp< sin > for —r<0<,
1 —cos@

(0,p)

FiG. 4. Fisher’s circle model. The random variable x is bivariate
normal 4738, I), where B¢ lies on a circle of radius p. In the
model the curvature p and information i do not depend on §. The
statistic R is ancillary, as is ——75(x) =

as shown in Figure 4. This is a curved exponential family in which a = 6,
A = B. The following facts are easily verified:

(i) oy =pforallb,i,=i= o forall .

(i) & is the line through g; and (0, p)'.

(iii) The critical point ¢; is (0, p)’ for all 4.

(vi) If x lies on the circle of radius Rp centered at (0, p)’, then —I3(x) = Ri.

(v) The conditional density of 6 given x on the circle of radius R described
in (iv) is proportional to exp[Rp®cos (6 — 6)]. This is the von Mises distri-
bution [9].

(vi) The statistic R is ancillary (distribution not depending on 6) as is

—ly(x) =

Fisher argued forcefully that all statistical inferences should be made con-
ditional on ancillary statistics, his 1934 paper [8] being particularly persuasive.
In the present context one might try to follow Fisher’s dictum by making the
conditional variance approximation

(6.2) Var, (6] —lj(x) = R} z%
l

rather than the familiar unconditional approximation

(6.3) Var {f} ~ -



372 BRADLEY EFRON

In more complicated contexts, for example Cox [3], approximation (6.2) can
be a good deal easier to compute than (6.3). It also gives a cozy feeling of
being “closer to the data.” But how accurate is it?

Figure 5 displays the answer for the circle model with p = 8. For compari-
son with the Cauchy translation problem considered next, the parameter of
interest is taken to be

(6.4) ¢ = 0)(1.25)

rather than @ itself. When parameterized by ¢, & has constant curvature p
and constant information i,=1.25 p*=10. The approximation Var, {$1 —Zg(x):
Ri,} ~ 1/(Ri,) is seen to be quite accurate when compared to the exact con-
ditional variance computed for the von Mises distribution.

As a point of comparison with a statistically more interesting model, consider
the maximum likelihood estimation of the unknown center ¢ of a standard
Cauchy translation family, based on a random sample of size 20. Although this
is not a curved exponential family it can be approximated by such a family
having constant radius of curvature p = 8% and information i, = 10. See Efron
[5], Section 10. The results of a Monte Carlo trial of 14048 such random
samples of size 20, ¢ = 0, are recorded in Figure 5. The ancillary statistic
1/(—I3), grouped over small intervals, is plotted versus the observed second

d
L) // °
d
d
Couchyx — e
—~ stondard error e/
3“52e /’
" . o/
<9 Circle model e
—— 4
5
> 4
,/
,l
,/
o)
,/
/
3

| 1|/i'¢ <—I 95% “'! |
.05 .10 .15 .20 .25

- 17k

Fi1G. 5. The conditional variance of ;2 is well approximated by 1 H(=15x))
in the circle model. The case illustrated has p = 8¢, i; = 10, which is the
same as for a Cauchy translation problem with n = 20. 14048 Monte
Carlo replications for the Cauchy problem showed a similar pattern.
(Based on work with D. Hinkley [6].)
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moment of the corresponding g$ values. For example, 224 of the 14048 trials
had 1/( —f;(x)) in the range .170—.180, averaging .175, and the 224 values of
#* had mean .201, standard error .023.

The implications of Figure 5 are considerable. A Cauchy or circle model
sample with —i;; = 15 gives conditional 959, confidence interval approximately
é + 1.95/154, compared to the unconditional interval é + 1.95/10% based on
(6.3). David Hinkley and the author [6] have investigated (6.2) in contexts
more general than translation families, which Fisher [8] showed to have par-
ticularly simple ancillary structure. (See the discussion following Efron [5],
particularly the remarks of Cox and Pierce. Cobb [2] gives an especially inter-
esting discussion of ancillarity in constant curvature families.)

Remark 3 following Theorem 2 suggests that —l';; shoeuld have coefficient of
variation approximately 1/o = .35 in the circle and Cauchy cases (since i; is a
constant). The actual value is .32 for both cases. Table 1 shows that —'l;; has
almost exactly the same distribution for both problems. The similarity is
explained to a large extent, but not completely, by the identical values for p
and i,.

B TABLE 1
The percentiles of —I§ for the circle model (6.1), (6.4), p = 8%, and for the Cauchy
translation problem, n = 20. The coefficient of variation of —I§ is .32 in
both cases, compared to the approximation 1/p = .35 suggested in

Section 5. (The Cauchy results are those from the Monte
Carlo study with 14048 replications.)

Prob {—i} < ¢} 5% 10% 30% 509 70% 909 95%
for {circle model 5.1 6.3 8.8 10.6 12.4 15.0 16.3
Cauchy 5.1 6.3 8.8 10.7 12.6 15.2 16.6

7. Duality. The spaces 4 and B play dissimilar roles in Figure 1, and also
in Figure 2. There is a dual theory in which these roles are reversed. ‘““Dual”
is the appropriate word here since the reversed results follow most easily from
our previous ones by means of convex duality. Barndorff-Nielson [1] has
pioneered the application of this elegant theory to exponential families. Only
a brief glimpse of the theory will be given here.

Figure 6 shows the point @, in A corresponding to the data point xin B. An
estimator 5(x) analogous to the MLE can be defined as that value in ® minimizing
I(a,, @,), as shown in Figure 6. The “circle” &, = {a: I(a, a,) = c} is tangent
to %, at a;, where ¢ is the minimum value for which contact is made. It then
turns out that the line <% passing through a; orthogonal to f; goes through a,

The same relationship exists between g and its image &, in Basdid between
%y and & ,. Theorem 1, as illustrated in Figure 2, remains valid with the
places of a and 8 and of 4 and B everywhere reversed. & p is the boundary
of a convex set, but not necessarily %A.

Kullback [11] and others have made extensive use of the 6 estimation process.
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Fic. 6. A theory of estimation dual to maximum likelihood. This picture should be
compared with Figure 1. The estimate aj is the projection of ay onto 574, orthogonally
to B3. It is also the nearest point « to @, on .54, measured in terms of /@, az).

If &7, is linear, rather than &, as for eXponential families, then @ is easier to
work with than the MLE. Simon’s additivity theorem (4.6) holds in this case,
in the interchanged form I(a,, a,) = I(a;, @,) + I(a,, a;). On the other hand,
this form of estimation may be outperformed by the MLE in small samples, see
Rao [13] and Efron [5].

The theory of convex duality begins with a convex function ¢(«) defined on
a convex set 4. It is convenient to assume that ¢ has positive definite second
derivative matrix £,. Letting the gradient of ¢ be indicated by 8 = V,¢, the
dual function ¢(8) = &’ — ¢(a), thought of as a function of 3, is convex with
second derivative matrix £,7. The dual of the dual ¢ is ¢ and V,¢ = a, the
a« — B mapping being one to one.

For a,, a, in A4, define the tangent function to ¢ to be

(7.1) L(ons ay) = d(e) — [¢(a) + B (o — )] -
(1,(e,, @) is the difference evaluated at a;, between ¢ and the plane tangent to
¢ at a,.) Then ¢ has tangent function I4(8,, B,), B, B, € B, satisfying

(7.2) IB(ABI’ 132) = IA(az’ al) s
where 8, = V, |, B, = V.|, See Barndorfi-Nielson [1] or Rockafellar [14]

for a thorough treatment of the theory.

In exponential families, ¢ is the normalizing function (2.1), @ the natural
parameter, 8 the expectation parameter, X, the covariance matrix, and I4(8,, 8,)
the Kullback-Leibler distance. The function ¢ is seen to be the log maximum

likelihood for x ¢ B,
(7-3) $(x) = a,/x — P(a,) = max,., log g,(x)
by (2.1), (3.5).
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Differential relations such as (2.4), (2.6), and (2.8), which are the basis of
our previous results for exponential families, are easily verified in the more
general duality framework. Theorems 1 and 2 are valid in this wider context.
Because of the symmetry of the duality theory we also obtain reversed results
such as those illustrated in Figure 6.

We now consider the possibility that the sample point x falls outside of B.
More generally let ¢, be the sample space of the sufficient statistic ¥ =
> # x,/n, where x,, x,, - - -, x, is a random sample from some member g, of <.
The family of distributions of X, say ), is an exponential family with «,, =
nay, P, = B, L, = Lo/n, and ¢ (@) = ng(a), as can be seen from the
density

(7.4) Gal(Xps Xgp + ¢ +5 X,) = erla’z=g(ear] |

A curved exponential family in &, say ./, is also a curved exponential family
in &, and is represented by the same curve -4, through B. Maximum likeli-
hood estimation remains exactly as pictured in Figure 1, except that x is replaced
by x. (The fact that 4 is magnified by a factor of n does not affect the direction
of &;, which, as Figure 1 shows, is its only influence on 6.)

Letting n — co, the sample spaces 4., can be taken to be subsets of £, the
smallest convex set containing 22” with probability one. The space ~£7° contains
B, and the important fact is that the maximum likelihood theory illustrated in
Figure 1 can be extended to all points X in £, not just those in B.

To do so, the function ¢ is defined on %by

(1.5) (%) = sup,e, {a'% — $(a)) -

It is not difficult to show, as in Barndorff-Nielsen [1] Chapter 6, that ¢ is
convex on .7, and finite in the interior of . The function I(x, B), Xe 7,
8 € B, is then defined as the tangent function to ¢. It is easy to verify V,I(%, §) =
L,7(8 — %), as at (2.8), and that both Fisher’s and Hoeffding’s pictures remain
valid for % € 7.
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