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ON ALMOST SURE EXPANSIONS FOR M-ESTIMATES

By RAyMOND J. CARROLL
University of North Carolina at Chapel Hill

Let T, be an M-estimator with defining function ¢ and preliminary
estimate of scale s,. Without loss of generality, let s, — 1 and take
E¢(X/¢) = 0. Under various conditions, it is shown that any consistent
version of T, is almost surely to order O(n—1 logz #) a linear combinatijon of
n=1 37 ¢(X;) and s,. Only in the case EX;¢’(X1) =0 does the contribu-
tion of s, vanish; it is shown how this affects the estimation of the asymp-
totic variance of T. ‘

.

1. Introduction. The object of this note is to obtain an almost sure invariance
principle for M-estimators (Huber (1964)). Specifically, let X}, X,, - .- be i.i.d.
with common distribution function F(x), and let s, be a robust estimate of scale
which is location invariant and converges almost surely to a constant £. For a
given bounded function ¢, define # = 6(F) as a suitable solution to

(1.1) 10 = Epp(67(X, — 1)),

where E, denotes expectation under F. We propose to estimate 6 by a suitable
solution T, to
(1.2) 0= 3rds, (X, — 1)) .
Examples of s, include the sample interquartile range (which Bahadur (1966)
shows satisfies the law of the iterated logarithm (LIL)) and the trivial case s, = 1.
In Theorem 1, general conditions are found for the existence of a constant C
with ’
(1.3)  limsup, n(log, m)'{E,J"(§7(X, — O)NT, — 0)/¢ — (H, + G,,)]
<C (as.),

where

H, =n1 Y1 g(6~Y(X, — 0))

G, = (1 = s,[OEAE7(X — )P/ (E71(X, — 0)) .
Phrased loosely, (1.3) shows that, except for a remainder term of almost sure
order O(n~'log,n), T, — 6 is a linear combination of s, and the average of n
bounded random variables. Some consequences of (1.3)are sketched in Section 3.

2. Main results. Throughout this section, unless otherwise stated, s, is taken
to be location invariant and scale equivariant, so that we may set § =0, § = 1
without loss of generality. Consider the following assumptions:
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(A1) ¢ isbounded and there are intervals (a, = — o0, a,), - - -, (a;, @,,, = + o)
on which ¢ has two continuous bounded derivatives.

(A2) F satisfies a Lipschitz condition of order one in neighborhoods of
@, - a) and Eg/(X,) % 0.

(A3) We have sup x*|¢""(x)| < oo and E, X *(¢'(X))* < oo.

(A4) The sequence of statistics u, = 5,7 satisfies.

lim sup, ni(log, n)~*|u, — 1| < C, (a.s.), for some constant C, .
In the sequel we take C, = 1 without loss of generality.

DEeFINITION. If for almost all w a solution T, of (1.2) exists for n = n(w) such
that T, — 6 almost surely under F, {T,} is called a strongly consistent sequence
of solutions.

THEOREM 1. Suppose (A1)—(A4) hold and {T,} is a strongly consistent sequence
of solutions. Then (1.3) holds.

Before proving Theorem 1, two preliminary results are necessary.

LEMMA 1. Forn=1,2,...,let{X,,, k=12,..., n} be independent Bernoulli
random variables with success probabilities {p,,}. Define S, = > X,., tt, = 2.7 Prn
and a, = max (¢, logn) = (u, Vv logn). Then

limsup, S,/a, <4 (as.).
Proof. By Bernstein’s inequality,
Pr{S, — , = 3a,} < exp{—9a,/4} < n°t,
so the result follows from the Borel-Cantelli lemma.

LEMMA 2. Suppose (Al)—(A4) holds and define y, = n=*(log, n)}. Then there
exist positive numbers C and ¢ such that for any sequence ¢,, ¢,, - - - in [0, €] satisfy-
ing for n sufficiently large
(2.1) romax;la;| < (1 —7,)e,,
the following holds under F: for almost all w, there exists n(w) such that n = n(w)
and t| < ¢, imply
(2:2)  |n7 T3 @(ua(Xe — 1) — n7t T3 G(X0) — (uy — DER X, §'(X)) + tEp ¢/(X,)]

< c{( + rf + G + 1) (env ™ )}

n

(2.3) [n™ 23 Q(un(Xy — 1) + B "(X)| < C{ltle, + 74} -

ProoF. By (A4), choose n(w) so that n > n(w) implies |u, — 1| < 7,. Choose
¢ so small that F is Lipschitz on |J%_,[a; — 3¢, a; + 3¢]. Define B, =
j=1[a; — 2e,,a; + 2¢,], sothat Pr {X, € B,} < C,¢, for some constant C,. Now
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if x € B,, then since ¢ is Lipschitz and x is bounded, for x #a, (j=1, -+, k)
and n = n(w),
[9(ua(x — 1) = $(x) = (. — D)x¢'(x) + w1 (x)| < Colp (¥){ly — 1] + |1]}
s Gl (){ra + 1}
where 1,(x) is the indicator function for the set 4 evaluated at x. If x ¢ B,, say
a;, + 2, < x < a;,, — 2, then (2.1) guarantees that both u,x and u,(x — 1)

are in the interval (a;, a,,,) (here we consider n = n(w)). On this interval, ¢"
exists and is continuous so that

(2:4) |[$(un(x — 1)) — §(x) — (n — DxP'(x) + u, 1(x)|
< (Jun = 1x + w Jt])*19" (2a(2)I/2 5
where 7,(x) is between u,(x — f) and x. By (A3),

sup, sup {x*¢"(ax + f): s a =, |l = 3}
< 4sup, {(1 + |x[ + ¥*)|¢"(0)} < oo,

so that for n > n(w), if x # a, (j =1, - -, k), there is a constant C, for which

|p(ua(x — 1)) = $(x) — (up — 1)xd’(x) + u, 19"(x)]
=< C{(ra + 1) 4 (ra + 15, (0)} -
This means that for n > n(w), the left-hand side of (2.2) is bounded by

Cllrn + 1 + (o + It~ T 1 (X)
(2.5) + |tln= 27 (¢'(X:) — Epd' (X))
+ 7207 5T (X 9(X)) — EpXi9'(X))] -

Now, the boundedness of ¢’ and the second part of (A3) guarantee the LIL for
the sequences

n~t YT (X)) — Ep¢d'(X)))

n-! Z? (Xz¢'(Xz) - EFX1¢"(X1)) ’
and this, together with Lemma 1, show that for n = n’(w), the left-hand side of
(2.2) is bounded by

1
Co{a 107 + o 727 + (o 1) (o0 v * BT}
completing the first part of the lemma. To prove (2.3), note that by (1.1) and
(A3) n7' 317 ¢(X;) satisfies the LIL.

ProoF oF THEOREM 1. Take u, = 5,7 and ¢, = ¢/ = min (¢, |E, ¢'|(X,)/2C|)
for all n. It is clear that (2.1) holds. Then, applying (2.3), for almost all w
there exists n(w) such that if n = n(w), 27 ¢(u.(X; — 1)) cannot vanish in the
intervals

[—5'9~ _CAT'n] 2 [Cérn’ EI] ’
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and it has opposite signs on these intervals. Here C, is a large positive constant
such that for ¢ in these intervals,

Cltlen + 14} = Carn(C/C) + [1]|Er¢'(X))]/2
= [t(C/C) + |Ex¢'(X))/2}
< |t |Ex g/ (X)) -
Since {T,} is a strongly consistent sequence of solutions and ¢ = 0, we must
have |T,| < C,7, if n = n(w). Now take ¢, = min (¢, C,7,). By choosing C,
sufficiently large, (2.1) again holds. By choosing ¢t = T, in (2.2) and making
use of (1.2) we obtain (1.3) with

G,V = (u, — DE . X,¢'(X)
=G, + (1 — s, VE. X;¢'(X))/5, -

Application of (A4) completes the proof.

The following corollary establishes the invariance principle (1.3) for the esti-
mates which are not required to be scale equivariant. The proof is the same as

that of Theorem 1.

CoRrOLLARY 1. Ifs, = 1 and (Al), (A2) hold except ¢’ is only required to be
Lipschitz on each subinterval, then (1.2) holds.

The proof of Theorem 1 makes it clear that a strongly consistent sequence of
solutions to (1.2) always exists. Two examples where it is easy to identify 6(F)
and the suitable sequence of solutions are:

(i) ¢ is nondecreasing, A(#) = Ep¢(§7'(X, — 1)) has a unique zero at r = 0.
(ii) F is symmetric about and continuous at ¢, and T, is the solution to (1.2)
closest to the sample median.

3. Further considerations. The result (1.3) is interesting for at least two
reasons. First, taking § = 0, £ = 1, if F is symmetric and ¢ is skew-symmetric
then E, X,¢’(X,) = 0, so that G, = 0; hence the effect of asymmetry is to add
on a “biasing” term to the distribution of T,. This effect is not clear from the
influence curve (Andrews et al. (1972)). Second, it shows that the stochastic

process
Va(t) = n#(Tpy — 0)

is tight in D[4, 1] if a corresponding process for s, is tight (which is true under

Bahadur’s conditions); this means that, as in Chow and Robbins (1966), sequen-

tial confidence intervals for # of fixed length can be constructed using M-esti-

mates.

Theorem 1 can be generalized to admit the cases X, X,, - - - neither inde-
pendent nor identically distributed. The changes in proof basically require a
weakening of Lemma 1 (Hoeffding (1963)), finding an appropriate sequence s,
(Sen (1972)), and checking that the LIL holds for appropriate sequences (Stout
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(1974)). The basic smoothness conditions on ¢ given in Theorem 1 remain un-
changed for stationary, m-dependent sequences. For independent, not iden-
tically distributed sequences with distribution functions F,, we require that ¢’
vanish outside a finite interval and that n~* 37 F,(x) have certain convergence
properties. Similar but somewhat stronger conditions on ¢ permit the sequence
X, X,, - - - to be stationary, ¢-mixing.

A different problem is that of estimating the asymptotic variance A(F, ¢) of
ntT,. Huber (1970) and Gross (1976) suggest using

0, = 8, S ¢2(S%_1(x - Tn)) an(x)/{S (/)’(Sn_l(x - Tn)) an(x)}2

when s, = 1 or when F is symmetric and ¢ skew-symmetric; either circumstance
results in C, = 0. However, if s, is random and F asymmetric, Theorem 1 shows
that ¢,? will not be a consistent estimate of A(F, ¢). Thus, consistent estimation
of the variability A(F, ¢) will either require transformations to symmetry or the
use of a technique such as the jackknife.
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