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REMARKS ON MEASURABLE SELECTIONS

By R. B. DARST
Colorado State University

Many authors have studied the problem of obtaining an optimal plan
for a dynamic programming problem or a stochastic game. In several of
these works a maximal selection theorem of Dubins and Savage for u.s.c.
(upper-semi-continuous) maps has played a key role. Our purpose is to
relax the requirements that the maps be u.s.c. and still obtain maximal or
at least nearly maximal selections.

1. Notation and preliminary remarks. The publications of Blackwell, Dubins
and Savage, Maitra, and Parthasarathy, and Strauch cited in the references pro-
vide background for applications of the selection theorems. The selection theorem
of Dubins and Savage can be found in [4, Chapter 2, Section 16] and in [6].

Throughout this note, X will be a separable complete metric space with distance
function 4, E will be a compact metric space with distance function d, and K
will denote the compact metric space of compact subsets of E with Hausdorff
distance function 4. The basic theory of the metric space K can be found in [5].
The Cartesian product of a set 4 and a set B is denoted by 4B and zC denotes
the projection of a subset, C, of 4B on 4; f will be a map of X into K, and
F={(x,y); y e f(x)}; fisu.s.c. if for every closed subset D of E, {x; f(x) N D # ¢}
is a closed subset of X. Unless specified otherwise, u will be a nonnegative (real-
valued) u.s.c. function on F: {u > a} is a closed subset of F, a ¢ R. Let Z/(x) =
sup {u(x, y); y € f(x)}.

Because E is compact, the projection #G of a closed subset G of XE is a closed
subset of X; moreover, if g(x) = G n (XE), x € G, then g is an u.s.c. map of
7(G) into K. Conversely [5, I, 175] if f is u.s.c. then F is a closed subset of XE.

The basic selection theorem of Dubins and Savage asserts that if f is u.s.c.,
then there is a Borel map ¢ of X into E with ¢ C F (i.e., ¢(x)ef(x)) and
u(x, ¢(x)) = 7/(x), for all x in X. We extend this result to Borel functions f by
establishing the following.

THEOREM 1. Let f be a Borel map of X into K and let u be a nonnegative u.s.c.
function F. Then there is a Borel map, ¢, of X into E such that ¢(x) e f(x) and
u(x, §(x)) = Z(x), xe X.

Since X is a separable complete metric space and K is a compact metric space,
there is a well-known theory of maps from X to K. Thus f is a continuous map
if the inverse image of every closed set is closed and f is a Borel map if the
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inverse image of every open ball N(k, 4, ¢) is a Borel set. After the condition
that f be u.s.c. was found to be sufficient for a Borel selector to exist, more
general classes of maps based on the definition of u.s.c. were introduced: f is
said to be B-measurable if for every closed subset D of E, {x; f(x) n D + ¢} is
a Borel set; and f is y-measurable, where y is the completion of a probability
measure on the Borel subsets of X, if {x; f(x) N D # ¢} is u-measurable for every
D e K. The classes of Borel measurable and B-measurable maps coalesce [5, II,
47] and F is a Borel set if f is a Borel function [5, I, 167]. Theorem 1 and the
latter observation verify that if f is a Borel map of X into K, then F is a Borel
set that contains the graph of a Borel function ¢. Not every Borel set contains
the graph of a Borel function: see [3] and the references therein.
Before establishing Theorem 1, we transcribe another selection theorem.

THEOREM 2. Let each of X and Y be a separable complete metric space. Let g
be a map of X into the subsets of Y with G = {(x, y); y € g(x)} an analytic subset of
XY. Let u be a nonnegative Borel function on G. Then there exists a uniformly
convergent sequence ¢, of maps (measurable with respect to the g-algebra generated
by the analytic sets in X) of X into Y such that lim, u(x, ¢,(x)) = Z/(x), uniformly
in x, and for any open set V in Y, {x; ¢,(x) € V} is in the o-algebra generated by the
analytic sets in X.

The proof is a straightforward modification of the proof in Section 2: one tears
G apart systematically and applies Sion’s Corollary 4.4 in [8] to each part.

As the referee points out, Lemma 4 of Dubins and Savage’s proof can be
adapted to obtain a, perhaps, shorter proof of Theorem 1 without resorting to
Sion’s work [8]. However, we present an alternate proof of the Dubins-Savage
selection theorem in Section 2. Our proof applies to Borel measurable maps (one
merely notices that while certain of the particular types of Borel sets encountered
in Section 2 need no longer be of that type, they are still Borel sets), thus yielding
Theorem 1, and also produces approximations such as those in Theorem 2.

2. A proof of the basic selection theorem. To indicate the flavor of the proof,
we begin by constructing an approximation, b,, 0 < & < 1, to ¢ as follows.
" Denote by A, the closed set {u > ke}, where k = 0, 1,2, . -.. Since n((YB) N 4,)
is a closed subset of X whenever B is a closed subset of E, we can apply Theorem
4.1 of [12] to assert the existence of a Borel function b, on B, = =4, with b, C A4,.
Letb,=b,onB,— B, k=0,1,2,.... Then b, is a Borel function and Z/(x) —
e < u(x, b(x)) £ Z(x). We shall choose a sequence ¢, — 0 and refine the con-
struction to obtain uniform convergence of the sequence ¢, = b, ; the limit is a
Borel function ¢ with u(x, ¢(x)) = Z/(x). Thus we set ¢, = 1/2¢ and denote by
A, the closed set {u = k/2'}. Then we recall that there is a sequence {S;} of finite
collections S; = {Cy;, - - -, Cy, } of closures of pairwise disjoint nonempty open
subsets of E, where the diameter of each C,; is less than 1/2° and J3z, C;; = E.
Moreover, for each k < n,,, there is a smallest integer j < n, with C,,,, c C,;;
thus, each element of S, , is identified with a unique element of S; which contains
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it: we also require that k < k; = j < j;, where k is identified with j and k, is
identified with j;. Fix i for the moment and suppress it from the notation; thus
we consider S = {C,, --., C,}. We wish to make a construction for each 4,,.
To indicate the procedure while maintaining a manageable notation, we shall
temporarily identify A4,, with F and use the notation that is available for F.
Notice that Z/(x) = max Z/;(x), where Z/;(x) = sup {u(x, y); y € f(x) n (XC;)}.
Now fix j and suppose Z/(x) > Z/;(x). Then there exist two rational numbers
r < t such that x belongs to the closed set T = {z; f(z) N {u = t} #+ ¢} and x is
also in the open set

R={z(fe)n Cj) c{u<r}} ‘
= {X —a(F n (XC} U {xex(F n (XC;); (fix) n C)) C {u<r}};

the lattermost set is open because the restriction of u to F n (XC;) is u.s.c.
Thus T n R is an F,; taking unions over pairs of rationals r < ¢ permits us to
assert that V; = {x; Z(x) > Z/;(x)} is an F,. Hence W; = =n(F n (XC;)) — V;
is a G,. Consequently (W;E) n F n (XC;) is a Borel set; moreover, whenever
Bis closed in E, z[(XB) n (W;E) n F n (XC;)] = {z[(XB) n F n (XC)I} n W;
is a Borel set. Therefore Sion’s Theorem 4.1 in [8] implies that there exists a
Borel function k; on W; with h; C (F n (XC;)). Let h = h, on W, hon W, —
Wy ooy hyonW; — Ui Wir j =2, - -+, n. Now we reintroduce 4;,. Thus A,
is a Borel function on A4,,. Let ¢, =k, on A,, — A,,,,- Then ¢, converges
uniformly to a Borel function ¢ with Z/(x) = u(x, ¢(x)).
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