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PROOF OF CONJECTURES ABOUT THE EXPECTED VALUES
OF THE ELEMENTARY SYMMETRIC FUNCTIONS
OF A NONCENTRAL WISHART MATRIX

By B. K. SuaH! AND C. G. KHATRP®
Rockland State Hospital and Gujarat University

This paper provides proof of conjectures about the expected values of
the jth elementary symmetric function of the roots (i.e. E(trj 4)) of a non-
central Wishart matrix. Utilizing this result we have obtained computa-
tionally convenient formula for the expected value of the jth elementary
symmetric function of the roots of central positive definite quadratic form
in matrix argument. )

1. Introduction. Let X: p X n be a matrix whose column vectors are inde-
pendently and identically distributed in multivariate normal distributions having
E(X) = M and variance covariance matrix . The matrix XX’ = Aisdistributed
as a noncentral Wishart distribution W (n, Z, Q; A) with n degrees of freedom
and noncentrality parameter Q = Z-'MM’.

In the next section we provide the mathematical proof of conjectures made
be de Waal [3] about (i) E(tr, 4) and (ii) E(tr; 4),j = 1,2, ---,p — 1. In the
last section, we have extended the above results to the case of central positive
definite quadratic form in matrix argument.

2. Central and noncentral Wishart case.

LEMMA 1. For a central Wishart matrix W,(n, Z, 0; S)
2.1) (@) Er,S) = E(S|) = n[Z|,
(2.2) (b) E(tr;S) =n@tr; X, j=4L2,...,p—1,
where n'® = n(n — 1) ... (n — p 4+ 1).

Proor. (a) This is a well-known result and proof is given in many standard
text books.

(b) By definition, tr; S is the sum of all principal minors of order j of matrix
S. Thus,

E(tr; S) = E(sum of all principal minors of order j of matrix S)
= n'(sum of all principal minors of order j of matrix )
=ndtr; X.
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This establishes Lemma 1. We may note here that de Waal [3] has established
the lemma by providing zonal polynomial argument.

LEMMA 2. For a noncentral Wishart matrix W (n, Z, Q; A) with Q = Z7'W,
W = MM,

(2.3) (@) E(tr, A) = E(|A]) = n?|Z| + 12, (n — i)®=?|Z| tr, Q

@4 (b)) Etr; 4) =n9tr; B 4 T (n— k)0 T [ZE))]
tr, ((ZEONIWEGYs  T=1,2,--p =1,

where X(i(f)) and W(i(j)) are submatrices obtained by considering i, iy -« -, I;
rows and iy, iy, - --,i; columns of matrices T and W respectively and 3}3;;, =

D hmtiiyigeig 2aty=1

Proor. Part (a): The noncentral moments of the generalized variance |A4|
have been given by Anderson [1] for the case of Q of rank < 2, and in general
by Herz [4] who quoted by Constantine [2] as:

(2.5) E(tr, 4) = [2Z[T,(3n + D{T,(Gm} ™ F(—15 4 —19Q) ,

where F (a, b; §) = Y5 21, ((@),/())(C(S)/k!), 35, is taken over all the par-
titions & = (ky, ky, -+, k), ky =k, = --- =k, = 0sothatk, + k, -+ +k, =
k, (a), = TI2{a — (i — 1)/2h,» () = X(x + 1) - -+ (x + k — 1), C,(s) is a poly-
nomial of degree k in the latent roots of the matrix S and I')(x) =
mr»-vA T2 T'{x — (j — 1)/2}. The difficulty, as quoted by de Waal ([3], page
346), is to simplify expression (2.5). From definitions

(2.6) [2Z|T,(3n + DIT,GEm) " = n”(Z], and
—1 —
(2.7) Fi(—15 4n5 —3Q) = X, Zx( S )e C(=912)
Gn). K
Now (—1), =0 if k, > 1. Hence (—1), =0 if k > p. Further, (—1), =
e {—1— (@ —1)2),ifky, =k, = --. =k, = 1 and other k; = 0 for k < p.
Hence (—1), = (—1)¥(k + 1)! (27*), for £ = {1*, 0}. Therefore,
(2.8) Fi( =15 35 —3Q) = Dioo (k 4 Din®27Cu(Q) -

For every partition x = (ky, ky, -+ -, k,), k; = --+- = k, = 0, the zonal poly-
nomials C (Q) can be written as (see [5], equation 18, page 478)

(29) Cu(Q) = {xrar(12" K} Z(Q)/(2K) -

Equation (4.6) is to be evaluated at x = {1¥, 0}. Using equation 19, page 479
of James [5], we have

(2.10) Yoaak,op(1) = (2K {k! (k 4+ 1)1},
and noting (120) and (121) of James [5] on page 492, we have
(2.11) Z‘lk'o,(Q) = k! tl‘k Q .
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Substituting the values of equations (2.10) and (2.11) in (2.9), we obtain

(2.12) Ciar,0(Q) = 2%(tr, Q)(k + 1)1,
Thus,
(2.13) Fi(—=153n; —3Q) = Yi2_otr, Q/n® .

Combining expressions (2.12) and (2.13) establishes a conjectured result.
Part (b): By definition of trace, it is easy to write

(2.14) tr; A = 2 [AE)))
where A(i(j)) is a submatrix obtained by considering i, i,, - - -, {; rows and i,
iy, ++ -, i; columns of matrix 4. We may further note that the submatrix A(i(j))
is distributed as noncentral Wishart W(n, Z(i(j)), [Z(i(/))]1*W(i())); AG())))-
Applying the result of Lemma 2 part (a) to the submatrix A(i(j)), we get
(2.15)  E(tr; 4) = T E( 4GOI} - Zaisy {n?
+ Diar (n — k)70t [ZE) T WEONHECED))]

which establishes part (b).

CoROLLARY. When X = d°l,
(2.16) B(tr; 4) = ¢ i (n — k)90 ,Q,  j=1,2,---,p.

Proor. Since X = ¢°[,, we have

i e [BEONITWE())) = (3=6) tr, @,

which establishes the corollary.

3. Quadratic forms in matrix argument. Let Q = XLX', where X: p X n is
a matrix whose column vectors are independently and identically distributed in
multivariate normal distribution having E(X) = 0 and variance covariance
matrix Z, and L: n X n is a positive definite matrix. Previously Khatri [6] gave
E(|Q|) involving hypergeometric series representation in matrix argument. This

expression is very difficult to evaluate numerically. Lemma 3 gives a simpler
and computationally convenient expression.

LeMMA 3. For a central positive definite quadratic form
(€Y (@) E(Ql) = n®[Z|g” Tl (—1)p® tr, T nil,
(3.2) (b) E(tr; Q) = ngi(tr; T) Do (— 1) tr, Tjn¥it ,
where g >0and T = I, — g7'L.

Proor. (a) Equation (46) of [6] can be written as,

E(|Q]) = n®|B|qr4m+P|LI=2 F ™ (gn + 1 1, — gL 1)
(3-3) = n®|Z||gL7 g Fy(Gn + 1, p; gns 1, — qL7)
= n?|Z|g* Fy (=1, §p; 4 T)
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since ,Fy(a; b; ¢; §) = |I — S|™%,F,(c — a, b; ¢; —S(I — S)™'). Equation (3.3) can
then be simplified in the manner described in Lemma 2, giving a final result
as mentioned in (3.1). We may note that when L = I, (3.1) reduces to (2.1).

(b) By applying the argument of Lemma 1, we can easily establish Lemma
3(b). This result generalizes Lemma 1.
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