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ON THE ADMISSIBILITY OF THE M.L.E. FOR ORDERED
BINOMIAL PARAMETERS

By H. SACKROWITZ AND W. STRAWDERMAN

Rutgers—The State University

Admissibility properties of the M.L.E. for the parameters of m inde-
pendent binomial distributions (when these parameters are known to be
ordered) are determined for certain convex loss functions. It is shown that,
except in two special cases, the M.L.E. is inadmissible whenever the total
sample size is 7 or more.

1. Introduction. Let X, --., X, be independent random variables with X,
having a binomial distribution with parameters ¢, and n;,, i =1, ..., m. The
problem is to estimate 6,, - - -, 0,, where n,, -- -, n, is known, and in addition,
it is assumed that 4, < 6, < ... < 6,.. Such situations occur in reliability ([4]),
in the biological sciences ([6] and [8]), and in other disciplines as well.

In reliability studies, for example, testing is often carried out in stages, and
improvements are made after each testing stage to correct problems found during
testing. Presumably, therefore, the reliability (or probability of successful op-
eration) should increase from stage to stage. This and related problems (i.e.
estimating ordered parameters for other distributions) have received considerable
attention in the literature (see for example [1], [3] and [5] and references therein
as well as the recent book by Barlow, et al. [2]).

We are primarily concerned in this work with the question of admissibility
of the Maximum Likelihood Estimator (M.L.E.) relative to loss functions of
the form L(0,, --+,0,; a, -+ -, a,) = 1™, W(|0, — a;]) where W(.) is strictly
convex. Our main result (Theorem 4.1) states that, except in two special cases,
the M.L.E. is inadmissible if n, 4+ ... 4+ n, = 7. We also show for the case
of sum of squared error loss that the M.L.E. is admissible in all cases not
covered by the above. This is in marked contrast to the unordered case where
the M.L.E. is admissible for all (n,, ---, n,) (see, for example, Johnson [9]).
The method of proof is to show that the M.L.E. is not admissible in a suitably
chosen sub-problem by showing that it cannot be Bayes in that sub-problem.
This method suffers from the shortcoming that no new estimator is exhibited
which beats the M.L.E. The situation is somewhat analogous to the problem
of estimating ordered normal means with sum of squared error loss. There,
the M.L.E. is inadmissible if there are two or more means to be estimated since
the estimator is not smooth and hence cannot be generalized Bayes (see Sacks
[10] for a proof that the generalized Bayes procedures are a complete class).
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However, to the author’s knowledge there is no estimator which is known to
beat the M.L.E.

In Section 2 we formally state the problem, as well as introduce some nota-
tion and definitions. Section 3 contains general conditions for admissibility or
inadmissibility. These results are applied in Section 4 to obtain the main results.

2. Notation and definitions. We will introduce some notation and put the
problem in the framework of statistical decision theory.

Any letter, either Roman or Greek, capital or lower case, which is boldface
denotes a row vector. The coordinates of the vector are denoted by the same

letter but using subscripts. For example, X = (X, ---, X,,)and x = (x, - - -, X,,).
All vectors are m-dimensional.
Let X, - -, X,, be mutually independent random variables. We construct

the following statistical decision games about these random variables (the nota-
tion for sample space, action space, etc. is essentially that of Ferguson [7]).
G ={X=(x, -, X)) %, =0, --,n,i=1,...,m}
0={0=¢,.--,0,):050,<...0,=1}

=0
L@,a) =™, W(0, — a))) all 6e®, ae ¥
P(X = x|0) = [[7, (2)0(1 — 0%, XeZ,0e0.

G &, ={x:xeZ, X, =n,}

0,={0:60¢0,0, =1}

&, ={a:ae VY, a, =1}

L.,(0,a) = L0, a) all e®,, aec Y,

P (X = x|0) = I Gosi(l — 0", XeZ,, 0e,.
T ¥ ={x:xeZ, x, =0}

0+ ={0:0€9,0l=0}

X* ={aiae ¥ a =0}

L*(6,a) = L0, a) all 0eO*, ae w*

PX(X = x|0) = TI1 ()05(1 — 0)7™,  Xe 2%, 0eO*.

In addition we define the game & as follows.

G2y =x:xeZ,x, +0,x, +n,}
6,=0
Ny =
Ly(6,a) = L0, a) all 6¢0B,, ae .
Po(x =X I 0) — (:})0121—1(1 _ 0l)n1—zl(z$)0mzm(l _ 0m)nm—zm—1
X 185 ()0l — O
X [Zi%" (1= 617 0.7 xe2, 0€0,.

=0

Note that P, is just the conditional distribution of X given (X # 0, X,, # n,).
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In each of the above games a (non-randomized) decision rule or estimator
is a vector-valued function of the observations and will be denoted, for example,
as follows: D(x) = (Dy(X), - -+, D,(x)). Although the same notation applies to
all decision rules, the domain and range of these rules will determine their ap-
propriateness for the individual games (for example, a rule D for the game &
may also be used as a rule for the game & as 25, ¢ 2 and %7, = ). We
will use the notation R(@, D), R, (8, D), R*(8, D), R0, D) to denote the risk
function of a decision rule D when used for the respective games &, &, &*,
and Z,. Of course use of this notation will imply that the 8 value belongs to
the appropriate parameter space.

We will always assume the function W(-.) to have the following properties:

(i) W(.) is a strictly convex function.
(iiy W()=0 with W(@O0)=0.
(2.1) (iii) The derivative of W(y) with respect to y (denoted
by W'(y)) existsforall 0<y<1 and W'(l) < oo,
w'@0)=0.

Let the decision rule T(x), defined on x € 227, denote the maximum likelihood
estimator (as derived in [1]) for @ € ©. Denote by T,, T*, and T,, respectively,
the restrictions of T to 27*, 27, and 27. We note the following properties
of these estimators:

(i) Ty(x)=0 all xeZ*,

(2.2) (ii) T,(x) is the maximum likelihood estimator for #¢®©,,
(iiiy T,(x)=1 all xeZ,,

(iv) T*(x) is the maximum likelihood estimator for @ e ©*.

3. Conditions for admissibility. We immediately state the following result
(as Theorem 3.1) the proof of which is essentially given in [9], page 1579.

THEOREM 3.1. T(X) is admissible for & if and only if
(i) T, isadmissible for <&,
(iiy T* isadmissible for <*,
(i) T, is admissible for <.
Lemma 3.1. If T, restricted to 2, is not Bayes for &,, then T is inadmissible
for Z.

Proor. By Wald ([11], Theorem 3.20) the Bayes rules comprise a complete
class for &,. This with Theorem 3.1 establishes the result.

Our main tool for showing inadmissibility will be Theorem 3.2 stated below.
Following the lead of Lemma 3.1, Theorem 3.2 will give a method for deciding
that T, restricted to 227, is not Bayes for &. Basically Theorem 3.2 reflects
the notion that an admissible rule must exhibit a certain amount of consistency
on 2 (i.e. there are points in 227 on which an admissible rule must behave in
a similar fashion as to whether or not the estimate of 6, is equal to the estimate
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of 6,). This consistency on 27 will be expressed through the functions B(+)
and U(.) defined on 27 as follows:

B(x) = +o0 if x=1, x,=..-=x,=0
=1 if x,=2
=the first /> 1 suchthat x, =1 if otherwise.
Ux) = —0 if x,=n,—1, x;=n; all j=1,-..,m—1
=m if x,<n,—2

=the last i < m suchthat x,<n, — 1 if otherwise.

Intuitively, B(x) is the first index i such that x, is greater than its minimum

value on 227 and U(x) is the last index i such that x, is less than its maximum

on 2.

THEOREM 3.2. If there exist two points y and z in 27, such that

(@) Ty(y)=T,(y) and T(z)+ T,(z)

and -
(b) B(y) = B(z) and U(y) < U(z),

then T(X) is inadmissible for &Z.

Proor. We will simply sketch the proof, as the method of proof is straight-
forward (the details are tedious though not difficult). The idea is to show that
conditions (a) and (b) of this theorem imply that T, cannot be Bayes for Z.
The arguments are basically as follows. For T, to be Bayes with respect to the
prior distribution r means

§o W(10: — TUx)))S(x, 6) de(0) = infogezs §o W(|0; — a])f(x; 0) d=(6)
foralli =1, ..., mand all x e 2, and where
f(x; 0) = 0121—1(1 - 01)n1—z]€mzm(1 - 0m)”m_zm-l H;n;zl 01:2’:(1 —_ 01;)"1'_“1‘
X (DL (1 — 017 [ 5z 0,717 -
This implies (with conditions (2.1) allowing the change in order of integration
and differentiation)
(3.1) Yo V(0 Tu(X))f(X; 0) dz(6) = 0
for all i=1, ..., m and all xe 2, and where V(0, a) is the derivative of
W(|6 — a|) with respect to a. Two properties of V(f, @) which are due to the
strict convexity of W(.) are
(i) ¥(0, a) is a strictly increasing function in a;
(ii) ¥(0, a) is a strictly decreasing function in 6.

Since each integral of the form (3.1) is equal zero, the difference of any two

must equal zero. Thus

(3:2) Yo [V(0:, Tu(x)) — V(0;, T;(x))If (x; 0) dz(0) = 0
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alli,j=1, ..., mand all x e 25. In particular, we take i =m, j=1,x =y.
By assumption (a) of the theorem, (3.2) becomes

(3-3) §o [V(0ns Tu(y)) — V(01 Tu(¥)1S(y, 0) d2(0) = 0.
Since P (0, < --- £ 6,) =1, by the monotonicity properties of V(0, a), if
0,. > 0, then

V(0n Ti(y)) — V(0:, To(y)) < 0.
It now follows from (3.3) that  must be such that

V(0> To(y)) — V(01 Tu(¥)1S(y,0) = 0
with r probability one. Equivalently we have
(3.4) P(6, =0, or f(y,0)=0)=1.
By the hypotheses of this theorem the point z is such that B(y) = B(z) and
U®y) £ U(z). Thus (for¢, < -.. =£0,)
fly,0) =0=f(z,0)=0

forany @ € ©. We now see that equation (3.4) implies P(6, = 0,, ot f(z, ) = 0) =1
which in turn implies

Yo [V(0n> Tu(2)) — V(01 T(2))]f (2, 0) dr(0) = 0
which implies (by (3.1) with x = z and i = 1 and then i = m)
(3.5) 0 = §o V(0 Tu(2)f (2, 0) d2(0)
= $o [V(0n> Tu(2)) — V(O Tu(2))]f (2, 0) d2(6) -

By assumption T,(z) > T,(z). By the monotonicity of V(0, a), V(0. Ti(2)) —
V(0,, Tn(z)) < O for all §,. Thus the last integral in (3.5) being zero is a
contradiction.

4. Main results. In this section we establish the admissibility and inadmis-
sibility of T for various choices of n,, - - -, n,,.

THEOREM 4.1. Letm = 2. If n, + --- + n, = 7 and neither

(i) m=2, and n=1 or n=1
nor
(ii) m=23, n1=n3=l

holds, then T is inadmissible.

ProoF. The method of proof will be to find points y and z satisfying the
conditions of Theorem 2.

Case 1. n, = 3. Choose

y=(n,ny---,n, 4,n,—1), 2=(2,ny «-+yn,_y,n, —1).
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Here B(y) =1, U(y) = — o0, B(Z) =1, U(Z) = 1and
T(y) =1 —(n + -+ + n,)7t = T,(y)
@) =2 < 1=+ o+ ) = To(2)

1
under the assumptions on #,, ---, n,. By Theorem 3.2, T is inadmissible in
this case.
The remaining cases can also be handled in this way, that is, by specifying
an appropriate X and y. This is done in the following table.

TABLE 1
Conditions in
addition to x o
At e dm =T y (y) (y)
=3 (1,0,-.--,0,0) + o0 m
(1v0$ 'aog nm _2) m m
n = 2, o = 2 (2, na, *y Bm—1, 1) 1 — o0
(2909"'7071) 1 m—1
m= (1,0,0) +o0 2
I11:2, Rm = (1,”2—-1,0) 2 2
m=3 (1, ng, 1) 2 — o0
n = 1, Am = (1’ 1’ 1’) 2 2
mz4 (2,n2, +++, Hm-1, 0) 1 -
nl'——zgn‘m: (2109"'90»’1"&—1’0) 1 m-—2
m=4 (1,0, ---,0) + o0 m
m=1,nn=2 (1,0,n3, <+, npm-1,0) 3 m
m=24 (1,0, 1,0) 3 3
n=n=ng= (1,0,n3 — 1,0) 3 3
m= (1,ns—1,1,0) 2 2
n1:n3:n4:1 (1,1,1,0) 2 2
m=4
n = n4 = 1 (l,nz,na,O) 2 — 00
ne>1,nm>1 (1, 1, ns, 0) 2 2
m> 4 (1, mgy «++ym-1,0) 2 — 00
n=hnn=1 (1,1,0,+++,0, np—1, 0) 2 m—3

In the important case of squared error loss (i.e. W(u) = u*) the converse of
Theorem 4.1 is also true.

THEOREM 4.2. Let W(u) = u*. Then T(X) is admissible if and only if either
(i) mA4+ - +n, <7 or

(i) m=2, n=1 some i=1,2 or
@iii) m=3, n=n=1.

Proor. If none of the conditions (i), (ii), or (iii) hold, then by Theorem 4.1,
T(X) is inadmissible.

To prove admissibility we first note that if T(X) is admissible for ¥ when
m=k(k=1,2,-..)then T (X) and T*(X) are admissible for ¥, and ¥*,
respectively, when m = k 4 1. We also note that for m = 1 T(X) is scalar-
valued and is just the usual M.L.E. for a single binomial distribution. This
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is known to be admissible ([7]). Thus the proof reduces to (by Theorem 3.1)
showing that T(X), restricted to 225, is admissible for &, whenm =2, ..., 6.
This can be done by showing that T(X) is unique Bayes for &7, in each of these
situations. We will not do the computations but just state that (when the
assumptions of Theorem 4.2 are satisfied) this can be shown by considering
prior distributions of the following form. Let r be a mixture of two distribu-
tions; , which is concentrated on the line §, = ... = 4, with density function
KYnt (1 — 6) ¥im " 6" and v, is a discrete distribution concentrated on the
vertices of ©. Thus we use a prior distribution of the form = = gz, + (1 — ¢)7,
for some 0 < ¢ < 1.

5. Remarks. We suspect that Theorem 4.1 and Theorem 4.2 hold for many
loss functions other than those considered here. However, there does not appear
to be a method which is applicable to all situations. For example, it can be
shown that Theorems 4.1 and 4.2 hold if L(#,a) = 1™, (0, — a,)’/0.(1 — 0,).
Unfortunately some of the techniques used to show this are pertinent only for
this loss function.
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