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ON SAMPLE QUANTILES FROM A REGULARLY
VARYING DISTRIBUTION FUNCTION!

By LAURENS DE HAAN
Stanford University*

A law of the iterated logarithm is proved for sample p-quantiles when
the probability distribution function varies regularly at &£ with F(§) = p.

Introduction. Suppose U;, U,, - -- are independent random variables all with
a uniform distribution on [0, 1]. Let F,(x) be the empirical distribution function
based on (U,, U,, ---, U,), i.e. nF,(x) = number of U, less or equal to x(1 <
i < n); let V,, be a kth order statistic corresponding to (U,, U,, - -+, U,) and
take 0 < p < 1. Bahadur (1966) proved that with probability one

1) Vinsin + Fu(p) — 2p = O(n~¥log n)

for n — oo (here [a] is the integral part of @). This result has been sharpened
and extended by Kiefer (1967 and 1970). Ghosh (1971) gave a simple proof of
a somewhat weaker result. Using the classical law of the iterated logarithm for
Bernoulli variables, one gets from (1) that with probability one

lim sup, _,.. Viwpin =P _ (p(1 — p))t

@,

@) .
lim inf, ., ~Le2ke =P = —(p(1 — p))}

a,

where a, = {2n~*log log n}} Bahadur also extended these results for a class of
distribution functions F determined by: F is twice differentiable in a neighbor-
hood of the point & for which F(§) = p, F'(§) is positive and F”” is bounded in
the neighborhood of §.

It will be shown that the iterated logarithm result (2) can be extended to a
larger class of distribution functions including all df’s with positive derivative
F'(§). For the proof we represent any order statistic from an arbitrary distri-
bution as a function of the corresponding order statistic from the uniform
distribution. The functions for which (2) carries over are the functions which
vary regularly at x = §.

Transformation of order statistics. Let X, X,, - - - be independent and identi-
cally distributed real-valued random variables with common distribution F.
Suppose that the equation F(§) = p has exactly one root §&. Let Y, , be the kth
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order statistic corresponding to (X;, X;, - - -, X,); in case of equal order statistics
the choice of Y, , is arbitrary. For 0 < y < 1 we define the function g by

9(y) = inf {t] F(1) = y} -

The set in the right-hand member is closed for all y, hence
. Iy) S x=y = F(x),
ie.

P{g(U)) £ x} = P{U, £ F(x)} = F(x) .
So g(U,) has the same distribution as X;. As the validity of a law of the iterated
logarithm only depends on the distribution function F, we may consider the
sequence g(U,), g(U,), - - - instead of X}, X,, - --. Similarly, instead of Y, , we
will consider g(V, ).

LeMMA 1. Let g be a non-decreasing function on (0, 1) and let « > 0. If for
some finite constant ¢ > 0

3) lim, gp+1—9(p) _ .,
g(p) —9(p — 1)

and for all x > 0

) lim, ,, 9(p + 1%) = 9(P) _ ya
g(p + 1) — 9(p)

then with probability one

li g(V[np],n) - g(P) f— —_ «/3
im sup,_,., TEANYTT) {p(1 — p)}

)

lim inf, IV tnp1m) = 9(P) _ o1, {p(1 = p)}==.
9(p + @) — 9(p)
Proor. As both sides of (4) are monotone functions of x and x¢ is a continuous
function of x, (4) holds uniformly on all finite intervals. Set Z, = a, {Vi,,1,—P}
then with probability one

g(V['np].'n) - g(P) = lim SUP, o g(P + anZn) - g(P)
9(p + a,) — 9(p) 9(p + @) — 9(p)

= (limsup,_.. Z,)* = {p(1 — p)}**.
From (3) and (4), we get for all x > 0

lim, 9P —1x) — 9(P) _ _ 1. ya.
9(p + 1) — 9(p)
This gives the lim inf statement. []

Condition (4) means that the function U: R* — R* defined by U(x) =
g(p + x) — g(p) is regularly varying at x = 0 with exponent « (shorter: a-vary-
ing at x = 0). For the proof of our theorem we need two lemmas on regularly
varying functions. They are very similar to Propositions 5 and 6, page 22 of de
Haan (1970); we omit the proofs.

lim sup, .,
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LEMMA 2. Ler U: R* — R* be non-decreasing and p-varying at x = 0 (0 <
p < o). Define the function U*: R* — R* by
6) U*(y) = inf (| U(t) = x .
Then U* is p~'-varying at x = 0.

LeEMMA 3. Suppose U, and U, (both R* — R*) are non-decreasing and p-varying
atx=0(0< p < ). Let A > 0. We have

U(x) ~A-Ug(x) for x|0

Ur(y) ~ A7 - U*(y)  for y10,
where U* and U,* are defined as in (6).

if and only if

THEOREM. Suppose F is a distribution function for which the equation F(§) = p
has exactly one root §. Let A, p > 0. If

) lim, , FE + 0 = FE) _ 4
PR —FE—1)

and forall x > 0

®)

then with probability one

lim.  FE+ ) — F(¢) _
WFE+ 0 —FE)

b

lim sup, .., Va2 =€ — (p(1 — p)pee

a,

®)
lim inf,_ I[Lz'_l_"_"’i = —{4. p(l — p)}»e,
a

n

where forn = 1,2, - - -
a, = inf {t| F(f) Z p + (2n~"log log m)}} — & .

Proor. Using the transformation g we see that (9) and (5) hold with the same
probability, so it is sufficient to prove (3) and (4) with ¢ = A" and a = p™".
Relation (7) means that the function U,(x) = F(§ 4+ x) — F(§) (for x > 0) is
regularly varying at x = 0 with exponent p. The inverse function of U, is
U*(y) = 9(p + y) — 9(p). By Lemma 2 then (4) holds with &« = p~'. On the
other hand, by (7) and (8) the function U,(x) = F(§) — F(§ — x) (for x > 0) is
also p-varying at x = 0 and U,*(y) = 9(p) — 9(p — y). Application of Lemma
3 then gives (3) with ¢ = 4~¢. []

ReEMARK. The proof shows that the lim inf and the lim sup may be treated

separately.

REMARK. The rate constants a, are regularly varying in n as n— oo with
exponent (20)~*; that means e.g. a, - n*~¢ — 0 or — oo according to « < O or
a > 0.
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CoROLLARY. If F'(§) exists and is positive, then with probability one

lim SUP, oo Y[np],n — & — (p(l —_ lp))i
a, F’(E)

lim inf,__ Ytso1n — & _ _ (P(1 — p))*
a, FI(E)

where a, = {2n~*log log n}t.

Proor. Obviously, F’(§) > 0 implies (7) and (8) with p =1 and 4 = 1. It
also implies that the function U(x) = F(§ + x) — F(§) is asymptotic to x - F'(§)
for |x| | 0; hence by Lemma 2 the function g(p + y) — g(p) is asymptotic to
Y{F'(§)}* for |y| | 0. This gives (9) with a, ~ a, - {F'(§)} " for n — co. [J

ExampLE. Take X, X,, ... i.i.d. such that 1/X, has a Student distribution
with 2 degrees of freedom. Then F(0) = 4, F/(0) = 0 but (7) and (8) hold with
A =1and p = 2. In (9) we can take a, = (8n~log log n)t.

REMARK. Note that the conditions of our theorem are the same as Smirnov’s
necessary and sufficient conditions for the asymptotic normality of {g(p + n~%) —
9(P)y MY np1n — §} @S 1 — oo (see Smirnov (1949), page 112). A corollary simi-
lar to ours can be stated to Smirnov’s theorem. This means that the frequently
used condition that F” has to be continuous in some neighborhood of & (see e.g.
Rényi (1970), page 490) is superfluous. This could also be concluded from
Ghosh’s result ((1971), Theorem 1). On the other hand, it can be remarked
that Ghosh’s Theorem 1 holds also under the weaker conditions of our theorem
(take Y, , = M, + b,n{G,(M,) — (1 — p)} + R, where b, = F~'(p 4+ n7") —
F~Y(p) and M, = inf{x|F(x) = p,}, then R,/b, — 0 in probability; in view of
Smirnov’s result the conditions (7) and (8) are also necessary for R, /b, — 0).
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