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THE UNIFORM CONVERGENCE OF AUTOCOVARIANCES

" By E. J. HANNAN
Australian National University

Under general circumstances it is shown that the sample autocovari-
ances of a discrete, stationary, ergodic process with finite covariance which
is also purely nondeterministic converge, uniformly on the lag, almost
surely to the true values. The result is used to prove the almost sure
convergence, uniform in a parameter, of an expression relevant to the
estimation of a lagged relation between two series.

Let x(n) be a real, vector, stationary process of p components that is ergodic and
that has finite variances. For convenience we take the mean to be zero, though
that requirement can easily be dispensed with. We put 7;,(n) = E{x;(m)x,(m-n)}.
We may consider the x(n) to be random variables defined over the same proba-
bility space (Q, %7, P). Let _#, be the sub-field of .o generated by x,(m),
j=1,--,pym<nandput #Z_, = N>, .#, We introduce the spaces H, =
H(_#,), of all real functions measurable with respect to _#, and of finite mean
square. Then we call S, the orthogonal complement of H,_, in H,, u(n, f) the
vector of projections of the elements of x(n) onto S,, t < n and u(n, —oo) the
vector of projections onto H_,,. We have the decomposition

x(n) = o u(n, n —t) + u(n, — o), < Efu(n,n — 'u(n,n — )} < oo .
We finally assume that u(n, — o) is almost surely zero. Thus x(n) is to be purely
nondeterministic in the strict sense of nonlinear prediction. Since it is then
evidently purely nondeterministic in relation to linear prediction it has an abso-
lutely continuous spectrum. This condition can be relaxed in the theorem below
(for example by allowing u(n, — o) to be a trigometric polynomial with random
phasing) but we have not been able to perceive a useful general result without
it. We introduce the autocovariances, based on N observations,

cix(n) = N7 21" x;(m)x,(m + n) = ¢,;(—n), 0n<N.

We put ¢;,(n) = 0 for n = N. Because x(n) is ergodic c;,(n) converges almost
surely to 7,,(n). We shall prove the following result.

THEOREM 1. Under the above conditions

limy_ ., SUP_ecncw [€i6(M) — 751(M)| =0 as.  jik=1,.-..,p.
It may be observed that the theorem would not be true if N-, in the definition
of ¢;,(n), were replaced by (N — n)~*. To prove the theorem let us put

u;(n) = Rr_ou;(n,n — 1), () = N, ldi(nn—1).
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Then since x;(n), and hence v,(n), is ergodic
Co) limy N7 R 0s(n)" = E{0;(0)') = L7, B0, — 1)} as.

The right side may be made as small as is desired by taking r sufficiently large.
Let 7;,(n), ¢;(n) be the true and sample autocovariances computed from the
u;(n). Then by the triangle inequality and Schwarz’s inequality

lesu(n) — 2 (m)] < [{N7* I3 uy(m)HN"* T v (my}]?
©) + [N 28 v (my N L w(my} ]
+ [N I3 0;(m) {N T o (m)) ]
and as N increases the right-hand side, which is independent of n, converges
almost surely to a constant that may be made arbitrarily small by taking r
sufficiently large. Also the same is true for the quantities |7;,(n) — 7;,(n)] by much

the same proof. Thus we need only prove the theorem for &;,(n) — 7;.(n), for
r fixed. This is

3) ;t—é? (N 3x-2u,(m,m — sSu,(m+ n,m + n — )} — 7;(n),

' 0<n<N.
There are r + 1 values, only, of n for which n — ¢ is not always positive and we
may therefore neglect these in proving the uniformity of the convergence since
for n fixed convergence certainly holds because #;(n) is ergodic. We may also
~ restrict ourselves to particular pairs (s, t), (j, k) and to n = 0, since ¢;,(—n) =
" ¢;(n), n = 0. Of course for n — ¢ > 0 the summand in the first term in (3) has
zero expectation. We must consider, typically, the sequence

4) N7 yr2lu;,(m,m — syu(m +n,m + n — 1)},
n=r+1,r4+2,...,N—1.
We now point out that we may truncate the sequences u;(m, m — s), u,(m + n,
m + n — f) so as to produce, uniformly in n, almost surely, an arbitrarily small
distortion. Indeedlet u;, = u;, |u;| < A u/ = A, u; =2 Ay uf = —A,u; < — A
with u,’ defined in the same way. Put
/" (mym — s) = u;(m,m — s5) — u;'(m,m — s),
w'm+nm+n—t)=uym+nm+n—t)—u/(im+nm+4n—ri.
Then the expressions (4) computed for #;, u, and for »;/, u,’ differ by
N1y vt {u/(m,m — syu,)'(m + n,m 4+ n — t)
+ u"(m,m — su,/(m +n,m-+n — 1)
+ u"(m,m — s)u,'(m + n,m + n — 1)}
and as in the proof of (2) this is dominated in modulus by an expression inde-

pendent of n that converges as N increases almost surely to a constant that may
be made arbitrarily small by taking the truncation point large enough. Finally
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we replace u;'(m, m — s) by
#;(m, m — 5) = u'(m,m — s) — E{u/(m, m — s)| #,_,_,}

and similarly for u,/(m 4+ n, m 4+ n — ). Now

1 ' '
7 T Bl 01— )| A B = )| i

= |~ DB m — )| A JEW (4 11— )| A i)

N

1
< A T B (mom — )| A, -

The last expression is dominated by
1
A L Efu(m, m — 5)|| Ay,

which is independent of n and converges almost surely to AE{|u;”(m, m — s)|}
which may be made arbitrarily small by taking the truncation point, 4, large
enough since u;(m, m — s) has finite mean square. Similarly

1 ’ ’
S Bt m,m — E{(m 4 nom 41— )| Ay
- B B (my m — )| Ay 4 11— 1)

may be made, almost surely and uniformly in n, arbitrarily small by taking the
value of A sufficiently large.

We put w(m; n) = éi;(m, m — s)i,(m 4- n, m 4 n — t), suppressing reference
to j, k, ¢t for simplicity. Then we finally consider

é(n)y = N~ 3 8- w(m; n) .
The summands w(m; n) are, for each n, martingale differences with respect to the
o-fields .o, (n) = _#,,_,_, and are also (stationary, ergodic) sequences bounded
uniformly in n. It follows immediately from Burkholder ([1] Theorem 9) that
E{¢(n)®} = O(N~®), uniformly in n, and by Markov’s inequality,
PSUP, 114n<e [E(M)] > €} < 0500 PlE(M)° > &} < KN7%°, e>0,

so that by the Borel-Cantelli lemma the theorem is proved.
As an application of this result let us consider the statistic,

1 . 1 —ine
Li(0) = N 1Y x;(m)etme 31V x (m)e~t™e = 5 ¥ ci(n)eime

and form for a particular pair, j, k,
(5) R;y(z) = §=, L(w)e ' ¢() do .

Here ¢(o) is a continuous weight function reflecting the relative importance of
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the various frequencies. If it is believed that the cross spectrum, f;,(w), is of
the form {|f;(w)| exp i(a + 7,w)} over a band containing the support of ¢(w) then
the maximisation of |R;,(r)|* will be a reasonable procedure for estimating the
group delay, z,, over the band. We call %, the value of ¢ maximising |R;,(7)[.
The optimal choice of ¢(w) will depend on the nature of the spectra over the
band. We do not discuss this further here. We call R;(r) the expression (5)
with f;.(o) replacing I;(w). Let us put z = ' 4 " where 7’ = [¢r]. Now for
any trigonometric polynomial ¢(w) it follows from Theorem 1 that

(6) limy o, SUP_ecrco §27 {1jn(@) — fin(@)} exp(—it’w)P(w)dow = 0 a.s.
However, ¢(w) exp(—ir"’») may be approximated uniformly in ¢ by such a tri-
gonometric polynomial, ¢(w), except possibly in the neighbourhood of +z.
‘Precisely as in the lemma in [2] it may be shown that, uniformly in z, these

neighbourhoods contribute arbitrarily little to {R;,(r) — R;,(z)}, if they are taken
small enough, so that we have the following result.

THEOREM 2. Under the conditions of Theorem 1
limy o, SUP_ocrco |Rj1(7) — Ry(z) = 0 aus.
If |R;,(7)| has a single maximum at 7, (which is not a very restrictive requirement

if f;(@) = |fiu(@)| exp i(a + 7 w) on the support of ¢(w)) then it follows that #,
converges, almost surely, to z,.
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