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STOCHASTIC INTERPRETATIONS AND RECURSIVE
ALGORITHMS FOR SPLINE FUNCTIONS

By HowARD L. WEINERT AND THOMAS KAILATH
Johns Hopkins University and Stanford University

Spline functions, which are solutions to certain deterministic optimi-
zation problems, can also be regarded as solutions to certain stochastic
optimization problems; in particular, certain linear least-squares estimation
problems. Such an interpretation leads to simple recursive algorithms for
interpolating and smoothing splines. These algorithms compute the spline
using one data point at a time, and are useful in real-time calculations when
data are acquired sequentially. ’

1. Introduction. Spline functions are natural generalizations of polynomials.
The simplest type of spline function, a polynomial spline, is in fact a piecewise
polynomial that satisfies certain continuity requirements over its range of defini-
tion. Whereas polynomials have long been used as approximating and inter-
polating functions because of their simple mathematical properties, splines are
almost as easy to work with and actually provide a closer approximation to func-
tions and smoother interpolation of data than do polynomials. These properties
follow from the fact that the solutions of certain deterministic optimization
problems are (natural) splines.

Kimeldorf and Wahba [6], [7], [8] have recently shown that splines could also
be regarded as solutions of certain stochastic optimization problems; in particular,
certain minimum-variance unbiased linear estimation problems. These results
suggested to us that it should be possible to find recursive algorithms for calcu-
lating spline functions similar to the recursive algorithms that have been exten-
sively used by control engineers for calculating least-squares estimates. Existing
algorithms for calculating splines cannot be easily updated: the relevant equations
have to be re-solved if new data are added. A recursive algorithm, which can
compute the spline using one data point at a time, is particularly useful in real-
time computations when data are acquired sequentially.

However, we found that the form of the solution given by Kimeldorf and
Wahba was not amenable to recursive calculation. The difficulty lay in their
choice of a norm for the underlying Hilbert space. By choosing a different norm,
one can obtain a solution whose form lends itself to recursive computation.

Received October 1971; revised August 1973.

1 This work was supported by the Air Force Office of Scientific Research, AF System Com-
mand, under Contract AF 44-620-69-C-0101 and partially by the Joint Services Electronics
Program under Contract N-00014-67-A-01 12-0044, and partially by NSF Grant GK-21627.

AMS 1970 subject classifications. Primary 62 85; Secondary 65 20.

Key words and phrases. Spline functions, Lg-splines, recursive spline interpolation, recursive
spline smoothing, stochastic interpretation, least-squares estimation, reproducing kernel Hilbert
space.

787

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKGLY

®
www.jstor.org



788 HOWARD L. WEINERT AND THOMAS KAILATH

The paper is organized as follows. In Section 2 a very general type of inter-
polating spline, the so-called Lg-spline, is defined as the solution of a certain
deterministic optimization problem in a Sobolev space H. We then show that
H can be made into a reproducing kernel Hilbert space (rkhs). This can be done
in many ways depending on the norm that is chosen. Our choice, which differs
from that of Kimeldorf and Wahba, permits a reformulation of the original
optimization problem as a minimum norm problem in H. Several characteri-
zations of the solution of this problem are given.

In Section 3, a recursive solution of the minimum norm interpolation problem
isgiven. Section 4 presents a stochastic interpretation for the spline interpolation
problem in terms of linear least-squares estimation. The recursive solution of
this estimation problem provides a recursive solution to the spline problem that
is equivalent to the algorithm of Section 3. The spline smoothing problem is
treated in an analogous fashion in Section 5.

2. Interpolation with Lg-splines. We shall first give the basic definition of an
Lg-spline and then describe some existence and uniqueness results.
Let H denote the linear space of real-valued functions defined on the interval
I =[0, T, such that f € Hifand only if f € C™~Y(I), /™" is absolutely continuous,
and Lf e Z(I), where L is an ordinary differential operator of the form
L=D"+ a, ,()D™* + --- + a,(t)D + ay(?)
D = djdt, a; e Ci(I), 0sjsm-—1.
Suppose
{4;}*, n=m, isa setof linear functionals that are linearly
independent on H

and
{r;}li* is a set of real numbers.

H can be shown to be a Hilbert space under a variety of equivalent norms, two
of which will be considered in the sequel. We assume that {4,}," are continuous
with respect to these norms.

DEerINITION 1. A function s e H is an Lg-spline interpolating {r;},* with respect
to {4;}, if and only if it solves the following minimization problem:

(1) SI (‘LS)2 = minfe U(r) SI (Lf)2
where
Ur)y={feH: f=r,1=j=n}.

If ,f=f(t;)and 0 < 1, < --- < t, < T, then s is an L-spline, and the points
t, + -+, t, are called knots. If L = D™, then s is a polynomial spline.

Now let

N = null space of L.

Since L is of order m, N is an m-dimensional linear subspace of H. Also let

{z;™ = basis for N.
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The following results on existence and uniqueness of solutions to (1) were first
proved by Jerome and Schumaker [3].

THEOREM 1. A solution to (1) always exists; it is unique if and only if N n U(0) =
{0}, where

(2) UO)={feH: ;f=0,1<j<n}.
An alternative uniqueness criterion is provided by the following theorem.

THEOREM 2. N n U(0) = {0} if and only if there exists a subset {i;}," of {A;},"
that is linearly independent on N.

In the remainder of this paper we shall assume that (1) has a unique solution
for arbitrary L and {,},". Consequently, by Theorem 2, we can assume that

{4;," are linearly independent on N.

A. Introduction of a reproducing kernel. H can be made into a reproducing
kernel Hilbert space with respect to a certain inner product. First, let {z;}," be
the basis for N that is dual to {1,},"; i.e.,

Lz;

j = Py

lIA
A

1<j<m
A;z, =0, 1<i,j<m,

Our uniqueness assumption guarantees that {z;}," can be chosen in this manner.
Also let
G(t, u) = the Green’s function

for the boundary value problem

Lp=w, Ap=0, I<j<m.
Define a (kernel) function
3) K(t,u) = 27, 2;(D)z;(u) + §,G(t, v)G(u, v) dv .

The following theorem was first proved by deBoor and Lynch [2]. A shorter
and more direct proof is given by Weinert [12].

THEOREM 3. H is a reproducing kernel Hilbert space with inner product
) (enf> = Tpa (O f) + §1 (L)L) »
and with reproducing kernel K(t, u).
The reproducing kernel has the following two properties:
K(.,t)eH
(o) K(o» 1)) = £(0)

for every t € I and every f € H. A full discussion of these spaces can be found
in Aronszajn [1].
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The Riesz representation theorem guarantees that corresponding to each %,
there exists a unique function #; € H that satisfies for all fe H

f=Lf k)
The function #; is called the representer of the continuous linear functional 4;.

THEOREM 4. The representers {h;}," are linearly independent and are given by

h;(u) = 4;,K(t, u) , l<j<n.

Proor. The reproducing property and the definition of A; show that
hi(u) = {K(+, u), h;j(+)) = 4;,, K(t, u). Now suppose 37_,¢;h;(u) = 0. Then
o€ 44, K(t, u) = 0, which implies that ¢; = 0, 1 £ j < n, since {,}," are
linearly independent. [J

THEOREM 5. Let & denote the n-dimeﬁsional linear subspace of H spanned by
{h;},*. Then

H=® U(0)
where U(0) is defined in Equation (2).

Proor. Since .&is finite-dimensional it suffices to show that U(0) = S** (the
orthogonal complement of &*). Letfe S*. Then0 = (f,h;) = 4;f,1 <j < n.
Therefore, &+ C U(0). Nowletge U(0). Then0 = 2,9 =<9, k>, 1 <j < n,
which means that U(0) c . [

B. Minimum-norm formulation of the spline problem. If we want to solve for
the interpolating spline directly in H, it turns out that we must somehow refor-
mulate (1) as a minimum norm problem in H. As it stands now, the integral on
the right-hand-side of (1) represents the norm of Lf in £°(/), and the projection
theorem can be used in £ (1) to find Ls. (In fact, as we shall discuss later,
several authors have used this indirect method.) However, the integral in (1) is
only a pseudo-norm in H since it is not strictly positive. We now show how to
reformulate (1) as a minimum norm problem in H, and we give various charac-
terizations of the spline solution.

THEOREM 6. A function s H is the Lg-spline interpolating {r;},* with respect to
{A;1," if and only if it solves the following minimization problem:

®) sl = mingepe 1A

Proor. From (4), ||fI* = X7 (4f)* + §:(Lf)*. Since the minimization is
carried out for fe U(r), 4;f = r; and is fixed. Therefore, minimizing §, (Lf)*
over U(r) is equivalent to minimizing ||f]|* over U(r). ]

The solution to (5) is established in the following theorem.
THEOREM 7. The unique Lg-spline interpolating {r;}," with respect to {;}" is

given by
(6) s(t) = W(f)R™r
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where
h' =row (hy, ---, 1),
r=col(r,---,r,),
R = the symmetric n X n matrix whose i, jth element equals (h,, h;) .

Proor. A slight modification of the projection theorem ([9], page 64) shows
that (5) has a unique solution, and that this solution is in &, Therefore, s =
2%=1¢;h;. The coefficients are found by using the interpolation conditions. []

Equation (5) shows that the spline is the minimum-norm interpolating func-
tion. Several other equivalent characterizations of the spline are possible. We
give some here and refer to Weinert [12] for others. *Thus it can be shown that
the solution to (5)

(a) is the only function in & n U(r)

(b) is the projection onto & of any function in U(r)

(c) can be written as s(f) = {g(+), K_(+, t)) where g is any function in U(r)
and K, is the reproducing kernel of &

3. A recursive algorithm. All existing algorithms for calculating Lg-splines
have one feature in common: if an extra data point (interpolation constraint) is
added to the problem, the relevant equations have to be re-solved. The reformu-
lation that leads to (6) permits us to calculate the spline interpolating n + 1
points by adding a correction term to the spline that interpolates the first n
points. To do this, we find an orthonormal basis for .5

THEOREM 8. The spline solution to (5) can be written as

™ (1) = DiaFihi()

where {h;}," is obtained from {h;},* by the Gram-Schmidt orthonormalization pro-
cedure, and {#;}," is obtained from {r;}," using the same linear operations by which
{h;}," is obtained from {h;};".

Proor. Equation (7) follows immediately from (6) since <A, ;) = 8,;. Let
F;, = g, h;) for g e U(r). The Gram-Schmidt procedure determines coefficients
d;,i=j,suchthath, = i, d;;h;. Thusé, = i d,;<g, b;) = i d;r;. [

The topology of H permits various simplifications in the Gram-Schmidt pro-
cedure. For details, see Weinert [12].

An example. Let L= D*41, A, f = f(0), 4,f = f(0), 4f = f(T) and A,f = f(T)
with T = 2z. Thus m = 2 and n = 4. H consists of functions f with absolutely
continuous first derivatives such that {2 (f + f)? < co, and with inner product

(e, [y = e(0Of(0) + ¢0)f(0) + § (€ + e)(f + 1) -

We have
z,(t) = cost, z)(t) = sint,

G(t,u) =sin(t — u), t>u
=0, other
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K(t,u) = 4(t Nu)cos (t — u) + Lsin (|t — u|) — %sin (¢ + u) + cos(t — u),

(1) = z(1) hy(t) = z(1)
hyt) = (tcost — sint)j2zt,  h(t) = tsin )2zt

fi=r, fp=r,, Fy = (r; — n)/nt, #, = (r, — r)/xt,
S(t) = r,cost 4 r,sint + (r; — r)(tcost — sin 1)/2x + (r, — r)tsint/2zx . (]

Many algorithms have been developed for calculating interpolating splines.
Jerome and Schumaker [4] and Lyche and Schumaker [10] use a local-support
basis for & to find polynomial splines. However, though both algorithms have
good numerical properties, they are conceptually quite a bit more complicated
than ours. Moreover, preliminary numerical results indicate that if sequential
computation of the spline is necessary or desirable, the recursive algorithm will
require less computation time and less storage than the Lyche-Schumaker algo-
algorithm, while giving results of comparable accuracy. There are many prob-
lems in nonlinear trajectory estimation and seismic data processing, for example,
in which the recursive algorithm can be useful.

4. Splines and stochastic interpretations. The search for a recursive spline
algorithm was motivated by the work of Kimeldorf and Wahba [7], [8] who
showed that splines could be found by solving certain minimum-variance esti-
mation problems. It seemed that with the proper stochastic interpretation of the
spline problem, knowledge of recursive estimation methods could be used to
compute the spline recursively. We will now show how this can be done.

Let y be a real-valued random process with zero mean and covariance equal
to the reproducing kernel K, and let j(¢) be the linear least-squares estimate of
y(1) given data random variables {2;y},", with {4,},* as before. Then if we make
the identification 2,y = r;, 1 < j < n, it is easy to see that

J() = h (@R = 5(1) .

The estimate y can be found recursively by using the Gram-Schmidt procedure
on the data {2;y},". Since s = J, we have a recursive algorithm for the spline,
which is identical to that given in Theorem 8.

The stochastic model developed by Kimeldorf and Wahba [7], [8] uses a dif-
ferent inner product and reproducing kernel; namely,

(&) = L35 e?(0)fV(0) + §, (Le)(Lf)
and
R(t, u) = Ry(t, u) + Ky(t, u) = 57, 2,(0)z;(u) + §; 9(t, v)g(u, v) dv
where {Z;},™ span N and are chosen so that
2,9-(0) = 9, I1<i,j=<m,

'K
and g(t, u) is the Green’s function for the initial value problem

Lp=gq, P(i)(Q):O, 0<is<m-—1.
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With this inner product, (1) cannot be reformulated as a minimum norm
problem in H because };™=!(f*¥(0))* is not constant for all fe U(r). In their
stochastic model y is a random process with unknown mean value in N, and with
covariance equal to K,. It is shown that if y(¢) is the minimum-variance unbiased
linear estimate of y(r) given data {4, y},", then y(r) = s(¢) under the correspondence
4;y = r;. The formula for y does not seem to lend itself to recursive computation.
For the special case in which L has constant coefficients and functions in H are
defined on (— oo, o), Kimeldorf and Wahba [6] developed a correspondence
between L-splines and least-squares estimates of zero-mean, stationary, auto-
regressive random processes with spectral densities (27)~!| P(w)|~* where P(w) =
Lii=0a;(iw)? and L = 37 ;a; DI, *

Two equivalent detection problems. The information preserving property of
splines will now be illustrated by showing the equivalence of two signal detection
problems. First let H(R) be the reproducing kernel Hilbert space determined by
R. The elements of H(R) are n-vectors and the inner product is given by

Py Mgy = IR, .

It can be shown [12] that & and H(R) are congruent, and that under this con-
gruence, s € & corresponds to r ¢ H(R). Therefore,

(®) llsl* = 113, -
Now consider the two detection problems:
Hy:y(t) = s(t) +w(t),  Hy:x(t) = w(), tel
H':x=r+w, H':yx=w

where w(+) is a zero-mean Gaussian random process with covariance K given by
(3), w is a n-vector of zero-mean Gausian random variables with covariance
matrix R, and s(.) is the spline that interpolates {r;}," with respect to {2,},".
Equation (8) shows that the two detection problems have the same detectability
[5] and therefore the same probability of error. In other words, s and {r;},
(= {4, s}™) contain the same information.

5. Smoothing with Lg-splines. In the spline interpolation problem (5) we are
essentially assuming that the data {r;},” are perfect. If the data contain errors,
it makes sense to consider a spline smoothing problem. The usual formulation
of the smoothing problem is

) min., {§; (Lf)* + €'Q7}

where § = col (§,,- - -,§,), §; = r; — 2;f, and Q is a symmetric, positive-definite
weighting matrix with jth column q;. However, it does not seem that (9) can be
solved recursively. Therefore, the following modified smoothing problem will
be considered:

(10) . min, {||f]* + €'Q7¢} -
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Let H(Q) be the reproducing kernel Hilbert space determined by Q, and let
H* = HOHWQ), f* =[+ & h* =h; + q;. Then [|f*|[3+ = |[fIF + §Q 6
and {f*, h;*)y+ = r;. Thus the smoothing problem (10) can be solved by
considering

(A1) minge ey [f* i, U@ = {f* e H : (f* bt dpe = 1;, 1Sj<n} .

This augmented interpolation problem is in the same form as (5) and can be
solved recursively as in Section 3, If 5+ is the solution to (11), then the solution
5 to (10) is just the component of 5+ in H; namely,

(12) 5(t) =h ("R 4+ Q).

As pointed out by a referee, (12) can also be obtained by first showing that
s € & and then writing § = h’'R~' and ||3/[? = FR~'. Then (10) becomes an n-
dimensional optimization problem and can be solved in the usual way to obtain

i = RR + Q).
The smoothing problem (10) has a stochastic interpretation in terms of a signal-
plus-noise least-squares estimation problem in which the noise has covariance Q.
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