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A RATIONAL DECISION CRITERION, THE ITERATED
MINIMAX REGRET CRITERION!

By EARL NORDBROCK
University of Alberta

We feel that a criterion for selecting optimal decision rules in a statis-
tical decision problem should be selected rationally. Specifically, we would
like a criterion to satisfy eight properties which we have given. It is known
that none of the commonly used criteria satisfy these eight properties. We
give sufficient conditions on the decision problem so that the iterated mini-
max regret criterion does satisfy all eight properties, and give examples to
show that these sufficient conditions cannot be removed.

1. Introduction. In this paper we take the viewpoint that statistical decision
problems should be approached rationally. This means that we would like a
criterion for selecting optimal decision rules to satisfy certain basic properties,
e.g. the optimal set should not be empty.

Milnor (1954) and Chernoff (1954) approached finite decision problems ra-
tionally, ‘and each gave a list of properties they wanted a criterion to satisfy.
While Chernoff showed that his properties were contradictory, Milnor was able
to give a criterion which he claimed satisfied his properties. Atkinson, Church,
and Harris (1964) modified the properties and criterion of Milnor and then proved
that this modified criterion satisfied their properties. Efron (1965) extended the
results of Atkinson, Church, and Harris to closed and bounded S-games (see
Blackwell and Girshick (1954) for definition of S-games). In this paper we extend
the results to the general decision problem.

In Section 1 we give the mathematical description of the general decision
problem. In Section 2 we list eight basic properties we would like a criterion
for selecting optimal decision rules to satisfy. We also define the criterion of
Atkinson, Church, and Harris, which has been called the iterated minimax regret
criterion. In Section 3 we give sufficient conditions on the decision problem so
that the iterated minimax regret criterion satisfies our eight basic properties. In
Section 4 we give examples where the sufficient conditions of Section 3 are
weakened and where the iterated minimax regret criterion no longer satisfies our
eight basic properties. We also give an example which shows that Theorem 2
of Efron is incorrect, and we prove some characteristics of the iterated minimax
regret criterion.

AssumpTiONs 1.1. We characterize a decision problem by Q = (0, F) where
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(1) © is a nonempty set; and
(2) Fis a set of functions f: ® — E,,

where E, is the real line. We assume F is nonempty, convex, and pointwise
bounded below (i.e. for every 6, inf, . f(§) > — o).

O is the set of possible states of nature, while F is the set of risk functions
determined by the set of decision rules. Thus instead of considering (0, D*, R)
(or (©, Z, R)) as Ferguson (1967) does, we suppress the D* (or 2) and write the
risk given by the decision rule d as f;(6), where f,() = R(9, 6). Note that there
is a natural 1-1 correspondence between F and equivalence classes in D*(2).

For a given decision problem Q = (0, F), we let B={f:f: ® —» E}, and
for f e B we define ||f]| = sup,.o |f(f)]. We also make the following definitions.

DErINITION 1.2. fe F is better than g e F if f(6) < g(0) for all 4, while for
some 4, we have f(0,) < g(0,).
DerINITION 1.3. fe F is admissible if there is no g e F better than f.

DerINITION 1.4. C C Fis a complete class in Q if corresponding to every
f e F which is not in C there exists a g € C which is better than f.

DerInITION 1.5. For G and H subsets of B (B is defined above),
d(G, H) = max {sup,.q inf,. , d(g, k), sup,. , inf,., d(g, h)} ,
where d(g, k) = ||g — A||.

2. Rationality properties. If K is a criterion for selecting an optimal decision
rule in a decision problem, then K must partially order the set of decision rules
into a set of optimal decision rules and a set of non-optimal decision rules. Hence
for a decision problem Q = (0, F), we denote by K(Q) that subset of F which

is selected as optimal by criterion K.
Then the basic properties that we want a criterion K to satisfy are the following:

PropERTY 1. For every decision problem Q = (0, K), K(Q) is nonempty.
ProPERTY 2. For every decision problem Q = (0, F), K(Q) is convex.

PROPERTY 3. If Q= (O, F), Q' = (0, F"), h: @ — O is 1-1 onto, and if
F' = F o h, then K(Q") = K(Q) o h.

ProperTY 4. If Q = (O, F), Q' = (O, F’), 1is any fixed positive number, c:
© — E, is any fixed function, and if F’ = AF + ¢, then K(Q') = AK(Q) + c.

ProperTY 5. If Q' = (0, F) and Q = (O, F|©) where © C 0, if for every
feF, f|0O is measurable with respect to a s-algebra <7 of subsets of @, and if
corresponding to every 6, € ©’ there is a probability measure z, on (8, <7) such
that for all f in F we have f(6,) = {of(6) dp,,(6), then K(Q")|© = K(Q).

PropPERTY 6. If Q = (O, F), Q™ = (©, F») forn =1,2,...,d(F™,F)—0
as n— oo, if f, € K(Q™) for all n, and {f,} is such that d(f,, /) — 0, then f ¢ K(Q).
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ProPERTY 7. Every f in K(Q) is admissible.

PRrOPERTY 8. If Q = (O, F), Q' = (O, F'), and if C is a complete class in both
Q and @', then K(Q) = K(Q').

Property 3 requires that if we relabel the states of nature we should not change
our mind about which decision rules are optimal. Property 4 says, in effect,
that the scale and origin used in measuring the loss is irrelevant. Property 5
contains the special case of nature duplication. The notion that a criterion should
not select drastically different optimal sets in problems which resemble each
other very much is formalized in Property 6. Property 8 says that the optimal
set selected by a criterion should not depend on unimportant decision rules.

A good discussion of rational properties is found in Luce and Raiffa (1957).
In his paper, Milnor (1954) was able to characterize minimax, minimax regret,
and the principle of insufficient reason (i.e. use a uniform prior) using his basic
properties. At the same time, he showed that none of these criteria satisfied all
of his basic properties. He was able to give a criterion, however, which he
claimed satisfied his basic properties. This criterion was modified by Atkinson,
Church, and Harris (1964), and we now give their criterion.

DerINITION 2.1. The iterated minimax regret criterion. Let {e,};_, be a mono-
tone non-increasing sequence of positive numbers converging to zero. Let Q =
(O, F) be a decision problem satisfying Assumptions 1.1. The iterated minimax
regret criterion corresponding to the sequence {e,} selects as optimal the set
IMR {¢,}(Q) defined below.

Define F, = F.

Define v,(0) = inf;., f(f) and z, = inf,. , d(v,, f).

If z, is infinite, define IMR {¢,}(Q) = F;.

If z, is finite, inductively define

v,(0) = inf;. 5 f(0), z, = infyep d(V,,[) and
F'n+l = {fan: d(v'n’f) é zn + enzl}

forn=1,2,3, .... Then define IMR {¢,}(Q) = N1 Fa-

We see that z; is the minimax regret value of (8, F). When z, is finite, F,
consists precisely of the decision rules which are within ¢, z, of being minimax
regret in (0, F). Similarly, z, is the minimax regret value of (6, F,) and F,
consists of those decision rules in F, which are within ¢,z of being minimax
regret in (O, F,). Thus at each iteration we keep only those rules within ¢, z,
of being minimax regret in (0, F,).

It is apparent that different {e,} sequences will, in general, give different optimal
sets. However, for convenience we will often suppress the {¢,} notation and
write IMR (Q) for IMR {¢,}(Q). If IMR (Q) is nonempty, we define v(f) =
inf(f(6): feIMR (Q)) and z = inf(d(v, f): fe IMR (Q)). Since the sequence
{F.,} is nested, it follows that for each § the sequence {v,(f)} is monotone non-
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decreasing and that v,(f) < v(6) for all n. It also follows that {z,} is a monotone
non-increasing sequence and that z, > z for all n.

The following example shows that the iterated minimax regret criterion does,
in general, give an optimal set which is different from the optimal sets given by
other commonly used criteria. In this example, minimax, minimax regret, and
the principle of insufficient reason (i.e. use a uniform prior) all give the same
optimal set, but the iterated minimax regret criterion selects a different set as
optimal.

ExampLE 2.1. Let © = {1, 2} and let f,, f;, and f; be given by the following
matrix

NNy
1 01 6 -
622110

Let F be the convex hull of f;, f;, and f,. The decision problem of interest is
then Q = (O, F). It is easily verified that minimax, minimax regret, and the
principle of insufficient reason all select {f;} as the optimal set. Letting ¢, =
100*-* for n = 1,2, - . ., and proceeding to find IMR (Q), we find that f, ¢ F;,
and therefore f; ¢ IMR (Q). Thus the optimal set selected by IMR differs from
the optimal sets selected by the other criteria.

3. Main results. We now give sufficient conditions so that the iterated mini-
max regret criterion satisfies our eight basic properties. These sufficient condi-
tions are weak for Properties 1 (nonempty) and 6 (continuity), very strong for
Properties 7 and 8 (admissibility and some complete class), while no assumptions
other than 1.1 are needed for all the other properties.

It is obvious that without further conditions (other than Assumptions 1.1) on
the decision problem, IMR (Q) may be empty. For example, take Q = (0, F)
where ® = {1,2}and F = {pf, + (1 — p)f;: 1 = p > 0}andf,(1) = 2, f;(2) =1,
f«0) = 1. Then any choice of {e,} will give IMR (Q) as the empty set. We have
found that the concept of weak intrinsic compactness given by Wald (1950) is
sufficient to insure that IMR (Q) is nonempty.

DEeFINITION 3.1. Let Q = (@, F) bea decision problem. Fis weak intrinsically
compact if for every sequence {f,} in F there is a subsequence {f, ,,} of {f,} and
an f in F such that lim inf,__ £, ,,(6) = f(0) for all 6.

THEOREM 3.2. Let Q = (O, F) satisfy Assumptions 1.1 and also have F weak
intrinsically compact. Then IMR (Q) is nonempty and weak intrinsically compact.

Proor. If z; = oo, then IMR (Q) = F and the theorem is true. So assume
7, < oco. We use induction to show that F, is nonempty and weak intrinsically
compact for all n. The induction assumption is that F,, is nonempty and weak
intrinsically compact. Clearly F ., is nonempty, so let {f,}=_, be a sequence in
Fy,,. Then there is a subsequence {f,,} of {f,} and an f in F, such that
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liminf £, ,,(6) = f(0) for all §. Since f, , € Fy,,, this implies f(0) < v,(0) + z, +
eyz, for all ¢, and thus f e Fy,,. Therefore F,,, is weak intrinsically compact.
Thus by induction, F, is nonempty and weak intrinsically compact for all n.

Now let {f,}>_, be a sequence with f, € F,. By the weak intrinsic compactness
of F, there is a subsequence {f,,} of {f,} and a g € F, such that lim inf f, ,,(6) =
9(0) for all §. Assuming that g € F, it follows that g € Fy,,,. So by induction,
g € F, for all n, and IMR (Q) is therefore nonempty.

To show that IMR (Q) is weak intrinsically compact, let {f,}:_, be a sequence
in IMR (Q). Then f, € F, for all n, and as above we can find a subsequence
{fau} of {f,} and a g in IMR (Q) such that g(¢) < lim inff, ,,(9) for all 4. Thus
by definition, IMR (Q) is weak intrinsically compact. End of Theorem 3.2.

The proof that the iterated minimax regret criterion satisfies Property 2
(convexity) in the general decision problem is straightforward.

THEOREM 3.3. Let Q = (O, F) satisfy Assumptions 1.1. ThenIMR (Q) is convex.

We now show that the iterated minimax regret criterion satisfies Property 3
(relabelling nature) in the general decision problem.

THEOREM 3.4. Let Q' = (&', F') satisfy Assumptions 1.1. Leth: ©® — © be 1-1
onto. Define Fby F' = Foh,andlet Q = (0, F). ThenIMR (Q') = IMR (Q) o A.

Proor. From Nordbrock (1971), it is apparent that v, = v, o A and z/ = z,.
Thus if z;, = z," = oo, the desired result follows. If z; =z’ < oo, it follows by
induction that F,’ = F, o & for all n, and therefore IMR (Q’) = IMR (Q) o A.

We now show that the iterated minimax regret criterion satisfies Property 4
(change of scale and origin) in the general decision problem.

THEOREM 3.5. Let Q = (O, F) satisfy Assumptions 1.1. Let 2 > 0 be fixed and
letc: ® — E,. DefineF' = AF 4 cand Q' = (O, F'). Then Q' satisfies Assumptions
1.1 and IMR (Q') = 2AIMR (Q) + c.

Proor. It is easily shown that v = 4v, + ¢ and z’ = 4z,. Therefore the
theorem is true when z;, = co. If z; < oo, we have by induction that F,’ =
AF, 4+ ¢, from whence the theorem follows.

We now show that the iterated minimax regret criterion satisfies Property 5
(nature duplication) in the general decision problem.

THEOREM 3.6. Let Q' = (©', F') satisfy Assumptions 1.1. Let © C ©' and Q =
(O, F) where F = F'|©. Assume that corresponding to every 0, c ©' there is a prob-
ability measure p, on © such that for all fe F' we have f(0,) = §o f(0) dpy(6)-
Then IMR (Q')|©® = IMR (Q).

Proor. It can be shown that d(v/,f) = d(v,, f|©) and that z’ = z,. Thus
when z; = oco the theorem is true. If z;, < oo, we use induction to show that
F, = F,'| O for all n, from which the theorem follows.

We now show that the iterated minimax regret criterion satisfies Property 6
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(continuity) if F is closed. The proof of the continuity property is based on the
following theorem.

THEOREM 3.7. Let Q = (O, F), Q¥ = (O, F¥) for N=1,2, ..., be decision
problems each of which satisfies Assumptions 1.1. Let d(F, F¥) — 0 (see Definition
1.5). Assume z; < co. Then :

(3.8) limy_,d(v,”,v,) =0  forall n,
3.9) lim,_,z,Y = z, forall n,
(3.10) lim,_,d(F,",F,) =0  forall n.

The proof of this theorem is divided into several lemmas. The first of these
is:
LeMMA 3.11. Under the conditions of Theorem 3.7, d(v,", v,) — 0 and z,¥ — z,.

Proor. Toshow thatd(v,”, v,) — 0, we fix N sufficiently large so d(F,", F,) < e.
Then for any given 6 there is an f, € F, such that f,(6) < v,(f) + ¢ and there is
an fi"¥ e F;¥ such that f,¥(0) < f,(0) 4+ . Thus v,%(6) < v,(f) 4 2¢. Similarly,
,(0) < v,7(0) + 2¢ and it follows that d(v,*, v;) — 0. To show z,¥ — z,, we ob-
serve that z; < d(v,, v,") + z,¥ + ¢ < z," 4 2¢ for N sufficiently large. Similarly

z,¥ < z, 4+ 2¢, and therefore z,¥ — z,.

LemMMA 3.12. Under the conditions of Theorem 3.7, d(F,", F,) — 0.

Proor. When z, = 0, we have F, = {v,}. Thus forarbitrary f," € F,” we have
d(vy, f3¥) < d(vy, v,") + z,¥ + ¢,2,”, and on taking limits we find d(F,", F,) — 0.

If z, >0, let ¢ > 0 be given, and assume that (¢/2) < z, + ¢,z,. Let a=
9ee, 2,/(20)(z, + &,2;). Fix N sufficiently large so that

d(F,, F\*) < a/9
d(vy, v,%) < a/9
lzy — z,¥| < a/18, &lz; — z,¥| < a/18
52 < 7V < 3z)2.

Part A. We show that sup;.p, infeve v d(f, f") < e Let f be a fixed but
arbitrary element of F,.

Case 1. If d(v,, f) < z, + .z, — a/3, we choose f¥ € F\" such that d(f, f") <
al9 < ¢/2, and we see that ¥ ¢ F,".

Case II. If d(v,, f) > z, + &2z, — a/3, we choose an f, e F, with d(v,, f;) <
2, + & 2,/10. Ifd(f, f,) < ¢/2, we choose (as in Case I) f," € F," with d(fq, f,") <
¢/2, and therefore d(f, fi") < e.

When d(f, f;) > ¢/2, define g = pf, + (1 — p)f where p = ¢/2d(f, f,). Then
by the triangle inequality for norms, and since d(f,f,) < z; + &2, we have
d(v,, 9) £ 7z, + &2, — a/3. Thus, as in Case 1, we can find a ¢g" e F," with
d(g, 9¥) < ¢2, and so d(f, g") < e.
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Part B. To show that SUP/Ne N inf,er d(f¥,f) < ¢, we proceed as in Part A,
using in addition the fact that z,/2 < z,¥ < 3z,/2. Parts A and B together give
d(F,, F,") < ¢, and Lemma 3.12 is complete.

Proor oF THEOREM 3.7. Lemmas 3.11 and 3.12 show that d(v,”, v,) — 0,
z;" — z,, and d(F,, F,") — 0. From the proofs of these lemmas it is apparent
that by assuming lim,_,, d(F,”, F,) = 0 we can show that lim,_, d(v,”, v,) = 0,
limy_z," = z,,and lim,_,, d(F¥,,, F,,,;) = 0. Therefore, by induction, we have
proved Theorem 3.7.

Using Theorem 3.7 we now prove that the iterated minimax regret criterion
satisfies the continuity property.

THEOREM 3.13. Let Q = (O, F), Q" = (0, F¥) for N = 1,2, - - all satisfy
Assumptions 1.1. Assume that d(F, F¥) — 0 and that F is closed. Assume f~ ¢
IMR (Q") for all N and that {f"} is a sequence such that d(f", f) — O for some f.
Then f € IMR (Q).

Proor. Note that we assume only that f ¢ B (defined in Section 1).

Casel. z; < co. For fixed n, by Theorem 3.7 we can choose the sequence
{9."} € F, such that d(g,”, f*) — 0 as N — co. Thus we have d(g,", f) — 0 as
N — o0, and we have fe F,. Therefore f ¢ F, for all n, i.e. f ¢ IMR (Q).

Case II. If z; = co. In this case Lemma 3.11 gives z,"¥ = oo for N sufficiently
large. Asin Case I, we can show that fe F,. Since F, = IMR (Q), we have
shown that f ¢ IMR (Q). Theorem 3.13 is complete.

So far we have proved that the iterated minimax regret criterion satisfies six
of the basic properties with only minimal assumptions on the decision problem.
To prove that the two remaining properties (admissibility and same complete
class) are satisfied, we assume that F is compact. Note that if F is convex and
compact, then F satisfies Assumptions 1.1, z, is finite, and F is weak intrinsically
compact. We now show that IMR (Q) is a single point which is admissible.

Lemma 3.14. If F is compact and convex, then d(v,,v) — 0, z, — z, and any
feIMR (Q) has d(v, f) = z. (Recall that v and z refer to IMR (Q); see Section
2))

Proor. Assume that lim sup d(v,, v) > 2¢ > 0. Then there is a subsequence
{Vu) Of {v,} and a sequence {6,,,} such that v(0,.,) — Vpu(@uw,) > € for all k.
Since F,, is compact for every k, for every k we can find an f,,, € F,,, such
that f,4)(Ons) = Vawo(@nis)- Thus

(3.15) V(Oni)) — fan(Onii) > € for all k.

Since f,,, € F for all k, the compactness of F implies there is a convergent

subsequence of {f, .} SaY {fukmn} @0 d(fuiimy» fo) — O for some f, € F. Since
Saikimy € Fr fOr n(k(m)) = n, we see that f, e F, for all n, and so f, e IMR(Q).
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Thus for m sufficiently large v(0) < fo(0) < fuiwmn(@) + (¢/2) for all 6. This
contradicts (3.15) and therefore d(v,, v) — 0. It follows that z, < z 4 ¢ for n
sufficiently large, and since z < z, we have z, — z. Since ¢, — 0, the triangle
inequality then gives d(v, f) = z for any f € IMR (Q).

THEOREM 3.16. If F is convex and compact, then z = 0, i.e. IMR (Q) is a single
point, and moreover IMR (Q) is admissible.

Proor. Assume z >0andlet 0 < ¢ < z.

Let 6, €0, and choose f, € IMR (Q) such that f,(6,) = v(6,). Define 4, =
{0€0: f,(0) = v(0) + z — &}, and therefore 4, is not empty.

We proceed inductively by assuming A, is not empty. Pick 6,,,¢€ 4, and
frr1€ IMR(Q) such that f, ,(0,,,) = v(0,,,). Define 4,,, ={feA4,: fan(0) =
v(0) + z — ¢}. Thus 4, ,, is not empty, for if it were we would have 331 (f(6)/
(n + 1)) £ v(0) + z — (¢/(n + 1)) for all § which contradicts Lemma 3.14.

By the above method we have selected a sequence {4,} in © and a sequence
{f.} in IMR (Q) such that for m < n, f,(0,) = v(0,) + z — eand f,(0,) = v(0,).
Thus d(f,., f.,) = z — ¢ for m = n, contradicting the compactness of IMR (Q).
Therefore z must be zero. To show the admissibility part, let f, e IMR (Q) and
assume that f;, is inadmissible. Then by definition, there is an f; € F which is
better than f;,. By induction, f; is also in IMR (Q). Since this contradicts z = 0,
f, must be admissible. End of Theorem 3.16.

We now prove that the iterated minimax regret criterion satisfies Property 8,
the same complete class property. We first show that if Q = (0, F) has F convex
and compact, then the set 4 of admissible rules is a complete class. We then
show that if Q' = (@, F’) has F’ convex and compact with admissible rules 4’
equal to 4, then IMR (Q) = IMR (Q’). By applying both of these facts, we show
that if C is complete in both Q and Q’ where C C Fand C c F’, then IMR (Q) =
IMR (Q’), i.e. IMR satisfies Property 8.

THEOREM 3.17. If Q = (O, F) has F convex and compact, and if A is the set of
admissible rules in F, then A is a complete class.

Proor. The method of proof is to use the definition of complete class 1.4.
Let ge F with g ¢ A. Define T, = {f e B: f(0) < g(0) forall §}. Theset T ,nNF
is convex and compact and is not empty. Thus Q' = (0, T, n F) hasIMR (Q') =
g, say, with g, admissible in Q’. If there were a g, ¢ F better than g,, then
g, €T, n F, contradicting g, admissible in Q' = (0, T, n F). Therefore, g, is
admissible in Q, and it follows that A is a complete class.

THEOREM 3.18. Let Q = (O, F) have F convex and compact with A the set of
admissible rules. Similarly, let Q' = (0, F') have F' convex and compact with A’
the admissible rules. Assume A = A'. Then IMR (Q) = IMR (Q").

Proor. This theorem follows from Theorem 3.16 and the following lemma.

DEerINITION 3.19. Using the notation of Theorem 3.18, define 4, (4,’) to be
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the admissible rules in F, (F,’), forn = 1,2, -... (ArulefeF,isin A4, if there
are no better rules in F,.)

LEMMA 3.20. Under the hypothesis of Theorem 3.18, A, = ANF,(A,'= A NF,)
and A, = A, for all n.

Proor. We use induction. By hypothesis, the lemma is true for n = 1. As-
sume the lemma is true for n. By applying Theorem 3.17 to (©, F,), we see that
v,(0) = inf,;., f(6). The analogous equation holds for the prime quantities, so
the induction assumption A4, = 4,’ gives v, = v,/. A similar argument gives
z, = inf;., d(v,, ), from whence we have z, = z,’. It is straightforward to
verify that 4,,, = 4, N F,,,,i.e. 4,,, = An F,,,. Itfollowsthat 4, , = 4;,,,
and Lemma 3.20 is complete.

We now prove that IMR satisfies the same complete class property.

THEOREM 3.21. Let Q = (O, F), Q' = (0, F') have each of F and F' convex
and compact. Let C be a subset of both F and F', with C a complete class in both
Q and Q'. Then IMR (Q') = IMR (Q).

Proor. By Theorem 3.17, A (the set of admissible rules in F) is a complete
class. Thus A is minimal complete and therefore 4 — C. Similarly, 4’ (the set
of admissible rules in F’) is a complete class and 4’  C. It is straightforward
to verify that 4 = 4’. Applying Theorem 3.18, we have IMR (Q) = IMR (Q’).

4. Further results and examples. In Section 3 we gave sufficient conditions
on the decision problem so that the iterated minimax regret criterion satisfied
all eight basic properties. We recall that weak intrinsic compactness was used
to insure that IMR (Q) was nonempty, closure of F was needed to show the
continuity property, and compactness was assumed to prove the admissibility
and same complete class properties. All other properties were proved for the
general decision problem. In this section we discuss the weakening of the suf-
ficient conditions. We also discuss the convergence of v, to v and z, to z.

Efron (1965) has several examples where Q = (0, F) has F closed and bounded,
but where IMR (Q) is empty. Of course, for these examples, F is not weak in-
trinsically compact. Thus, closed and bounded does not insure a nonempty
optimal set, while weak intrinsic compactness does insure a nonempty optimal set.

When proving the continuity property, we used the assumption that F was
closed. Obviously if F is not closed, IMR does not have to satisfy the continuity
property.

We now investigate the compactness assumption used to show that IMR sat-
isfied the admissibility and same complete class properties. We give examples
which are weak intrinsically compact, closed, and bounded, but for which IMR
does not satisfy the admissibility and same complete class properties. We remark
that these same examples show that Theorem 2 of Efron is incorrect. Efron’s
Theorem 2 says that IMR satisfies the admissibility and same complete class
properties for the general decision problem.
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We now give an example which is weak intrinsically compact, closed, and
bounded, but for which IMR (Q) contains an inadmissible rule.

ExaMPLE 4.1. Let © be the positive integers. Define f(f) = 1 for all 6,
fu(0) =1 if 0#n
=0 if 6=n for n=1,2,-...
(See the matrix below.) Define F = {f: f = 352 p.fur Pa = 0, 32 p, = 1}

Then F is convex and pointwise bounded below. So the decision problem Q =
(8, F) satisfies Assumptions 1.1. We also have the following:

F s closed and weak intrinsically compact;
for any applicable sequence {e,}, IMR(Q) = F; and
foeIMR(Q) but f, is notadmissible.

PROOF OF EXAMPLE 4.1. We write the matrix defining the sequence {f,}.

fo fl fz fs

11 0 1 1...
211 1 0 1
® 3(1 1 1 0
411 1 1 1

From the definition of F, it is seen that F is both closed and weak intrinsically
compact. From the matrix above, we also see that v,(6) = 0, z, = 1, and anyfeF
hasd(v,, f) = 1. Thus for any applicable sequence {¢,} we have IMR {¢,}(Q) = F.
Therefore f,, which is inadmissible, is in IMR {¢,}(Q). Example 4.1 is complete.

Our next example shows that weak intrinsic compactness is not sufficient to
guarantee that IMR satisfies Property 8 (same complete class).

ExampLE 4.2. Let Q = (O, F) be as in Example 4.1. Let F’ be the admissible
rules in F, and define Q' = (0, F'). Then F and F’ have the same minimal
complete class, but IMR (Q) = F while IMR (Q) = F’. Thus IMR does not
satisfy Property 8 for this example.

We now prove some remarks concerning the convergence of v, to v and of
z, to z. We recall that if F is compact, then d(v,, v) >0 and z, -z =0. We
will show that if F is weak intrinsically compact, then v, converges to v point-
wise, but we cannot conclude that d(v,, v) — 0 and we cannot conclude that
z, — z. We then give an example which shows that in general v, does not con-
verge pointwise to v.

THEOREM 4.3. Let Q = (0, F) have z;, > oo and F weak intrinsically compact.
Then v, converges pointwise to .

Proor. Fix @ e ©. Since v,(0) is monotone non-decreasing and bounded above,
the sequence {v,(f)} converges to a limit, say v,(f), where vy(f) < v(f). From
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Theorem 3.2, F, is weak intrinsically compact, and so there is f, € F, such that
f.(6) = v,(6). Then there is a subsequence {f, ,} and an f, e IMR (Q) such that
lim inf f, ,,(6) = fi(6). Thus v,(f) = v(f), and Theorem 4.3 is proved.

ExAMPLE 4.4. This example shows that weak intrinsic compactness of F does
not imply that d(v,, v) — 0 nor that z, — z. Let the decision problem be Q =
(©, F) where O is the positive integers, {f,}=., is defined by the matrix below,
and F is the closed convex hull of {f,, fi, fs, - --}. Welete, = 107"

fo i S
11 0o 1.01.
201 1.1 0
® 3|1 1.1 1.01

Using induction, we see that F, contains {fy, fu_1, fas fassr -+ -} It follows
that IMR (Q) = {f,}. Thus v,(f) = 0 for § = n while »(9) = 1 for all 6, and
z, = 1 for all n while z = 0. End of Example 4.4.

Theorem 4.3 gives sufficient conditions for the pointwise convergence of v,
to v. Our next example shows that in general we cannot conclude even the

pointwise convergence of v, to v.

ExAMPLE 4.5. Let © be the positive integers. Define f(¢) = 1 for all 6,

fu(0) = 0.5 for 6 <n
=0 for 6 =n
=14 10" for 6 >n for n=1,2,....
The matrix is below.
Hh i )i fs
1{1 0 0.5 0.5
211 1.1 0 0.5
® 3|1 1.1 1.01 O
411 1.1 1.01 1.001

Let F be the closed convex hull of {f,, f;, - - -}, @ = (O, F),and ¢, = 10-". Then,
as in Example 4.4 we can show that for n > 2, F, contains {fy, fr_s far =}
and that IMR {¢,}(Q) = {f;}. Thus we have v,(1) < } while v(1) = 1, and there-
fore v, does not converge pointwise to v.
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