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BAYESIAN CLASSIFICATION: ASYMPTOTIC RESULTS!

By C. P. SHAPIRO

Michigan State University

We have a population composed of two subpopulations whose prob-
ability properties are described by known univariate distribution functions,
G(x) and H{(x), respectively. The probability of observing an individual
from the first population is 4, from the second is 1 — §. We assume 6 is a
random variable with a prior distribution on (0, 1) and find the Bayes rule
for classifying n observations as from G or from H when the loss function
is equal to the number of misclassifications. The main results in the paper
give the asymptotic properties of the Bayes rule and several proposed
approximations.

1. Introduction. We have a population composed of two subpopulations
whose probability properties are described by known univariate distribution
functions G(x) and H(x), respectively. The probability of observing an individual
from the first population is ¢, from the second is 1 — §. We assume 6 is a
random variable with prior distribution A on (0, 1) and find the Bayes rule for
classifying n observations as from G or from H when the loss function is equal
to the number of misclassifications. The main results in this paper concern the
asymptotic properties of the Bayes rule and several proposed approximations.
These limiting results are proven on the probability space conditional on ¢ = 4,.
Thus, while the rule being studied is a Bayes procedure, the examination of the
rule is carried out from a frequentist point of view. That is, once the form of
the rule is found, we consider the rule as a function of independent and identi-
cally distributed (i.i.d.) random variables and prove the asymptotic results
conditional on 6 = 6,.-

Specifically, we observe random variables X;, - - -, X, which, conditional on
6, are i.i.d. with distribution F(x|0) = 6G(x) + (1 — 6)H(x) where G and H
are known. Without loss of generality we assume F has density f(x|0) =
0g(x) + (1 — 0)h(x) with respect to a sigma finite measure on the real line. The
action space in the set of all sequences a* = (a,*, -- -, a,*) of 0’s and 1’s of
length n and a classification rule d* = (d,*, - - -, d,*) is a measurable function
from the sample space into the action space. We interpret a,* = 1 as classifying
x; from density g, a,* = 0 as classifying x, from density A.

Define the classification vector Z* = (Z,*, - .., Z,*) by

Zx =1 if X, isfrom g,
=0 if X, isfrom #&.
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764 C. P. SHAPIRO

Thus, Z* is the true classification of X = (X;, ---, X,). In this context, the
joint density of X, ..., X, given Z* = z* is
[ -5 X, | 2% = 2%) = [ 9(x)*h(x,) "
and the density of Z* given 6 is
P(Z* = z*|0) = 6%**(1 — g)»~Z=",
The loss function is the number of misclassifications,
L(a*, Z¥) = D1, (a* — Z*).

In Section 2 we prove (Theorem 1) that the Bayes rule possesses a cut-type
property which implies that it is completely determined by z,, the proportion of
observations classified to g. In Section 3 (Theorem 2), we find the limit of ¢,
which we denote by ¢#,, and hence the limiting form of the rule. In Section 4
we prove (Theorem 3) that under regularity conditions, ni(z, — t,) is asymptoti-
cally normal. In Section 5 we propose an approximation 7, of ¢, and examine
the rate at which 7, — ¢, tends to zero (Theorem 4). In Section 6 we use iter-
ation methods to obtain another approximation of ¢, which is easy to compute
and preserves the desired asymptotic properties of the first approximator. In
Section 7, we remark on the application of our techniques to prove limiting
results for a classical rule which is considered by Hannan and Robbins (1955).
We also remark on extensions of our results to unknown ¢ and 4.

Throughout this paper we assume that g s 4 and that g(x) = 0 if and only if
h(x) = 0.

2. The general form of the rule. Minimizing the posterior expected loss we
find the Bayes rule is given by

a* =1 if P(Z*=1|x)>1, i=1,.-,n,
where we take a;* = 0 if the probability is equal to . Note that

P(Z* = 1]|X) =} . a1} P(Z* = z*|x)
where
¥ = 7| x) = L 000 h(x)!=5¢" § 025(1 — 6)*~2+ dA(9)

2oz I17o1 9(x) % h(x,)1 %" § 6= =%(1 — @)*~==" dA(0) '

To show that the Bayes rule is completely determined by ¢, the proportion
classified g, we first need some notation. Let Y, = g(X,)/A(X,), i=1,---,n,
and let W, --., W, be the order statistics associated with Y, ..., Y,. Define
a new classification vector Z = (Z,, - - -, Z,) by Z, = 1 if that X, corresponding
to W, is from g, Z, = 0 if that X; corresponding to W, is from k. Define action
a and rule d analogously. Also, let ), G, H be the distribution of ¥ when X is
distributed F,, G, H, respectively. Let f, be the density associated with F,.

Let [c] denote the greatest integer less than or equal to c¢. For ¢in [0, 1],
define

¢n(t’ 0) = 0Wn—[m]/{0W —[nt] + 1 — 0} ’
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where W, = inf g(x)/h(x). Let ¢,(¢) = E[¢,(t, 0)|x]. We now get the following
theorem.

THEOREM 1. The Bayes rule has the formd = (0, ---,0,1, -.., 1) where the
number of 1’s is equal to nt, and

t, = inf{r: 4,(f) < 4}
=1 if ¢,(6)>% forall t.

Proor. From Bayes Theorem we get

P(Z*=1|6,%) = b9(x.)
SO = Gty T (1 — ki)
and
P(Z, = llx):W-—-m:_ﬁ)'

Thus, ¢,(¢, 0) = P(Z,_,, = 1|6, x) for t < 1 and we have ¢,(f) = P(Z,_;,,; =
1|x). Also, ¢,(t, 6) is decreasing in ¢ for ¢ and x fixed and thus ¢,(7) is decreas-
ing in ¢ for fixed x. This last property implies that P(Z, = 1|x) is increasing
in i which gives the form of the rule above. []

A classification rule of the form given in Theorem 1 is said to have the cut-
type property since it makes exactly one cut in the order statistics Wy, ..., W,
and classifies to g any X; whose corresponding W, is above that cut. This prop-
erty allows us to find the limiting form of the rule by finding the limit of ¢,.

To derive the cut-type property of the Bayes rule we needed no regularity
assumptions on g and % or on the prior distribution. To derive the limiting
properties of the rule we will need several conditions. We list them below.
For the remainder of this paper we assume 6, is fixed in (0, 1).

Al. The functions log g(x) and log A(x) are integrable with respect to the
measures induced by distributions G and H.

A2. The prior distribution A has density 2 with respect to Lebesgue measure.

A3. Density 2 is strictly positive in a neighborhood of 6,.

A4. Density 2 has two continuous derivatives in a neighborhood of 6, and
finite second moment.

A5. Density 2 has four continuous derivatives in a neighborhood of 6,.

A6. The support of F, is an interval and F, is continuous.

A7. Density f, is continuous and strictly positive in a neighorhood of

(1 — 6,)/6,.

To find the limit of 7, we will need conditions A1—A3 and A6. To prove
the asymptotic normality of ni(z, — ¢,), where ¢, is the a.s. limit of 7,, we will
need A1—A4 and A6—A7. To derive an approximator of ,, we will need A1—
A3 and A5—AT.

3. The limiting form of the rule. In the last section we characterized ¢, in
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terms of the function ¢,(f). To find the limit of ¢,, we will find the limit of
é,(t), prove that this limit is uniform in ¢, and deduce the limit of ¢,.

The main result we need to find, the limit of ¢,(f), is given in Lemma 1
below.

LeEMMA 1. Suppose conditions A1—A3 are satisfied. Then for any ¢ > 0,
P(|0 — 6, = 0|x) tends to 0 a.s. given 0.

The lemma follows easily from Lemma 2.3 of Johnson (1970) and a version
of the uniform strong law given by Rubin (1956). The regularity conditions
required for Johnson’s lemma are conditions which imply the strong consistency
and asymptotic normality of the maximum likelihood estimator § of #. These
are given by Johnson as Assumptions 1—9. We remark here that if g and A
satisfy condition A1, then the class of mixtures, f(x, 8) = 0g(x) + (1 — 0)h(x),
0 < 6 < 1, satisfies Johnson’s Assumptions 1—9. In particular, the integrable
functions of x which locally dominate the first and second order partial deriva-

tives of log f(x, 6) are
G(x)=(0h—e) '+ (1 =6, —e",
Gx) =(0h— )"+ (1 =6, —¢)?,
for  in (8, — ¢, 0, + ¢) and 0 < ¢ < min {6,, 1 — 6,}.
Let &, = F,~'(¢) and define
¢(t’ 0) = 051—#/{0él—t +1— 0} .
THEOREM 2. Suppose that conditions A1—A3 and A6 are satisfied. Then given

/.
&.(t) — o(t, 6,) a.s. and uniformly in t,

and thus,

t,—ot,=1— F'00<1 ; 0") a.s. given 0,.
0

PrROOF. ¢,(f) is a decreasing bounded function of ¢ for each x and by A6,

&(t, 6,) is continuous in z. Thus, the pointwise convergence of ¢,(¢) to ¢(z, 6,)

will imply the uniform convergence by the same argument as in the nonrandom

case. See Breiman (1968, page 160). Hence, it suffices to prove pointwise

convergence.
Let 2,(+) denote the posterior density of §. Since ¢, and ¢ are bounded by 0

and 1, we have
|6u(8) = ¢(1, O)| = Si0-sys| Pults 6) — (1, 0)|24(0) dO + P(10 — 6] = 6] x).
The second term above tends to zero a.s. given 6, by Lemma 1. The first term

is less than or equal to
Ku(%) S10-0i50 16 — 0ol 44(6) 46

where K,(x) converges a.s. This term can be made arbitrarily small by the
choice of d. ]
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In the case of a degenerate prior the limit of 7, is the same as that given in
Theorem 2.

4. Asymptotic normality results. Assuming that ¢, is in (0, 1), we will prove
that under conditions A1—A4 and A6—A7, ni(t, — t,) is asymptotically normal.
Since t, + 1, eventually ¢, = inf {r: ¢,(rf) < 4} a.s. Thus, for fixed real u,

P(ni(t, — 1) < ) = P(ni[d,(t, + un™¥) — 4] < 0).

To prove the asymptotic normality of n¥(z, — t,) we prove that n¥(¢,(f, + un—*) —
%), is asymptotically normal where “u” enters linearly in the mean of the asymp-
totic distribution. We first prove a lemma which allows us to consider ¢,(t, 6)
in place of ¢,(f), where § is the maximum likelihood estimator of 6. Let
Wn(u) = Wn—[nto+uni]'

LeEMMA 2. Suppose conditions A1—A4 and A6—AT are satisfied. Then for
fixed u, .
¢n(t0 + un—i) = ¢n<t0 + un—i’ 0) + OP‘90<n_1) *
Proor. Expanding ¢,(t, ) in a Taylor series around 6, replacing ¢ by 1, +
un~*, and taking expectation conditional on x, we get

Bullo + un~t) = (1, + un~4,0) + ¢,/(t, 4+ un~t, O)E[0 — 0|x]
+ E[¢,"(t, + un~t, 0*)(0 — )| x],

where 6* is between 6 and § and ¢,’ and ¢,” are the first and second order
partial derivatives of ¢, with respect to §. We will show the last two terms
above are O,(nY).

A simple computation with order statistics shows that ¢,'(, + un~, ) con-
verges in probability given 6,. Also, Theorem 3.1 of Johnson (1970) and
conditions A1—A4 imply E[6 — §|x] is O,(n™). Thus, the first term has the
proper order.

For the second term,

| @ (ts + un, 6%)| < 2W,(u)(1 + W, (u))[min (F*W, (), (1 — Oy}]™
which converges in probability. Again, Theorem 3.1 of Johnson (1970) and
conditions A1—A4 imply that E[(§ — §)? |x] is Op(n~"). Thus, the last term has
the proper order. []
By definition of ¢, 3 = 0051_,0/{0051_,0 + 1 — 6,}. Thus, if 0 is a continuity
point of the limiting distribution of the first expression below, Lemma 2 implies

lim,_, Py [n¥(n(ty + un~t) — ) < 0]
= lim,_, Py [nH{(1 — 0)0[W,(u) — &1_,)] + &1_yi(6 — i)} < 0].
Each component in the sum in the probability above is marginally asymptotically
normal. To prove the asymptotic normality of the sum we need the components

jointly asymptotically normal. This follows from the fact that both components
can be represented as sums of i.i.d. random variables.



768 C. P. SHAPIRO

In particular, from the usual argument used to prove that n*(f — 6,) is
asymptotically normal we get

5 - - 0
4.1) n¥(0 — 6,) = n~4(6,)* Z?:x% log f(x;, 0)]5=0, + 0p,(1) 5
where /(0,) is the Fisher information at #,. A stronger result in Bahadur (1966)
implies
42) (Wit — E1oiy) = m4(61) ™ D (e, — 1} — (1 — 1)}
+ opao(l) :

A simple computation with order statistics shows that n¥(W,(u) — W,_ta.)
tends in probability to —u/f, (§,_, ). Thus, the component involving W,(u) is
equivalent to a sum and the “4” will enter linearly in the mean of the asymp-

totic distribution.
We have now proved the following theorem.

THEOREM 3. Suppose conditions A1—A4 and A6—AT are satisfied. Then given

0,5
ni(t, — t,) — V in distribution,

where V is normal with mean 0 and variance

=+ gy g [0 (%) - (5]

0,41(0,) 0.21(0,) 0, d,
where f, = ﬁo(él—to)’

We remark here that if we replace 6, with an estimator §* of #, which is
equivalent to a sum of i.i.d. random variables with finite second moment, we
get ni(t, — t,(0*)) asymptotically normal. In particular, if §* = 4, the maxi-
mum likelihood estimator, then the asymptotic variance is

il — 1) + 31(6)"" [G <1;_0‘90> _ FI(IE_O‘-"Oﬂz.

5. Approximation of ¢,. To compute ¢,, we must find P(Z = z|x) for all
classifications z, then add the probabilities with z;, = 1 to get P(Z;, = 1|x). Since
the number of computations involved is greater than 2", it is of interest to
approximate #, for n large. In the last section we remarked that for certain
estimators % of 0, ni(t, — 1,(6%)) is asymptotically normal. Thus, we can
approximate ¢, by t,(0*). In this section we present a different type of approxi-
mator of ¢, and prove that the probability of nt, and the approximated nt,
differing by more than one observation tends to zero.

To define our approximator of f, we need the results and methods of Johnson
(1970) on the asymptotic expansion of the posterior distribution.

Specifically, let W(w, ) = w/{6w 4 1 — ¢}. We need an asymptotic expansion
of E[¥(w, 6)|x] which is uniform in w for w bounded away from 0 and co. This
is given in the following lemma.
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LeMMA 3. Let a and c be given such that 0 < a < ¢ < oo. Suppose conditions
A1—A3 are satisfied and let K be an integer. If the prior density 2 has K 4 1
continuous derivatives in a neighborhood of 0, then there exist functions y;(w, X) and
a constant D depending on a and c such that for a.e. x

|BLY(w, 0)|X] — E07,(w, X)n=i%) < Dp-ucson
forn = N, and w in [a, c]. The odd terms in the sum are zero.

Proor. For fixed w > 0, the expansion above follows immediately from
Johnson’s methods where the integrable functions which locally dominate
0*/06* log f(x, 0) are

Gy(x) = (k = DO — &) + (1 = by — ™).
To prove uniformity in w, it is easy to show that the constants involved in

deriving the expansion depend only on @ and ¢. [J
We will use the expansion above with K = 3. In this case, the coefficients

are .
To=71w, X) =¥(w,0),  71(w, %) = 0=y (w, X)

12 = 12w, X) = bW (w, G) 4 262" (w, O)X(O)A(0)~* + b~*a,, ()W’ (w, 6),
where the primes denote partial derivatives with respect to § and
1y O
a,(0) =nt 3r, - log f(x,, 6)/3! .
We first approximate ¢,(¢) by the first two nonzero terms of the asymptotic
expansion of E[W(w, 6)|x] evaluated at w = W, _,,;. We then define 7, as the
“inverse” of the approximated ¢,(7) evaluated at 1.
Specifically, define
$a() = 7o Wactnirs X) + 7o(Wararry X7
= 7o) + ra(t)n7".
f, = inf{t: §,(1) < 4}
=1 if ,(t)>4% forall ¢.
Note that ry(7) = ¢,(t, 6).
Under conditions A1—A3 and A5, Lemma 3 holds with K = 3. Thus we get
SUP,<iss | Pa(f) — 51&(‘)[ = OPao(n—z)
for any a, 8 such that « > 0 and F,;ol(l — B) > 0. The main theorem relating
t, and 7, is given below.

Let

THEOREM 4. Suppose conditions A1—A3 and AS5—AT are satisfied and that t,
isin (0, 1). Then
Pyflt, — £, < 1n] > 1.

The main idea of the proof is this. In a neighborhood of ¢, ¢, and ¢, get
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close faster than the smallest jump of ¢, or of §, decreases to zero. Thus, 1,
and 7, can differ by at most one jump point as n gets large.
Fix v < %, and define the set

A, ={t: |t — t| £ nv}.
Define '

B, = {suPicu, [$4(t) — Su(t)] < infiey, |6,(1) — Bt = n7)]},

C, = {SUPses, [9a(0) — Pu(D] < infiey, [Ba(t) — pult + n7Y)} -
It is then easy to show that for fixed #, if ¢, and #, are in 4,, then B, and C,
imply that |f, — #,| < 1/n. Thus, to prove Theorem 4 we must show that
P(f,, t, in A,), P(B,), and P(C,) all tend to 1.

The asymptotic normality of n¥(z, — ¢,) implies that t, — t, is Op(n~%). There-
fore, P(f,, t, in A,) tends to 1 for v < § if we can show 7, — 1, is Op(n~%). We
first note that 7, tends to ¢, a.s. given 6, from the same argument used to prove
t, — t,. The next lemma gives the appropriate order.

LeMMA 4. Suppose conditions Al — A3, A5—AT are satisfied. If t,is in (0, 1),
then t, — t, is Opao(n‘*). ‘

PROOF. ¢,(f) = ¢.(t, ) + 7:(f)n~", where we recall that ¢,(t, f) is decreasing
in r. Choose a, 8 such that 0 < « < t, < B < 1. Then it can be shown that

SUPu<iss |72(f)] = Op(1) .

SUDP,<i<p [ﬁn(t) — $a(t, 0)| = Op(n™").
Define #f, = inf {t: ¢,(t, ) — n~* < 4} and #, = inf {¢: ¢,(¢, §) + n~* < }}. By
an argument similar to that used to prove the asymptotic normality of n¥(z,, — 1,),
we can prove that n¥(sf, — ,) and n¥(r}, — 1) are each asymptotically normal.
Thus, tf — ¥ is Op(n%).
Since 7, tends to ¢, in (0, 1), we have 7, eventually in (a, ) a.s. Thus, 7, is
eventually between #, and #}, with probability 1, and we get

[t — to| < |t — 1] + |15 — 1| = Op(n7¥). a

To prove P(B,) and P(C,) tend to 1, we need a lemma concerning order
statistics.

Thus,

LEMMA 5. Fixv < § and tyin (0, 1). Suppose Yy, ---, Y, are i.i.d. F, where
the support of F is an interval and F is continuous. Let Wy, ---, W, be the cor-
responding order statistics. Assume F has density f which is continuous and strictly
positive in a neighborhood of F~(1 — t,). Then for 6 > 1 — v and any M > 0,

P[n5+1 infteA” ]Wn—[nt] - Wn—[nt]tll g M] - 1 .

Proor. We prove the above with n — [nf] — 1. The proof is the same for
n — [nt] + 1. Also, without loss of generality we assume that F(x) = 1 — e7%,
the standard exponential distribution. Then

ntinf ey W g — Wapnia
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is equal in distribution to

. 1 n .
inf,,, n*+ Y, = nPinfe, Y, [n-

[nr] + 1 """ = [nty + =] + 1

Fix M > 0. Then
P(n’inf,., Y,

n

] = M) =~ exp[—2Mn'~-"]
which tendsto 1 ford > 1 —v. [J

PrOOF OF THEOREM 4. Lemma 4 implies P(t,, 7, in A4,) tends to 1. Thus, to
complete the proof we must show that P(B,) and P(C,) tend to 1. Fix d, v such
that ] —v < d<land 0 <v < §.

Using the particular form of ¢,(¢), and methods similar to those used in
deriving the limit of ¢,(7), we get

1nft€A g, (f) — ¢,(t £ n7Y)| = inf,., MW, g — Wotaa| R *(X)

where R, *(x) is bounded away from 0. Lemma 5 1mp11es this tends to infinity
in probability.
From the form of ¢,(¢), we get

inf,, ., 1+|G, () — Gau(t = 1)
— ninf,e  [4(6 0) — 60t £ 1 0) + np(0) — 7t = nOY)|
= infteA,, W, g — Watnaa|R**(X)

where R, **(x) is bounded away from 0. Thus, Lemma 5 implies this tends to
infinity in probability.
We can write P(B,) as

P(n+2inf,e 4, |$a() — Pa(D)] < w2 infiey, 1B,(1) — Bt £ n7)) .
The first term in the probability tends to zero in probability from Lemmas 3

and 4. The second term tends to infinity in probability from the remarks above.
Thus, P(B,) tends to 1. In like manner, we can prove P(C,) tends to 1. [I

REMARK. The “n~*” in Theorem 4 cannot be improved since ¢,(r) and gz?n(t)
are step functions.

6. A second approximator of 7,. In the last section, we proposed an approxi-
mator for ¢, using ¢,(f), an approximation of ¢,(f). Since ¢,() involves 4, there
is some difficulty in computing it. In this section we give another approximation
of ¢,(f) by replacing § with another estimator §* of §. We show (Theorem 5)
that if * — § is 0,(n~?) then the resulting approximation of 7, will have the
property given in Theorem 4. We then describe briefly how estimators of ¢
with the proper order can be found.

Suppose 6* is an estimator of §. Define

$uX(1) = $u(1, 0%) + 107,

where 7,%(#) indicates that § is replaced by 6* in the expression for 7,(f) given
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in the last section. Define
f = inf{t: §.*() < 3
=1 if ¢,*¢t) >4 forall ¢

THEOREM 5. Suppose t, is in (0, 1) and conditions A1—A3 and A5—AT are
satisfied. If 6* is an estimator of 0 such that 6x — @ is Opoo(n*z) then

(i) forany a, such that 0 < a < B < 1,
SUP,<izp [$4* (1) — $.(0)] = Opgo(”_z) >
(ii) Py llf* — 1| < /] — 1.
PRrooOF. (i)
|0 — 0%
OW, iy + 1 — 0%)YOW,_ppy + 1 — 0)
+ SUPagigp MM Ta(1) — 12* (D) -

SUPg<tsp Ién*(") - én(’)l = SUDagigs

The first sup is
10 — 04

T Wy + 1 — 09 OW,_pr + 1 — )

A

= 0,(n"?).

A lengthy computation gives the second sup
< n-'R,(x)|f — 6|,

where R,(x) is Op(1). Thus, the second sup is Op(n~?).
(ii) follows from the rate in (i) and noting that the proof of Theorem 4
remains valid if 7, is replaced by 7,*. [

To obtain estimators of the order required in the hypotheses of Theorem 5,
we start with an initial estimator of 6 and apply the Newton-Raphson iteration
method given in Scarborough (1950). We describe the iteration for our special
case below.

Suppose 6* is a strongly consistent estimator of §. Let

L(0) = 1., log f(x;, 0)
and let £,/(9), 1,”(6), and 1,""(0) denote the first, second, and third order partial
derivatives of [,(f) with respect to 6. Define

T,(0) = 0 — L/(0)/1,"(0) -
We define the ith iteration of §* as
Of = T,40") ,
where T,* indicates T, composed with itself i times.
The following proposition, which easily follows from several applications of

the mean value theorem, shows how this iteration method can be used to get
estimators of the rates needed to apply Theorem 5.
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PROPOSITION 1. Suppose condition Al is satisfied. Let §* be a strongly consistent
estimator of 0 such that §* — 6 is Opﬁo(n‘") for some v > 0. Then

0, — 0 = 0,, (n*), i=1,2,....

We now give a class of initial estimators of ¢ which satisfy the proposition
above with v = }. These estimators are considered by Boes (1966).

Let E,(-) and E,(-) denote expectation with respect to distributions G and
H, let E,(+) denote expectation with respect to F,. Suppose Q(-) is a measurable
function of x such that E;Q(X)* and E, Q(X)* are finite. Further suppose that
E;Q(X) #+ E,Q(X). Then

E,Q(X) = 0E;Q(X) 4+ (1 — 0)E,Q(X) .
Solving this equation for 4, we get
0 = [E,Q(X) — By Q(X)]/[E,Q(X) — E,Q(X)] -
Thus, an obvious estimator of ¢ is
0 = [n7* Tt QX)) — Ex O(X))/[Eg Q(X) — E,Q(X)] -
Each estimator derived from some function Q above is strongly consistent for

6 and §, — 6 is O,(n*). Thus, the second iteration can be used to define @, *(7)
and the resulting 7,*.

7. Final remarks. If the prior distribution is degenerate at 6, then the Bayes
classification rule is
ar =1 if g(x)h(x) > 1=

0o
If ¢ is unknown, a natural classification rule is to use the form of the rule above
with 6, replaced by an estimate §*. Rules of this form are considered by Hannan
and Robbins (1955). This type of rule makes one cut in the order statistics
W, .-+, W, and classifies to g any X; whose corresponding W, is above
(1 — 6%)/6*. The rule is determined by ¢,, the proportion classified to g, where
t, = inf {t: W tan = - 0*}

= A

, i=1,...,n.

1— 6%
H*
Using the same techniques as in Sections 3 and 4, we can prove under regularity
conditions on g, &, and §* that 7, tends to ¢, a.s. given 6, and that ni(t, — 1,) is

asymptotically normal.

Our techniques in Sections 3 and 4 can also be applied to unknown g and %
in a special case. Let D be an interval on the real line and suppose {f,}.., isa
family of univariate densities with monotone likelihood ratio in x. We observe
random variables X;, - - -, X,,, which conditional on (a, 8, #) are i.i.d. with density
S(x|a, B, 0) = Ofo(x) + (1 — 0)fy(x). We assume (a, B, f) is a random vector

=1 if W, twg > forall .
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with prior distribution A. If we assume that (a, §) and 4 are independent and
that P,(a < B) = 1 then the Bayes rule will have the cut-type property with
respect to the order statistics from X;, ..., X,. That is, the rule makes exactly
one cut in the ordered values of X, ---, X,, and is completely determined by
the proportion of observations classified to f,.

Under additional assumptions including an identifiability assumption on the
2-component mixtures over the family {f,}, the limiting form of the rule can
be found. Under very strong conditions which imply the consistency and asymp-
totic normality of the joint maximum likelihood estimator of (a, 8, #), the
asymptotic normality of ni(z, — ¢,) can be proved from the results of Chao
(1970).
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