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REPEATED GAMES WITH ABSORBING STATES

By ELoN KOHLBERG
Hebrew University, Jerusalem

A zero-sum two person game is repeatedly played. Some of the payoffs
are “‘absorbing’ in the sense that, once any of them is reached, all future
payoffs remain unchanged. Let v, denote the value of the n-times repeated
game, and let v denote the value of the infinitely-repeated game. It is
shown that lim v, always exists. When the information structure is sym-
metric, v also exists and v = lim va.

Introduction. This paper is concerned with a situation in which two players
repeatedly play a zero-sum game with a payoff matrix that contains some “ab-
sorbing” entries. That is, once any such entry is reached, all payoffs in the future
plays of the game must be equal to that same entry, regardless of the players’
future actions. We call such games “repeated games with absorbing states.”

As an example, we describe “the big match,” due to Blackwell and Ferguson
[1]:

Every day player II chooses a number, 0 or 1, and player I tries to predict
II’s choice, winning a point if he is correct. This continues as long as player I
predicts 0. But if he ever predicts 1, all future choices for both players are
required to be the same as that day’s choices: if player I is correct on that day,
he wins a point every day thereafter; if he is wrong on that day, he wins zero
every day thereafter.

It is easily verified that “the big match” is indeed a repeated game with ab-
sorbing states. Its payoff matrix is

1 0
0* 1*

where the asterisks denote absorbing elements.

Our aim is to find the values and optimal strategies in repeated games with
absorbing states that have a large number of stages (i.e., plays).

Now, when the number of stages is large, some normalization becomes neces-
sary. Since the relevant notion is that of “value per play,” we agree to define
the payoff in the n-stage game as the sum of the payoffs in the individuals plays
divided by n.

First, we consider v,, the value of the n-stage game. In Section 1, we show
that v, always converges, and describe a method for the computation of the
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limit (Theorem 1.6). We also suggest an inductive procedure by which optimal
strategies can be computed for the n-stage game (Lemma 1.2).

Next, we try to extend our knowledge to games that not only consist of a large
number of stages, but in which the players do not know in advance exactly how
many stages there are going to be. To approximate such games, we introduce
infinitely-repeated games (Definitions 2.2 and 2.3).

In Section 2, we set out to find the values and the optimal strategies in infi-
nitely-repeated games. The main problem encountered is that of establishing
exactly how much “weight” should be attributed to an absorbing element as
compared to a non-absorbing element: It is quite clgar that, with n-stages to
g0, an absorbing element “outweighs” a non-absorbing element by a factor of n.
But what if # is infinite? To illustrate the difficulty involved, note that in a “big
match” with finitely many stages, player I’s (unique) optimal strategy is to choose
row 2 with probability 1/(n + 1), where n is the number of stages left to the end
of play. It follows that, in an infinitely-repeated version of “the big match,”
for player I ever to choose row 2 with positive probability would mean “under-
rating” the absorbing elements. On the other hand, it makes no sense for him
to choose row 1 with certainty all the time (this, in fact, would be “overrating”
the absorbing elements).

This illustration shows that, in infinitely-repeated games, a player might not
be able to avoid either underrating or overrating the absorbing elements. Both
ways he suffers losses, so none of his strategies can be optimal (Example 2.9).

Still, the player might try to keep his losses down to ¢, making his strategy
e-optimal. Our main result in Section 2 is that this is indeed possible, provided
information on the opponent’s past actions is available. The general idea is that,
with the above information, the player can tell at each stage what proportion of
his losses is still temporary (in the sense that it does not involve absorbing ele-
ments), and regulate his “weighting” of the absorbing elements accordingly.

To be more specific, we define symmetric information as that state of information
in which each player, in addition to remembering his own actions, is informed
of his opponent’s past actions. We show that, assuming symmetric information,
e-optimal strategies, hence the value, always exist. We also show that this value
(denoted V) is equal to lim v, (Theorem 2.1). An immediate application is that
V. may be computed by the method of Section 1.

It turns out that, lacking information on the opponent’s past actions, a player’s
losses might accumulate without his being able to do anything about it. Indeed,
if symmetric information is not assumed, ¢-optimal strategies, hence the value,
may fail to exist (Example 2.10).

The results of Section 2 are not altogether satisfactory, since the definition of
V. (Definition 2.3) does not exactly correspond to the notion of value in games
with a large but unspecified number of stages.

To amend this, we introduce a definition of a value v, (Definition 3.3) that
requires of an e-optimal strategy that it should get the player’s payoff within ¢
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of v,, after a number of stages that does not depend on the opponent’s actions.
Section 2 is devoted to the proof that, in the case of symmetric information, v,,
exists and v, = V,, = lim v, (Theorem 3.4).

1. The asymptotic behavior of v,. This section is devoted to the proof that
lim v, exists for all repeated games with absorbing states.
We start with several lemmas.

Lemma 1.1.
2

Ivn - vn—ll é IAI n— 1

where A denotes the payoff matrix and |A| is the maximal absolute value of elements
in A.

Proor. This follows from the fact that

(n - l)vn——l - IAI =n-v, = (n - l)vn—l + IAI
and that .
[val < 4]

We introduce the notation A(x, f) for the matrix defined as follows:
(1.1) A(u, t);; = a;; if a,; isabsorbing
= ta;; + (1 — tyu otherwise.

We denote the value of this matrix by v(y, ).

Our next result is a recursive formula for the value of the n-stage game. Note
that this formula may be applied to get an inductive procedure for the computation
of optimal strategies.

LeEMMA 1.2.

(v 3)
Vy, = V| Vpoyp — ) -
n

PrOOF. Suppose a;; is reached at stage 1. If a;; is absorbing, then the expected
payoff is a,;. If not, the expected payoffis (a,; + (n — 1)v,_,)/n. It follows that
v, is equal to the value of A(v,_,, n™").

LemMma 1.3. Letu, < u,. Thenforall0 <t <1,
(1.2) (V(uy, 1) — uy) — (V(Hy 1) — Ug) = H(uy — Uy) -
Proos. It follows from the definition of A(u, ¢) that for all i, j,
Ay, )y — Ay, 1), < (1 — Oy — 1) -
But this implies that
V(g £) — V(g 1) < (1 — ) (4 — 1) 5
and (1.2) follows at once.

Lemma 1.4, Let Au) = lim,_,, t7(v(u, t) — u). Then A(u) exists for all u.
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Proor. Clearly,
A) = +o0 if v(u,0)>u
= w0)  if v, 0)=u
ot,

= —o0 if vw,0)<u.
The existence of dv/dt, (u, 0) follows from Theorem 1 of fZ] where a linear-
programming method for the computation of this derivative is described.

LeMMA 1.5. A(u) is strictly monotone decreasing.

Proor. Let #, < u,. Dividing the inequality (1.2) By ¢, and letting # — 04,
we get
A(w)) — A(uy) = uy —u, > 0.
REMARK. The above proof was communicated to me by Jean-Francois

Mertens. It is much shorter than my original proof.
At this point, we are ready to state our main result.

THEOREM 1.6. v, converges to the unique point u, for which

(1.3) u<uy=A40u)>0
and
(1.4) u>u=A7Au) <O0.

Proor. By Lemma 1.5, a unique point #, with the above properties exists.
Let ¢ > 0 be given. Denote u’ = u, — ¢/2. Then A(w’) > 0andad > 0 exists
such that, forall0 < ¢ < ¢,
v, ) —u
t

=0.

It follows from Lemmas 1.2 and 1.3 that, for n > (7,)7?,

(1'5) vn—l é u, = ’U” - vn—l =7 (,vn—l’ ';1‘1‘) - vn—l

(o)) s Loz L

Since Y ¢ n~! = oo, there is an N such that v, > #’. Assume, w.l.o.g., that
N = (t,)* and that |4] - 2/N < ¢/2, which, in view of Lemma 1.1, assures that
|V — Vpy| < ¢/2 for alln > N.

Now, if {n = N: v, < u, — ¢} + ¢, denote by n, the smallest number in this
set. Since [v, — v, | < ¢/2, it follows that v, , < u, — ¢/2 =W/, and from
(1.5) we have that v, _, < v, , which contradicts the definition of n,. (We know
that v, = ' so that nyis at least N + 1, and n, — 1 = N.)

We conclude that v, > u, — ¢ forall# > N. Ina similar way it may be shown
that v, < u, + ¢ for all n = N. This completes the proof.
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ReMARK. If the equation
v(u, 0) =Uu

has a unique solution #,, then it is clear that u, satisfies the requirements of
Theorem 1.6 and #, = lim v,,.
We would now like to present two examples.

ExAMPLE 1.7.

1* 0
A=
0 1*
A(u):—l—oo <l
=—-% u=1
= —o0 u>1

so that limv, = 1.
We note that this example corresponds to the remark following Theorem 1.6.
We also note that here A(x) is never 0.

ExAMPLE 1.8. “The big match”:

1 0
A=
0* 1*
A(w) = 4+ o0 u<o
=1—2u 0sugl1
= —u u>1

so that lim v, = §.

At this point we would like to generalize the notion of an “absorbing element.”
Wegivea,; = wb*, w > 0, the following interpretation: whenever (i, j) is reached,
a lottery is performed to decide the (i, j)th entry—with probability o it is the
absorbing element b*, (in this case we say that “the payoff is absorbing™), and
with probability 1 — o it is a non-absorbing element d.

Let us denote by x(A) the limit of the values of the n-stage games with payoff
matrix A.

THEOREM 1.9. Let A’ be constructed from A by replacing an element of the form

wb* by (wb)*. Then,
HA) Z 0= p(A) = p(A')

HA) < 0= p(A) < p(A).
Proor. Let us extend definition (1.1) to matrices with generalized absorbing
elements as follows
A(u, t);; = a;; if a;; is absorbing
=whb+ (1 —w)(td+ (1 — b)) if a; = wb*
=ta;; + (1 — t)u otherwise.

It is easily verified that Theorem 1.6 remains valid.
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We now construct, according to the above formula, A(x, f) and A'(x, 1) from
Aand A', respectively. Clearly the only difference between these two matrices is
that where wb -+ (1 — w)(td + (1 — t)u) appears in A(u, t), wb appears in A'(u, t).
It easily follows that, regardless of d,

u>0=Au) =A@
u<0=A@ < AN,

where A’(u) is derived from A'(u, ) in the same way that A(z) is derived from
A(u, t). Applying Theorem 1.6, we obtain
(1.6) #(A) > 0= p(4) Z p(A)
(1.7) #A) < 0= p(d) < p(A) .
To complete the proof we must show that y(4') = 0 = p(A4) = 0. Indeed, sup-
pose u(A’) = 0. Define A'(c) by adding ¢ > 0 to each payoff in 4’. Clearly,
u(A'(e)) = . Next, construct A(c) from A4'(¢) by replacing (wb + ¢)* by w(b +
¢/w)*. From (1.6), p(A(e)) = p(A'(e)) = e. Finally, construct A(¢) from A(e) by
subtracting ¢ from each payoff in A(¢); in' particular, w(b + ¢/w)* must be re-
placed by w(b + (¢/w) — €)*. Clearly, p(A(e)) = u(A(e)) — ¢ = 0.

The only difference between the matrices 4(c) and A is that where w(b +
(¢/w) — €)* appears in A(e), wb* appears in A.. Moreover, since (1.6) holds re-
gardless of the value of d, the change from A’(¢) to A(¢) may be carried out in

such a way that the resultant d that corresponds to w(b -+ (¢/w) — €)* in A(e) be
the same as the d that corresponds to wb* in 4. It follows that

1—w 1 —w

e = — ‘€.
w

w(A) = p(Ae) —

Letting ¢ — 0+ we conclude that p(4) = 0. In the same way it may be shown
that p(4) < 0.

REMARK. That p(A) may differ from z(A’) may be seen by looking at the matrix

1 *
'2’2

N
N
*

Here p(A) = 1 and p(4') = 2.
CoROLLARY 1.10. Let A be a 2 X s matrix such that

(i) ay; is non-absorbing, 1 < j < s,
(ii) ay; is generalized absorbing, 1 < j < s,
(ili) the (minmax) value of the matrix obtained from A by erasing all the asterisks
is zero.

Then p(A) = 0.

Proor. Let A’ be constructed from A as in Theorem 1.9. It may easily be
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verified that, for this kind of matrix, »,” = »/. But (iii) means that v’ = 0,
hence p(A') = 0. Applying Theorem 1.9 we conclude that u(A4) = 0.

2. The value of the infinite-stage game. This section is devoted to the proof
of the following theorem:

THEOREM 2.1. In the case of symmetric information, every infinitely-repeated game
with absorbing states has an l-value V,, and V, is equal to lim v,.

To give the above-stated theorem a precise meaning, we must define the
strategies and the /-value in infinitely-repeated games.

DEFINITION 2.2. A strategy for player I (resp., II) in the infinite-stage game
is a sequence ¢ = (g;, Gy, - - +) (resp., ¢ = (1y, Ty, - - -)) Where g, (resp., 7,) is a
function from J[¥~*(R X S) to the set of all probability distributions on R (resp.,
S). Here R={l, ..., r}and S = {1, - .., s} are the sets of rows and columns
of the payoff matrix.

REMARKS.

a. Note that the above definition of strategies is in accordance with the require-
ment that the game be of symmetric information. In particular, since “symmetric
information” requires “perfect recall,” we are justified to restrict our strategies
to behavior strategies (see [3]).

b. In the above definition ¢, 7, depend only on the players’ past actions but
not on past lotteries (performed when generalized absorbing elements are reached).
This does not restrict the generality, since there is no importance to anything the
players do after a lottery that resulted with an absorbing payoff.

The probability distribution obtained from ¢ and 7 (together with the lotteries)
is denoted Prob, .. Expectation with respect to Prob, . is denoted E, ..

Let iy, j,, g, be random variables that denote the row and the column chosen
at stage k and the payoff at stage k. Let g, = n~* } 7 g,. Since lim,__, g, may
fail to exist, there is no natural way to define the “payoff per play.” However,
it turns out that defining the payoff is not essential for defining the value.

DEFINITION 2.3. o is the [-value of the infinite-stage game if, for every e > 0,
there exist strategies g,, 7, of players I and II, respectively, such that

2.1) E, (liminfg,)=>v —¢
(2.2) E,.(limsupg,) < v+ ¢

for all strategies o, v of players I and II. The strategies g,, 7, are called e-optimal.
A 0-optimal strategy is called optimal. The l-value is denoted by V...

LeMMA 2.4.
Prob{g, =d i.0.} =0.

Proof. Let w, = min {w: wb* is an entry of 4}. Now g, = d only after an
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unsuccessful lottery so that, regardless of ¢ and ¢:

Prob (g, = d} = L= % Prob {1 = 4},
(2
hence

2irProb{g, =d} <
Prob{g, =d i.0.} =0.

so that

LEMMA 2.5. Let A be a 2 X s matrix with value zero, and let j,, - - -, j, be inte-
gers, 1 < j, < s. Then
Z;‘aljk <0= 2tay, =0.
Proor. Denote by n, the number of elements in the set {k: 1 < k < n, j, = i}.
Then

and
1 n,
— Dt ay, = N Lay.
n n

If the lemma were false then (m/n, - - -, n,/n) would be a strategy for player II
in the (one-stage) game A that guarantees a payoff smaller than zero.
We are now going to prove a special case of Theorem 2.1.

LEMMA 2.6. Let A be a2 X s matrix that satisfies (i)—(iii) of Corollary 1.10. Then
the l-value V., of the infinitely-repeated game with payoff matrix A exists, and V,, = 0.

ProOF. Let ybe an optimal strategy in the one-stage game that is obtained from
A by erasing all the asterisks, and set z, = (y, y, ---). It is easily verified that
E, (limsupg,) < O for all g.

To complete the proof we must construct, for every ¢ > 0, a strategy o, for
which (2.2) holds with » = 0. Let 0 < ¢ < 1 be given. Set

(2.3) a, = (1 —e)™ m>0
- = ¢’ m<O0,
(2.4) m(ju, ++ 5 Jr) = — Dia a5, if k=1
=0 if k=0

and define o, = (g;, g,, - - -) (here there are only two rows so that g, = (1 — 7,2,
;%)) by
(2.5) 02 Jas v s ers Jomr) = Xm(gysensigmy) *

In view of Lemma 2.4 we assume, w.l.o.g., that g, = a;, whenever 1 > k.

Thus, ifg, < 0and1 > nthen Y7 @, < 0, and it follows from Lemma 2.5 that
m(j,, - -+, j,) < 0so that ¢, = ¢2. We conclude that

Prob{g, <OAI>n+ 1} < 1= % prob(g, < 0nl=n+ 1},
Wy €

0
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hence
e Prob{g, <O0Al= 00} < oo
so that
(2.6) Prob, .{liminfg, <O0Al= oo} =0 for all =.

To complete the proof we must show now that
2.7) Prob, . {l < «}E, {liminfg,|l < oo} = —e¢ forall =.

Of course, it suffices to prove (2.7) only for ¢ that are pure strategies. Here
we shall deal only with pure strategies such that player II reacts in the same
way to the payoff a,; that resulted from (2, j,) and an unsuccessful lottery, and
to the payoff a,;, that resulted from (1, j,) (such a strategy is simply a sequence
of columns = = (j,, jy, - - -)). The proof for a general pure strategy goes along
the same lines but requires more cumbersome notation.

We may assume, w.l.o.g., that the entries of A are rational numbers. More-
over, (i)—(iii) are not affected if A4 is multiplied by a positive number, so we
assume that a, ;, 1 < j < s, are integers.

Prob {1 < oo}E(liminfg, |1 < o0) = } i, Prob{l = k}b;,
= Y, Prob{l = k A i, = 2}e;,b;,

= Yp, Y12 sign (a,;,) Prob {1 = k A |, = 2}

where
(2.8) a,; = w;b;*.

Let m(k, ) = m(j,, « -, j,—,) — 7sign(a,,). By (2.5)and (2.3)
(2.9) Prob{l = k A i, =2} < app < (1 — &)y, -
Set

T, = {(k, r): m(k,r) > maX e, MK 7))

where < denotes lexicographical order. By (2.4), each time we move in T,
from (k, ) to the next pair of indices (in lexicographical order), m(k, r) is en-
larged by 1, hence, by (2.9)

(2.10) | Spmrer, Sign (ay;,) Prob {1 = k A i, = 2}|

S (1 —e)4 Z(k,f)eTl X (kyr)
<(1— o)™ X5 a, = (1 — &) e
Next, denote

T,={(k,r): (k,r)¢ T, and a,;, < 0}
T, = {(k,r): ay;, = 0}.
There is a one-to-one correspondence from T, into T, as follows:
(k, ) e T, is paired with the lexicographically largest (k’, 7)€ T, such that
(k', ') < (k, r) and m(k’, ') = m(k, r) + 1. In this pairing

(2.11) K<k
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and
(2.12) |m(k, 0) — m(k’, 0)| < 2|A|
so that
Prob {l = k' A iy, = 2} = Prob {1 = k'}a, .0
= Prob {I = k}a,, o(1 — &)

=Prob{l = k A i, = 2}(1 — &)?4!.
It follows that

(2.13) | 23 tk,rre 7qu g SIGD (@y;,) Prob {1 = k A i, = 2}|

S =1 =) Xpmer, Prob{l 2 k Ai, =2}.
But .

. 1
Ditemer, PIOO{l = k AN iy, =2} < —~ Ditkmer, Prob {1 = k}
0

A
Wy

< Ml s Probfl = i} <
@y

Since T, U T, U Ty is the set of all our indices (k, ), (2.7) follows from (2.10)
and (2.13).

REMARK. In the proof of (2.7) we relied on a method used to prove Theorem
2 of [1].

LemMA 2.7. Let A bea?2 X s matrix such that the first m columns of A constitute
a matrix that satisfies (i)—(iii) of Corollary 1.10, and the other s — m columns are
all of one of two types:

(a) ay; is non-absorbing and a,;; = 0 fori =1, 2.

(b) a; = w,;b}, b; =0 fori=1,2.

Then the repeated game with payoff matrix A has an l-value V., and V,, = 0.
Proor. This is an immediate consequence of Lemma 2.6.

LEMMA 2.8. Let A be an r X s matrix with (ordinary) absorbing elements and let
A(u, 1) be as in (1.1). Given 7 > O there exist at > 0 and strategies x and x({) that
are optimal for player 1 in A(0, 0) and A(0, 1), respectively, such that

(2.14) w; >0=0),; >0 and |b; — b(t);] < 9
and '

(2.15) 0; =0=0(),; <7 and le; —e(®);| <7,
where

L={i:1<i<r, a
W; = Dlier; Xi»

1 ,
by = — Dier; X4 i 0; >0,
@
=0 otherwise,

; is absorbing} ,
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and

1 .
€; = 1= o, Zieljxiaij if o;<1,

=0 otherwise,
and where w(t);, b(t); and e(t); are the corresponding averages for x(t).
Proor. Apply the upper semi-continuity of the mapping
t — {x: x is an optimal strategy for player I in A(0, 7)}.

Proor oF THEOREM 2.1. Let 4 be an r X s matrix with (ordinary) absorbing
elements such that lim v, = #,. The players’ situation is symmetric so that, to
establish the proof, it suffices to exhibit for every ¢ > 0 a ¢, that satisfies (2.1)
with » = U

So, let ¢ > 0 be given. Assume, w.l.0.g., that u, = ¢/3. By (1.3), A(0) > 0,
so there exists a > 0 such that, when ¢ > 0 is small
(2.16) (0, t) = ot.

Let » = min {¢/3, 6/2, 6/2| 4} and fix x, t and x() such that (2.14), (2.15) and
(2.16) hold.

Player I may decide that at every stage of the repeated game A4 he will play
a probability mixture of x and x(#). Restricting himself thus, player I is faced
with a 2 X s matrix C, where

€ = Dia X;Q;;

and
Cop = i1 X(¥);a;5

Recalling our definition of a generalized absorbing element wb* we get

(2.17) ¢y = 0;b;* if ;>0
=e; if w;=0

and

(2.18) c,; = o(t); b(1);* if o); >0
= e(1); if w();=0.

Recall that x(#), x are optimal in 4(0, ¢), 4(0, 0), respectively, so that (2.16)
may be rewritten as

(2.19) 0(0);b(0); + (1 — o(t))e(t); 2 6-1,  j=1,---,5,
and the special case (0, 0) = 0 as
(2.20) 0;b; =0, j=1,..4,s.

Assume, w.l.o.g., that {j: w; = 0 and o(f); > 0} = {1, - - -, m}, so the first m
columns of C constitute a matrix that satisfies (i) and (ii) of Corollary 1.10.
By (2.15), w; = 0 = w(t); < 7 < 0/2|4|, and it follows from (2.19) that

o(1); b(1); + te(?); = 012 .
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Also from (2.15), |e; — e(1),;| < 7 < 0/2 so that w(f); b(f); + te; = 0
Dividing by 1 + ¢ we get

1
1+t

But this means that the strategy (1/(1 + 1), t/(1 + t)) assures player I a payoff
of at least zero in the one-stage game C (with asterisks erased). We may there-
fore assume, w.l.0.g., that C satisfies (iii) of Corollary 1.10.

If we now show that all the columns m + 1, ..., s are either of type (a) or
(up to ¢/3) of type (b) then we may apply Lemma 2.7 and complete the proof.

Indeed, suppose w; = 0 and also w(t); = 0. By (2.19), e(t); = d and therefore,
by (2.15), e; = 0. Hence, j is a column of type (a). -

In all the other columns, w; > 0. By (2.20), b, = 0 and it follows from (2.14)
that w(f); > 0 and that b(f); = —5 = —¢/3. Hence, j is (up to ¢/3) of type (b)
and the proof is complete.

We conclude this section with two examples. The first shows that, even if
symmetric information is assumed, optimal strategies may not exist. The second
example shows that Theorem 2.1 is not true if symmetric information is not
assumed.

e + +t°"2° j=1,-,m.

EXAMPLE 2.9.

1 0
0* 1*

with symmetric information.

It is proved in [1] that player I has no optimal strategy in the infinitely repeated
game.

ExAMPLE 2.10. In [4], a certain repeated game of incomplete information is
described. When closely examined, that game turns out to be equivalent to the
infinitely repeated game with the same payoff matrix as in Example 2.9, but
where each player only remembers his own past moves. In[4]itis proved that ¥,
does not exist. We give a sketch of the proof, using the notations of this section.

Let o be any strategy of player I. Since player I does not know player II’s past
actions, ¢ is just a sequence of numbers x,, x,, - - - where x, = Prob {i, = 2}.

If player II knows ¢, he may proceed as follows:

If 3¢ x, = 1, choose column 1 all the time.

If 333 x, < 1, choose column 1 up to some n for which Y2 x, < ¢, and then
choose column 2 all the time.

It follows that player II can hold the payoff down to ¢, hence sup inf < 0.

On the other hand, if player I knows II’s strategy, then at each stage he may
choose row 1 or 2 according to whether or not the probability with which II
chooses column 1 at that stage is greater than 1.

It follows that infsup > 4, and ¥V, does not exist.

3. Other values for the infinite-stage game. In this section we show that
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Theorem 2.1 is true also when a definition of the value in the infinite-stage game
is adopted other than that of the /-value.

DEerINITION 3.1. v is the weak value of the infinite-stage game if for every
¢ > 0, there exist strategies o,, r, of players I and II, respectively, such that

3.1) liminfE, (g,)=7v—e¢
(3.2) limsupE, (8,) < v+e¢

for all strategies o, = of players I and II. The weak value is denoted by v,*.
It is an immediate consequence of the Fatou-Lebesgue lemma that v =V, =
v =kt
THEOREM 3.2. In the case of symmetric information, evéry infinitely-repeated game
with absorbing states has a weak value v} and v} = lim v,.
Note that (3.1) may be rewritten as
E, (8)=v—e¢ forall n=n(z).

We would now like to show that Theorem 3.2 is still valid if n(z) is required
to be independent of 7, that is

DEFINITION 3.3. v is the value of the infinite-stage game if for every ¢ > 0,
there exist strategies o,, ., of players I and II, respectively, such that, for all
n = N(e)

(3.3) E,  (8)=v—c¢
3.4) E, . (&)=v+e
for all strategies ¢, . The value is denoted by v.,,.

THEOREM 3.4. In the case of symmetric information, every infinitely-repeated
game with absorbing states has a value v,, and v, = lim v,.

Proor. The proofis carried out in complete analogy with the proof of Theorem
2.1. The main changes that are required are in (2.6) and (2.7).
First we note that if g, < —e then g, < 0 for at least ne/| 4| stages prior to n.
But at each such stage ¢, = ¢* hence (denote n’ = n — ne/|A|)
Prob{g, <0, ---,8,<0,8.,,<0,1 >k + 1}
éPl’Ob{gn: <0, "’,gk<0’l>k+ 1}
< (1 — wye*)Prob{g, <0, ---,8, <0,1> k}
and it follows that
(3.5) Prob (g, < —e A 1> n} < (1 — wye?)=/.
We have thus obtained the following analogue of (2.6):
(3.6) Prob, .{8, < —eAl>n}<e¢ forall r andnz N,

(and this implies that Prob {1 > n}E{g,|1 > n) = —|4| - ¢ —¢).
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As for (2.7), the corresponding analogue is
3.7 Prob, . {l < n}E, {g,|1<n}= —¢ forall = and n = N,.

We sketch its proof. Let ¢ = (1 — w,e?)'# and assume, w.l.0.g., that ;3 ¢ <
¢/|4]. Let N, = N,/e. Now

Prob {I < n)E(g, |1 < n}
. k—1, —k—1
— 32, Prob{l = k}<_n_E(g,,|1 = k) + ’i__n__b,.k).

But, by (3.5)

Prob {1 = k}E(g,|1 = k) = —|A4| - Prob{g, < —e Al =k} — ¢Prob{l = k}
> —|A|lg** — ¢ Prob {l = k}.

Hence

k—1_._
Diewn Prob{l = K 2" E@ |1 = k) 2 — 4| i ¢ — e = —2.

On the other hand, if n = N, and k < N, then (k — 1)/n < ¢; hence

y, Prob{l = K} = L B, (1= k + 1) < ¢4 .
n

It follows that, in order to establish (3.7), it suffices to prove that

(3.8) Y&, Probfl=k"—k=1
n

b;, = —¢ forall  and n=N,.

But this may be done exactly in the same way as in the proof of (2.7), where
we showed that

Y Prob{l = k}b; = —e.

Indeed, all we have to do is to establish the analogues of (2.10) and (2.13).
The analogue of (2.10) follows at once, since all the summands have the same
sign so that multiplication of the kth summand by (n — k — 1)/n (whichis < 1)
cannot enlarge the absolute value of the sum.

As for the analogue of (2.13), this follows easily once we notice that (by (2.11))
(n—Fk —1)/n=(n—k— 1)/n. Hence

Prob{l = k' A i, = 2} - n=k-1
n
>Prob{l = kAf, =23 =k =1. (1 _ g
n
so that
. . — k-1
T horrerqury SigN (a5,) Prob{l = k A i, = 2 "__n__

n—k—1

< (1= (1= &™) T per, Prob{l 2 k Al =222

S =1 = Xumer, Prob{l =k Ai, =2}.
This completes the proof.
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