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STOCHASTIC APPROXIMATION ALGORITHMS FOR
CONSTRAINED OPTIMIZATION PROBLEMS!

By HAROLD J. KUSHNER
Brown University

The paper gives convergence theorems for several sequential Monte-
Carlo or stochastic approximation algorithms for finding a local minimum
of a function f{+) on a set C defined by C = {x: ¢i¥(x) =0, i= 1,2, ---, 5}.
f(+) is unknown, but ‘“noise perturbed’’ values can be observed at any
desired parameter x € C. The algorithms generate a sequence of random
variables {X,} such that (for a.a. w) any convergent subsequence of {Xx(w)}
converges to a point where a certain necessary condition for constrained
optimality holds. The techniques are drawn from both stochastic approxi-
mation, and non-linear programming.

1. Introduction. For each x € R", Euclidean r-space, let H(y|x) denote the
distribution function of a real-valued random variable Y with mean f(x) =
{ ydH(y|x) and variance bounded by a real number & < oo; i.e., §[y —
f(x)PdH(y|x) < é*. For some integer s, let ¢i(+), i=1, ..., s, denote real-
valued functions on R’ and define the set C ={x:¢'(x) <0,i=1, ..., s}
Loosely speaking, the problem of the paper is the development of an iterative
method for finding an element 6 € C at which f(x) is a local minimum in C; f(x)
is unknown, but for any fixed x one or more random variables Y(x) with distri-
bution H(y|x) can be obtained. If X,, ..., X, are the first (not necessarily
distinct) n + 1 parameter values at which draws from H(y|x) are made, write
the corresponding random variables as Y,(X,), - --, Y,(X,), and suppose that

(w.p. 1)
E[Y (X)X, Y(X),i=0,..-,n—1, and X,] =f(X,)
E[(Y,(X,) — fR))| X, Y(X),i =0, .--,n— 1, and X,] <&

The aim of the paper is the development of a structure for stochastic optimi-
zation algorithms (of the Monte Carlo or stochastic approximation type) which
is analogous to that used in non-linear programming. The developed structure
is quite versatile, and seems to consider the elements of the problem in a very
natural manner from both the theoretical and practical viewpoints.

ExAMPLE 1. Let x denote a vector of parameters of a drug (say the levels of
several crucial ingredients) and g(x) the known cost of producing the drug.

Received January 1972; revised September 1973.

1 This research was supported by grants from the Air Force Office of Scientific Research
(Grant No. AF-AFOSR 71-2078), the National Science Foundation (Grant No. GK 31073X),
and the Office of Naval Research (Grant No. NONR N00014-67-A-0191-0018).

AMS 1970 classifications. 62-45, 90-58, 93-60, 93-70.

Key words and phrases. Sequential Monte Carlo, constrained optimization, constrained
stochastic approximation.

713

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKGLY

®
www.jstor.org



714 HAROLD J. KUSHNER

Suppose that, at any level x, the drug is either “effective” or “ineffective”; that
is, for each fixed x we can only perform an experiment whose outcome Y(x) is
1 if the drug is effective and 0 if it is ineffective. Define f(x) = — P {Y(x) = 1}.
Find the value of x which minimizes f(x) under the constraint that the cost g(x)
is no greater than a; i.e., with constraint ¢(.) where g(x) = §(x) — a < 0. The
form of f(.) may not be known, but the value §(x) is assumed to be calculable

for any x.

ExamrLE 2. Let Z,,, = F(Z,,u,,¢,), n=0,1, ..., N — 1, represent the
dynamics of a control system with initial condition Z,, random disturbances
{¢.}, and open loop controls {u,} (the u, are vectors with real components, not
random variables). For some suitable real-valued functions g,(., +),i =0, - -,
N — 1, minimize
(1) Sy + -+ uy_ys Zo) = E Y5 92 uy)
over the u; and Z,, subject to the constraint that the total “fuel” consumed,
225" |u,|, not exceed a given value. For any fixed Z, and control sequence {u,},
we assume that samples of };73! g,(Z;, u;) can be observed, and that the exact
amount of fuel consumed can be calculated, but the average cost (1) is usually
extremely difficult to calculate.

The paper is concerned with the case where f(x) may have many stationary
points. The methods to be discussed yield a sequence of iterates X, X, - -,
X, - -+ which converge to a point or to a set in C where certain necessary con-
ditions for the constrained optimality are satisfied. In this sense, the result is
analogous to those usually obtained in deterministic constrained optimization
theory, where it is usually proved that an algorithm generates a sequence of
points, any convergent subsequence of which converges to a point where a
necessary condition for optimality holds. The type of constrained stochastic
problem discussed here arises frequently in practical problems.

The methods to be discussed are stochastic versions of the basic non-linear
programming methods of feasible directions (to be described in the next section).
Consider briefly a common form of the deterministic problem of constrained
optimization, where f(x) can be calculated. Let X, denote the nth estimate of
a point where a necessary condition for optimality holds. To calculate X, ,,,
we search in a direction &, from X,, where 4, is selected according to a given
rule. Define 2, = inf{1: X, + 2k, ¢ C,2 = 0}. A one-dimensional search for
the minimum of f(x) on the segment /,* = {x: x = X, + 24,,0 < 2 < 4,} is
made. In any procedure which is to be implemented on a computer, each one-
dimensional search procedure cannot continue until a minimum in that direction
is found, but must stop in a finite time, yielding the point X, ,, which is not
usually the location of the directional minimum. The stopping rule can be such
that, for example, the reduction f(X,,,) — f(X,) is at least a predetermined
function of Vf(X,), the gradient of f(.) at X,, or it can be such that X, is within
¢, of the minimum of f(x) on /,*, where ¢, — 0 as n — co. The rules must be
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such that the X, converge to a desirable point. Since it usually is impossible to
guarantee (in the absence of strong convexity conditions) that the X, converge
to the global—or even local minimum—we satisfy ourselves by proving con-
vergence to a point where a necessary condition for optimality holds.

Stochastic counterparts of these rules will be develepod. The procedures to
be discussed are fairly general. Within their general type, some are certain to
be preferable and, hopefully, future experimental work will point these out.
While the Kiefer-Wolfowitz procedure of stochastic approximation (SA) cannot
be used in its classical form (say Dvoretsky (1956), Blum (1954)), due to the
constraints, it is possible to use truncated forms of SA for the one-dimensional
searches. The types of results which such use gives have motivated conditions
(A4), (A6) in Section 2. Yet these conditions seem very natural in view of the
nature of the problem at hand and the somewhat related conditions which are
sometimes used for the deterministic problem (see, e.g., Zangwell (1969), Polak
(1971)), and either they or closely related conditions would undoubtedly hold
for useful non-SA methods.

Indeed, our point of view towards SA is that its main use is in illuminating
the conditions that should be satisfied by other, potentially more useful, minimi-
zation methods.

Section 2 discusses two stochastic methods of feasible directions, and Section
3 shows that a form of SA satisfies (A4), (A6). A general discussion of deter-
ministic feasible direction methods can be found in Topkis and Veinott (1967),
Zangwell (1969), and Polak (1971).

2. Feasible direction methods. A stochastic version of the feasible direction
method of Topkis and Veinott (1967) (see also Polak (1971), pages 150-159) will
be developed. It will sometimes be convenient to use the notation ¢°(+) for f(.).
Assume that

(Al) f(-) has continuous second derivatives.
(A2) The g¢i(+),i=1, ..., s, have continuous first derivatives and C = {x:
¢'(x) £0,i=1, ..., s} is compact and is the closure of its interior.

Let % denote any value of x which minimizes f(.) on C, let G denote the
hypercube G = {h: |h| < 1,i=1, .--,r} where h = (h, ..., h"), define the
function uy(., <) on R" x G by (where (., «) denotes the inner product in R")
(22)  uy(x, k) = max {{Vg'(x), k); ¢°(x) + (Vg'(x), B), i =1, - 5},
and define
(2b) u(x) = min, ., u4(x, k) .

The set G can be replaced by any compact convex set in R” which contains the
origin in its interior. Note that #(x) < 0. Under (Al)—(A2), u(¥) = 0 (Polak

(1971), page 154).
For any fixed x, the minimum # in the linear program (3) is #(x) and any
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minimizing vector 4 in (3) minimizes (yields u(x)) in (2b) (Polak (1971), pages
150-159). The minimizing £ may not be unique.
Minimize u subject to

—u + (Vg’(x), by < 0;
3) —u + q'(x) + (Vg'(x), By < 0, i=1,.055
: —1<k<1.

As is common in the analysis of deterministic algorithms, we are interested
in iterative methods which estimate any point % at which the necessary condition
" u(%) = 0 holds. Let X, denote the nth estimate of a point % at which u(%) = 0.
Then the deterministic method uses any value of 2 which minimizes in (2b) or
(3) for x = X,, as the direction® ,. Then (usually) a one-dimensional search
(for X,,,, a “better” estimate of x) is conducted in C along 4, through X,, until
it can be guaranteed that X, , is either sufficiently close to the minimum in the
search direction, or that f(X,,,) — f(X,) is bounded below zero by some quantity
which depends only on the slope (V¢°(X,), #,>. Then a new direction of search
is selected, etc. The stochastic scheme is developed somewhat analogously,
except, of course, (3) cannot be solved exactly since V¢°(X,) is unknown, and
only “noisy” estimates are obtainable.

Suppose that the random variable 4, (a random vector with values in G) is
the random direction of search which is used on the nth cycle (to calculate X, ,,)
in the stochastic problem. Let <Z,* and <7, denote the s-algebras generated by
{Xi, h3i=0,---,n}and {X;; h,i=0,---,n — 1, and X,}, resp.

Define the conditions (A3), (A4) as follows:

(A3) Let d)(+), d,(+) denote some real, non-decreasing and positive functions
on (0, o0), and n,(+) a positive integer valued non-increasing function on (0, o).
Let £, satisfy (P_, denotes the probability conditioned on the g-algebra <2)

“4) P Juo(Xas By) = —0,(—u(X,))} 2 0x(—u(X,))
a.e. on the w-set where n > n(—u(X,)).

(A4) Let
) Eg rf(Xar) — f(X,) = Ba

where E 37 |8,] = B < oo. Let g(-) be a real positive non-decreasing function
on (0, co0) and ¢,(+) a positive integer-valued non-increasing function on (0, oo)
so that,
() E g+ f(Xor) — f(Xa) £ —9(—u(Xos 1)) + B
a.e. on the set where

n = c(—u(X,, h,)), uy(X,, k) <O0.

2 h, may not be a unit vector, but this is unimportant since we could also write the direction
as ha/|hs| where || is the Euclidean norm.
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If h, is chosen according to (A3) and 2, = 0, then define X, ,, = X, and choose
h,,, according to a rule satisfying (A3).

(A3) relates u,(X,, h,) to u(X,), and is a relation concerning the choice of
direction h,. (A4) relates, statistically, the improvement per cycle in Eq°(X,)
to the “directional term” u,(X,, 4,). Thus each step of the procedure is broken
down into two natural components. The first selects a direction (satisfying
(A3)). The second searches in that direction using a method satisfying (A4).
(A4) holds when the one-dimensional search procedure is a form of truncated
SA, at least if f(.) is convex. See Section 3.

THEOREM 1. Assume (A1)—(A4). Then u(X,)— 0 w.p. 1 and u(x) = 0 for
every accumulation point x of {X,(w)} w.p. 1.

Proor. Define the real-valued function m,(+) on (0, ) by m(e) =
max [¢,(9,(¢)), ny(¢)]. Select an arbitrary real e > 0. Let n be an integer = m(e).
Then (A3) gives, a.e. on {u(X,) < —e},

P, {u(X,, b)) < —5y(e)} = 0y(c) -
Also, (A4) gives, a.e. on {uy(X,, b,) < —d,(c)},

E 5+ f(Xar) — f(Xs) = —9(0:(¢)) + Ba -
Thus (A3) and (A4) together yield (/, is the indicator function of the set A)

E[f(Xass) — f(X)]

= '_'Eg(al(e))liu(X“)S—e)I(un(X”,h”)S—Jl(e)) + EB,
—Eg(al(e))lmx,,)s—e)Ea,,](u‘,(x,,,h,,)s—sl(e)) + EB,
—Eg(0.(¢))0x(M uixps- + EBa -

The second inequality follows from (A4), and the last from (A3). Upon sum-
ming the final inequality, we get

Ef(X,) — Ef(Xp,0) = —E X120 0 9004(6))0x(e) juixps—a + B -
Since the left-hand side of the above inequality is uniformly bounded in n,
u(X,) < —e¢ only finitely often w.p. 1, and, hence u(X,)— 0 w.p.1. Since
u(X,) — 0 w.p. 1, there is a null set N so that for @ ¢ N, the continuity of u(+)
and the compactness of C imply that u(x) = 0 w.p. 1. for any accumulation
point x of {X,(w)}. [

Remarks on the choice of h,. (A3) requires only that if #(X,) < 0, then with
some nonzero probability, u(X,, k,) is negative, the negativeness and the prob-
ability being bounded away from zero (for sufficiently large n) by quantities
dependent on x(X,) but not on X,, A, or past data.

As the following argument shows, a purely random choice of 4, can satisfy
(A3). Let h be selected according to a uniform distribution on the surface of
the box G, with {&,} an independent sequence of such #’s. By the uniform
continuity of #(+) and # (-, ») on C and C x G resp., there is a positive and

=
=
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non-decreasing function d,(+) on (0, co0), such that for any ¢ > 0, and for all x
for which u(x) < —e

™ P{uy(x, B) < —¢f2) Z 3(s)

(where P, denotes the probability with x a fixed number). This yields (A3).

It is shown in Kushner (1972a), pages 2-11, 12, that, under certain conditions,
(A3) also holds if we let 4, be the minimizing 4 in (3), where we put x = X,
and a “noisy” finite difference estimate is used for Vg°(X,).

Another feasible direction method. The method of this section is a stochastic
analog of Polak’s (1971, pages 159-176) version of a method of Zoutendijk (1960).
For any x € Cand ¢ > 0, define the index set J,(x) = {0} U {i: ¢i(x) = —e}. J(x)
consists of the indices of ¢°%(+) = f(+) and of the “‘c-active” constraints. Assume
(A1), (A2). Define the real-valued functions 7., «, +) and y(+, +) on [0, c0) x
R™ x G and [0, o) x R" resp., by

(8) ro(es X, B) = maxqe .. (V4'(x), £
(9) )’(6, x) = minheG 70(6, X, h) *

If £ minimizes f(x) in C, then 7(0, £) = 0. Also, for any x and ¢ > 0, 7(¢, x) is
the minimizing 7 in the linear program: minimize y subject to

(10) —7 + (Vgi(x), k) £ 0, iel(x), heG.

Again, our interest is in stochastic schemes for determining a sequence {X,} so
that (w.p. 1) any accumulation point x of { X, (w)} satisfies the necessary condition
7(0,x) = 0.

A form of the deterministic procedure is as follows. Let the nth iterate X, be
given. Fix ¢, > 0 and 8¢ (0, 1) and solve (10) with ¢ = ¢, and x = X,. Let
h(e, X,) denote any vector £ which minimizes in (10) (or, equivalently, in (9)).
If 7(¢p» X,) < —¢,, then choose X, ,, as a value of x which minimizes f(x) on the
line segment in C which goes through X, in direction A(e,, X,). If 7(s, X,) >
—¢,, find the least value of k (by solving a sequence of linear programs (10))
for which y(B*,, X,) < — B*,; then minimize f(x) in the corresponding direction
h(B*ey, X,). Then any accumulation point x of {X,} satisfies (0, x) = 0. Itis
not actually necessary to minimize f(x) in each of the one-dimensional searches.
As for the previous method, it is sufficient to choose an X, so that f(X,,,) —
f(X,) is bounded below zero by some suitable function of the gradient of f(+) at
X,.

It is not required to consider all the constraints at each step, only the “e
active” ones, a definite advantage in the deterministic case, and probably an
advantage in the stochastic case also.

For the stochastic method based on the necessary condition 7(0, x) = 0, let
k,, (again) denote the random direction of search on the nth cycle (to compute
X, ). The assumptions (AS5), (A6) below will be assumed in lieu of (A3), (A4).
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In (AS), (A6), the functions d,(+), ny(+), ¢,(+) and g(+) satisfy the same conditions
which we imposed on these functions in (A3), (A4).

(AS) For each ¢ > 0, let h, satisfy P, {ry(e, X,, h,) = —0,(¢)} = 0y(¢) a.e. on
the set where n = n(—7(e, X,)) and 7(¢, X,) < —e.

(A6) For some random sequence j,’ satisfying E 35 |8,’| = B’ < oo, let the
one-dimensional search procedure satisfy (5) for 8,’ replacing g, and also, for
eache¢ > 0,

(11) E g +f(Xpi) — (X)) = —9(=71oes X5 1)) + B4
a.e. on the set where
(12) n = c(—7e X5 1)) s 7o(es X, 'h,) < 0.

If h, is chosen by a rule satisfying (AS) and 2, = 0, then set X, ,, = X, and
choose 7, ,, according to a rule satisfying (AS5).

THEOREM 2. Assume (Al), (A2), (AS5), (A6). There is a null set N so that for
o & N, every accumulation point x of the sequence {X,(w)} satisfies y(0, x) = 0.

Proor. Let N,(x) denote the set C n {y:|y — x| < p}. We will actually
prove that if (13) holds, then y(0, X) = 0.
(13) P{X, e N (%) infinitely often} > 0, each p > 0.
This will yield the theorem, as follows: C is compact. Define R, by R, =
{x:xeC,1(0,x) =0}. First we show that R, is compact. Let x,€R, and
x, — x. If ¢'(x,) = 0 for a subsequence {x, }, then g¢*(x) = 0. Thus Jy(x) D
NZ-: Us_w Jo(x,). Then the continuity of the Vgi(.) yields

0 > ming max,,,, (Vg(x), kY = lim, ming max, ., <V4(x.), £
g hmn minG max.fo(z,‘) <ti(xn)’ h> =0 ’

which implies x € R,. Thus R, is compact.

Assume that 7(0, ) = 0 if (13) holds. Then for each 6 > 0 there is, for each
xeC — Ry, ap,e(0,d)sothat X, e N, (x) only finitely often w.p. 1. Ford > 0,
let D, denote the compact set

D, = {x:min, . |x — y| = 0, xeC}.

Then there is a finite collection x; --- x;, (in D,) so that D, is covered by the
sets NPGi(xi). Thus X, € D, only finitely often w.p. 1. Thus, since {D,, r =1,
2, ...} is a non-decreasing sequence, there can be no accumulation point
(w.p. 1) of {X, (@)} in D = U7, Dy, This proves the assertion since C — D =
R,. Thus, we only need prove that (13) implies that (0, x) = 0.

Let % e C satisfy 7(0, ) < —v, < 0, and let (13) hold. (The argument from
this point to (15) is the same as in the deterministic case. The rest of the proof
shows that (13) is inconsistent with », > 0; hence 7(0, %) = 0, as desired.) For
each v > 0, there is a p,(v) > 0 for which x e N, (%) implies that

(14) Iming max,, . <Vq'(x), £ — 1(0, %)| < v/2.
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Next we show that there are some v, > 0, p, > 0 so that J,(x) C J(%) for
x€N,(%)and v < v,. (This is equivalent to showing that if ¢'(x) = —v = —u,
for x € N, (%), then ¢'(%) = 0.) If ¢°(x) = O for all i, we are done. If not, for
each i¢ J(%), there exist (by continuity of ¢*(+)) 6, > 0 and a; > 0 such that
g'(x) < —a, for all xe N, (%). Let p, = min {5;}, and v, = min {a,;}. If i ¢ J(X)
and x € N, (%), and if v < v,, then i ¢ J,(x).

Next define v = min (v,, v,), o = min (p,(v), p,). Note that y(e, x) is non-
increasing as ¢ decreases, since as ¢ decreases, the number of “e active”
constraints is non-increasing. Using this fact together with (14) and the (just
proved) fact that J,(x) C J,(%) for x € N, (%) yields, for x € N, (%),

(15) 1(v/2, x) < 7(v, x) = ming max,, , <Vg'(x), #)
< ming max, ;, {Vg'(x), By < —v/2.
Since, by (15), x € N (%) implies that y(v/2, x) < —w/2, we have that (13)
implies that
(16) P{r(v/2, X,) < —v/2 infinitely often} > 0.
Define m,(+) by m,(e) = max [n,(¢), ¢,(0,(¢))]-
Let n = my(v/2). Then (AS5) gives, a.e. on {7(v/2, X,) = —v/2},
Pa,{?’n(’”/z’ X, h,) = —0,(v[2)} = 04(v/2) .
Also (A6) gives, a.e. on {r,(v/2, X,,, h,) = —d,(v/2)},
Ea”+f(Xn+l) _f(Xn) é —9(7'0(”/2a XM hn)) + ‘Bn’ *
Thus (AS) and (A6) together yield
E[f(Xn+l) - f(Xn)]
< —E9(0,(v/2) i x pys-viard iz x b ys—aycoimn T EB,’
_Eg(al(/v/z))IG7(0/2.X”)§—v/2)EgnI{ro(v/z.th”)S-—al(v/ﬁ)) + EB,’
—Eg(al(’v/z))]qr(v/z.x,,)s—v/z)az(v/z) + Eﬂ”’ .
Upon summing the last inequality we get
Ef(X,) — Ef(Xml(v/z)) < —F Z?;:»l(u/z) 9(51(1’/2))52(”/2)](m/z,x,,)s—m) + B .

The left-hand side is uniformly bounded in n, since f(+) is bounded on C. Thus
S mom lywaxs—vm < o0 W.p. 1. Hence r(v/2, X,) < —v/2 only finitely
often w.p. 1, and, consequently, X, e N,(%) only finitely often w.p. 1. This
contradicts (13). Thus v, cannot be greater than zero and, hence (0, X) = 0. []

A DA 1

3. A one-dimensional search procedure which satisfies both (A4) and (A6).
Let {N,} denote a sequence of integer-valued random variables, where N, is non-
anticipative with respect to a sequence {Z,,n = 0, 1, - - -} to be defined below.
Let {a;,}, {c..} denote positive real sequences such that q,, — 0, ¢;,, — 0, as
n + i— co. Suppose B, > 0 is real, and that for almost all  the sequences



CONSTRAINED STOCHASTIC APPROXIMATION 721

{N()}, {a;,} and {c,,} satisfy

a7 Do Dak @y = oo, Do St (@ €y + @,)c2) < o0
and

(18) S, 2 B,.

Define the random function ¢,(+) on S, = [0, 4,] by ¢,(2) = f(X; + k,;z), and
define the random distribution function with parameter z (on ;) by H,(y|z) =
H(y|X; 4+ h;z). The ith one-dimensional search (sequentially) seeks a local
minimum of ¢,(z) on S, by taking N, steps of a type of Kiefer-Wolfowitz pro-
cedure with parameters {a,,, ¢,,, n = 0, 1, ...}. The iterates of the ith search
will be calculated from the formula

(19) Zin,w=2}—a,DY(Z}c,),

where Z' = 0 and the real-valued random variable DY(., .) is defined below.
All observations used in the calculation of DY(z, +) must be taken with parameter
values z on the interval S, (so that X; 4 h,z will lie in C), although Z,? itself will

not necessarily always be on ;. We define
(20) X=X + ht[vai]si
where

[Z]s, =2 if Zes,

= 1 if Z>2,.

DY(Z,}, c,,) will be a “noisy approximation” to the derivative of ¢,(+) at Z,?,
if Z,' e S;, or to the derivative of ¢,(+) at 0 or 4, resp., if Z,'! < 0 or Z,! > 0,
resp.

The definition of DY(., ).

Case A. Let Z,'e S,and ¢;,, < 4. If 4, — Z,* = ¢,,, define
(21) DY(Zni’ cin) = (an+l - an)/cin ’
where Y},,, and Y, are drawn from H,(y|z) with parameters Z,* + c,, and Z,¢,
resp. If 2, — Z,' <c,,, but Z,* = c,,, then use (21) but with Yi,,, and Yi,
drawn from H(y|z) with parameters Z,%, Z,* — c,,, resp. If 2, — Z,' < ¢,,,
Z,' < ¢, use (21) with parameters 2,, 4, — c,,, resp.

Case B. Let Z,'¢ S; and c,, > 2,. The actual finite difference interval can
now be no greater than 2,, but if 2, is “too small too often,” the “noise effects”
may not be summable. Thus, we use the procedure: Define r,, = min {r: c,,/r <
4;, r a positive integer}. Take 2r}, observations {Y}i;j=1, ...,r},} with
parameter 2, and {Y%,7;j =1, ..., r},} with parameter 0. Define

‘ [ A ;
DY(Z, c) = o T (Vi — Vi) A -
in
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Note that the variance of DY(Z;‘, ¢;x), conditioned on all past observations, is
bounded above by 24%/ci,, which is the same bound that we would get for Case
A.

Case C. If Z,' > 4, define DY(Z,, c,,) by DY(4,,c,). If Z,i <0, define
Dby(z,t, c,) by DY(0, c,,).

THEOREM 3. If we assume (A1)—(A2) and (17) to (20), and that f(.) is convex,
then (A4) and (A6) hold.

The proof, which is straightfoward, but rather tedious, will be omitted. Details
can be found in Kushner (1972a, Part 2, Section 3). The proof uses various
estimates from Kushner (1972b) for quantities of the type E,_+f(X,,,) — f(X)),
where X;,, is (as here) defined as the terminal iterate of a (truncated) stochastic
approximation with initial value X,. It is not required that f(.) be monomodal.

In Kushner (1972a part 2, Theorem 3) the estimates required for (A4), (A6)
were obtained for the three cases:

(¢:,.(+) denotes the derivative with respect to z)

I ¢..0)=0, $i(2) 2 0;
I ¢,.0) >0, 6. (4) =0, #,(+) non-decreasing on S, ;
) 6,0 =0,  ¢:,.(4)<0.
Then B, and 8, of (A4) and (A6) are proportional to
(22) Eg + [Z25" (@inCin + ala/cl)] = Bi .
Also, it is shown that if ¢, (0) £ —e < 0 and 4, = ke for some real k (inde-

pendent of i), then there are real Q, > 0, k, < oo, so that for large enough i
(depending on ¢),

(23) Egn+f(Xn+1) —f(X,) £ =0 + kzﬁ-t .

These results are just what is needed to prove (A4), (A6). (I)—(III) do not
cover all cases, but they do hold if f(+) is convex. There is an error in the
statement of Theorem 4 in Kushner (1972a) (which is Theorem 3 here). (I)—
(IIT) do not always hold under the conditions of f(+) given there, but they do if
f(+) is convex. The proof requires no further change.

4. Extensions. A further discussion of the stochastic method of feasible di-
rections, with further algorithms, and some numerical results appear in Kushner
and Gavin (1974). A saddle point method for treating the problem where the
g'(—) can only be observed in the presence of noise appears in Kushner and
Sanvicente (1973).
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