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LINEAR FUNCTIONS OF ORDER STATISTICS WITH
SMOOTH WEIGHT FUNCTIONS!

By STEPHEN M. STIGLER
University of Wisconsin, Madison

This paper considers linear functions of order statistics of the form S, =
n~t 3 J(if(n 4 1))Xis). The main resultsare that S, is asymptotically normal
if the second moment of the population is finite and J is bounded and con-
tinuous a.e. F-1, and that this first result continues to hold even if the un-
ordered observations are not identically distributed. The moment condition
can be discarded if J trims the extremes. In addition, asymptotic formulas
for the mean and variance of S, are given for both the identically and non-
identically distributed cases. All of the theorems of this paper apply to
discrete populations, continuous populations, and grouped data, and the
conditions on Jare easily checked (and are satisfied by most robust statistics
of the form S»). Finally, a number of applications are given, including the
trimmed mean and Gini*s mean difference, and an example is presented
which shows that S, may not be asymptotically normal if Jis discontinuous.

1. Introduction. The class of statistics which are linear functions of order
statistics, which appears to have been first studied extensively by Percy Daniell
in 1920 (see Stigler, 1973b), has received considerable attention in recent years,
including much work looking into conditions under which such statistics are
asymptotically normal. A principal motivation for this research has been that
linear functions of order statistics such as S, = n~* 3] ¢,, X|,, often exhibit desira-
ble robustness, particularly to heavy-tailed distributions or outlying observations,
and these statistics are fairly easy to calculate. However, despite the fact that
the very consideration of the robustness of a statistic implies an imprecise knowl-
edge of the underlying population distribution, most of the published work on
this problem has put quite severe restrictions on the population distribution func-
tion (virtually requiring the existence of a continuous density with smooth tails.)
The strongest results in this vein are those given by Chernoff, Gastwirth, and
Johns (1967), by Stigler (1969), and by Shorack (1969). The results of these
three papers are of approximately equal strength, despite the use of three com-
pletely different methods of proof.

The result of Stigler (1969), as given by Theorems 2 and 4 there, can be sum-
marized as follows: S, is asymptotically normal (ES,, ¢%(S,)) if (1) the extremal
order statistics do not contribute too much to S, (2) the tails of the population
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distribution are smooth and the population density is continuous and positive
over its support, and (3) the variance of S, is of the same order as the variance
of n=* 33 |c;u|X,;,. It is the purpose of this present paper to show that if the very
weak condition (3) (which, for example, permits any system of positive weights) is
replaced by the stronger condition that the weights are given by c,, = J(i/(n + 1)),
where J is a smooth bounded function, then (2) can be dispensed with entirely,
and (1) is automatically satisfied. What is more, we shall see that this result
continues to hold when we drop the assumption that the original (unordered)
observations are identically distributed, retaining only their independence.

The advantage of such a result lies in its wide applicability. The conditions
are remarkably easy to check, and the theorems apply to almost every robust
statistic with a smooth weight function. In particular, the conditions permit
samples from discrete populations and the use of grouped data, and a wide variety
of nonidentically distributed observations. This lack of restriction on the popula-
tion distribution is particularly appealing from the point of view of robustness.
The force of the conditions is taken away from the population distribution, where
verification is difficult, and placed on the weight function, where verification is
easy.

In addition to results on asymptotic normality, we give here asymptotic for-
mulas for the mean and variance of S, which, for the first time, are shown valid
for fairly arbitrary distributions. The key to the asymptotic treatment of o%(S,,)
is Proposition 5, which permits a fairly simple proof for distributions without
densities or non-identically distributed variables. These results should permit
the evaluation of the loss of efficiency due to grouping for the statistics S, (see
David and Mishriky (1968), for example).

In Section 2, a number of results (some known) which are needed in subsequent
proofs are collected, and the paper’s notation introduced. Section 3 treats the
independent identically distributed case. The asymptotic normality results of
this section overlap those of Shorack (1972), where a stochastic process approach
is used. Shorack permits some unbounded weight functions, while we do not,
but his moment condition is slightly stronger than ours for some of the statistics
we consider. Also, it is doubtful that unbounded weight functions will prove
useful in robust inference (because of the resulting sensitivity of S, to outliers).
This section also contains proofs of asymptotic formulas for the mean and vari-
ance of S,; Theorem 4 gives conditions under which S, is asymptotically normal
about its asymptotic mean. Section 4 extends all of the results of Section 3 to
the case where the observations are independent but not identically distributed.
Finally, Section 5 presents a number of applications and examples; the final
example (5.6) shows why the theorem of Moore (1968) is false as stated, why
a valid theorem must require that J and F~* possess no common discontinuities.

2. Preliminaries.

2.1. Notation. The most general situation we shall consider will be described
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by the following notation. Foreachn > 1, let X,,, X,,, - - -, X,, be n independent
random variables with (possibly different) cumulative distribution functions F,,,,
F,,, -+, F,,, where F,(x) = P{X,, < x}. For the present, nothing at all is as-

sumed about the {F,,}: they may be discrete, continuous, or any combination
of the two. Let X, < X, < --- £ X,,, be the order statistics of the sample

Xins ++» X,,. We shall be concerned with statistics of the form
M So= - Btnd (-0) X
n B n+1

where J is a suitably chosen weight function. We note in passing that the de-
pendence of each X, on n has been suppressed for convenience, and that this
notation differs slightly from that of Stigler (1969) where the X,,’s represented
order statistics. In the special case that the X,,’s are identically distributed for
all i, n, we shall denote their common distribution function by F. Whenever
an inverse of a cumulative distribution function appears, it may be taken as the
left continuous version.

2.2. Some useful results. In this section we shall present a number of results
which will provide the basic tools for the proofs that follow. This section may
be skimmed and referred back to when necessary.

The point of departure for our attack will be the same as that used in Stigler
(1969); that is, we shall use Hajek’s projection lemma to find a sum of inde-
pendent random variables which well approximates S, in mean square and show
that this sum and S, are mean square equivalent. For completeness, we restate
this lemma as Proposition 1.

ProrosiTioN 1. (Hajek (1968)). Let Z,, Z,, ---, Z, be independent random
variables and . be the Hilbert space of a.s. equivalence classes of square integrable
statistics depending on Z,, - - -, Z,. Let £ be the closed linear subspace of .5 con-
sisting of statistics of the form L = }17_,1(Z,), where the |, are functions such that
El}Z) < oo. Then if S e€ S, the projection of S on £ is given by

(2) §=3r,ES|Z)— (n— 1)ES.
Thus

3) ES = ES

and

4) E(S — S)* = %(S) — a*(S) .

Our approach in this paper differs from that used in Stigler (1969) in that here
the proof of mean square equivalence of the statistic and its projection will be
accomplished directly through asymptotic expressions for their variances, rather
than through the covariances of the individual order statistics as in the previous

paper.
As Proposition 1 will require that the second moment of S, be finite, there



LINEAR FUNCTIONS OF ORDER STATISTICS 679

will be cases where the following proposition (given by Bickel (1967) for the
continuous identically distributed case) will be useful.

PROPOSITION 2. Suppose that for some ¢ > 0,

x[1 — F,(x) + F,(—x)] >0 as x— oo, uniformly in i and n.
Then for any finite k > 0 there exists a finite r (depending only on k and ¢) such that
EXy*<ooforr<i<n-—r.

Proor. Integration by parts gives
EXt,) = k{5 x*'P(X ;) > x)dx — k §°, x*'P(X,;, < x)dx.
Now for any fixed x, ‘
P(Xy) > %) £ Dhoninn (N1 — Gy(x))717
where G,(x) = min{F, (x): 1 < s < n}. Therefore
§ X P(Xgy > %) 8 S Dhenoins () 55 (1 — Gy(x)) dx
which is finite, at least for i < n — k/e, by the condition of the proposition.

Similar reasoning applied to the second integral in the above expression for EX%,
completes the proof. []

In order to describe the projections X, of the order statistics and their covari-
ances, we shall need some further notation. For any fixed n, let P7(y) =
P(exactly i — 1 of X,,, + -+, X4y s Xy -+ +» X, are < y) be defined for i =
2,3, ...,n—1.

ProrosiTiON 3. Suppose E(X?,) + X?%;)) < oo, where 1 < i, j < n. Then the
projection of X, (as defined by (2)) is given by
) X, =X 5= Lyex, 1 Po(y)dy + R
where h is a constant (depending on i, n, and {F,,}), and
(6) Cov (X, X))
= k=1 § % § 20 [Fra(min (y, 2)) — Fi(3)Fen(2)1P5(y)Pi(2) dy dz .
Proor. For any fixed n, let Y,;, < ... < Y,,_, be the order statistics of X,

Xons =+ o5 Xo_1,0o and let Hy(x) be the distribution function of Y ;. To begin with
we find E(X,,| X,,). Now for 1 < i< n,
Xy = min(Y,), X,,) — min(Y,_y,, X,,) + Yy, .
So E(X,;, | X,, = x) = E[min(Y;,, x) — min(Y,,_,,, x)] + constant. Integration
by parts gives

E[min(Yy,, x)] = §i (1 — Hy(y))dy — {2 H(y)dy ~ for x =0

=x—§*, H(y)dy for x < 0.

Since H;_,(y) — Hy(y) = P}.(y), we find

E(’Y(z) I Xon = X) = so—ow I[y<z] P::Ln(y) d}’ + constant .
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A symmetric argument gives
E(Xi | Xin = %) = §20 Ityc1 P2(y) dy + constant , k=1,...,n,

and (2) implies (5). Equation (6) then follows from the independence of the X,
Fubini’s theorem, and the fact that

Cov(liy<xyr fie<xy) = Frn(Min(y, 2)) — Fiop(y)Fin(2) - [
We remark that in the identically distributed case (F,, = F all k, n),

Pi(y) = G2DFQ) (1 — FO),
and (6) can be written explicitly in a very simple form.

It will later prove convenient to deal separately with-the two extremal order
statistics. The following result will imply that their contribution to S, is
negligible.

PROPOSITION 4. Suppose that for some distribution function G(y) of a random
variable Y with EY* < oo it is true that whenever y < —M, F,.(y) < G(y), and
whenever y = M, F,.(y) = G(y), where M is some finite constant. Then n—'E(X?, +
X2,) —0asn— oo.

Proor. It is clearly enough to prove the result for the case F,, = G all k, n.

Then we have (by integration by parts)
nlEX:, =20 xn7}(1 — G(x)*)dx — 2§, xn~'G(x)" dx .

But n}(1 — G(x)") — 0 and n~'G(x)" — 0 as n — oo for each x, and since n=*(1 —
G(x)*) £ 1 — G(x) and n~'G(x)" < G(x) for all x, it follows from the Domi-
nated Convergence Theorem that n~'EX?, — 0, because {y x(1 — G(x)) dx and
{°., xG(x) dx are finite by hypothesis. n~'EX}, — 0 by a symmetric argument. []

The simplicity of a number of our later derivations depends on the representa-
tion of the covariance of two random variables given by the following proposi-
tion. This result, together with a short proof, is given in Lehmann (1966), where
both are attributed to Hoeffding.

PROPOSITION 5. Let X and Y be any two real-valued random variables with joint
distribution given by F(x, y) = P(X < x, Y < y) and marginal distributions G(x) =
F(x, 00) and H(y) = F(c0, y). Then if E(XY), E(X), and E(Y) exist,
™) Cov (X, ¥) = §Z. 2. [F(x, y) — G(x)H(y)] dx dy .

We will also need the following fact in later proofs.

ProprosITION 6. (Esary, Proschan, and Walkup (1967)). For any x, y,i,j,n,
{Fia)}> we have P(X;, < x, X;, £ J) = P(X;;, = x)P(X;, = y)-

3. The independent identically distributed case. We shall now consider the
important special case where all of the independent random variables {X,,} have
the same distribution; that is, F,, = F, all k, n. To conform with standard nota-
tion we shall, for this section only, consider these random variables as a singly
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indexed sequence X, X,, -.., X,, -... Then each X; has distribution function
F(x), and X, represents the ith order statistic among X, ..., X,. As before,
we make no assumptions yet about F.

Our main aim in this section is to present an extremely simply stated theorem
(Theorem 2) which is nonetheless of sufficient generality for most applications.
Our method of proof will be fairly straightforward. We wish to prove that S, =
n=t 3ir_ J@i[(n + 1))X,, is asymptotically normally distributed. Because the ex-
pressions for X, (the projection of X,,)) for i = 1 or n are slightly different from
(5), it will be convenient to consider

— 1 n—1
T, = - 0 () Koo
rather than S,. That S, and T, are asymptotically equivalent in mean square
will follow from Proposition 4. Theorem 1 below and Proposition 1 will then
allow us to conclude that S, and 7', are asymptotically equivalent in mean square.
Theorem 2 will then establish the asymptotic normality of 7, thus of S,.

THEOREM 1. Assume that E|X,|* < oo, and that J(u) is bounded and continuous
a.e. F~1. Then

(8) lim,_, ne¥(T,) = o*(J, F)
and
) lim, _, ne*(S,) = o*(J, F),

where
(10) &, F) = §=., §2. J(F(x))J(F(y))[F(min (x, y)) — F(x)F(y)] dx dy .

Proor. We first prove (8). Recall from (6) of Proposition 3 that for the i.i.d.
case we have

Cov (X, X3) = 1§ 2. [F(min (x, y)) — F(x)F(y)]Pix)P;(y) dx dy
where
P(x) = ("ZHF(x)"Y(1 — F(x))** for 1<i<n.
Then
no¥(T,) = §2. §=. [F(min (x, y)) — F(x)F(7)1Q.(x)Qu(y) dx dy ,
where

0.(x) = 213V () Pu)

Now by the Bernoulli weak law of large numbers, Q,(x) — J(F(x)) for every x
such that J(u) is continuous at ¥ = F(x) and 1 > F(x) > 0. Since |Q,(x)| <
sup |J(x)| and

Zw § 2o [F(min(x, y)) — F(x)F(y)] dx dy = o*(X))
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(by Proposition 5) is assumed finite, it follows from the Dominated Convergence
Theorem that ne*(T,) — o*(J, F).
In order to prove (9), let

Gi(x) = P(X,;, = )
Giji(x,y) =PXy, = x, X;, =)
Then

ne*(S,) = n' 3 ?=1J<n _|l_ 1)-’(;*%) Cov (X), Xij) »

and by Proposition 5,
Cov (X, Xij) = §Z0 §2 [Gis(x, y) — Gux)65(y)] dx dy

so
no’(S,) = {2, {2 H,(x, y) dx dy
where
H(x5 ) = 17 Bt Tgead (7) (-5 16t ) = G9G,001 -

We first claim that
H,(x, y) — J(E(x))J(F(y))[F(min (x, y)) — F(x)F(y)]

for almost every x and y, as n — oo. Without loss of generality, fix x and y such
that J(«) is continuous at u = F(x) and u = F(y). Define

B, = {(i]): lif(n + 1) — F)| < n7, [jj(n + 1) — F()| < n73.

Now G(x) is the probability that the number of X,’s less than or equal to x is
at least i, the upper tail of a binomial (n, F(x)) distribution, and similarly G;(y)
is the upper tail of a binomial (n, F(y)) distribution, while G,;(x, y) is the
joint upper quadrant probability for the two binomial variables. By applying
Chebychev’s inequality (for fourth powers) to these binomial probabilities, we
find that unless (i, j) € B,, |G;;(x, y) — G,(x)G;(y)| £ Cn~%, where Cis independent
of i and j (but may depend on F, xand y). Itthen follows that (since Jis bounded)
the terms of the double summation corresponding to (i, j) not in B, contribute
nothing asymptotically, and so (since J is continuous at F(x) and F(y)) J(i/(n + 1))
and J(j/(n + 1)) can be replaced by J(F(x)) and J(F(y)); that is,

[Ho(x, y) — 17" iy D5 JEC)EFEDNIGei(x, y) — G(x)G()]| — 0
as n— oco. But
n7t i D5 [Gii(%, ) — Gu(x)G4())]
=n" Zi=1 Z?=1C0v (I[X(i)sz]’ I[X(j)éll])
= n71Cov (L it fix g s 2071 Tix jys0)
= n1Cov (i Lx,s010 251 Dixysi))
= CoV (Iix,<o1s lix;s) = F(min(x, y)) — F(x)F(y) ,
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and we see that
H,(x, y) = JE))E()F(min (x, y) — FHF()] -
To prove (9) it only remains to show that the Dominated Convergence Theorem

can be applied. But if sup|J| = M < oo, then since G,;(x, y) = G(x)G;(y) all
i, j, x, y by Proposition 6, we have that

[Ha(x, y)| = MPn7" 32 2321 [Gus(x, y) — Glx)G5(0)]
= M’[F(min (x, y)) — F(x)F(y)]

which is integrable by hypothesis. []
We are now able to give conditions under which S, is asymptotically normally
distributed.

THEOREM 2. Assume that E(X?) < oo, and that J(u) is bounded and continuous
a.e. F-'. Then o*(J, F) > 0 implies

g<S — E(S, )) N, 1) as n— oo .
o(S.)
a*(J, F) is given by (10).

Proor. Proposition 4 implies that n(S, — ES,) and n¥(T, — ET,) are asymp-
totically equivalent in mean square, and Theorem 1 and Proposition 1 imply that
n¥(T, — ET,) and n¥(T, — ET,) are asymptotically equivalent in mean square.
Therefore, it only remains to show that n#(f, — ET,) is asymptotically normally
distributed. From (5) of Proposition 3, we can write T, — ET, = n=* 32_, Z,,,,
where

Zin = 522 (5 §% FO) = Tna) PO &y

= §26 (FO) — Lz, 2)) Cu(D) 4y »
with P,(y) and Q,(y) as defined in the proof of Theorem 1. Let

Zy = §2a (F(Y) — Lx,a)/FO) dy -
Then n~t 3i2_, Z,, and n—* 31_, Z, are asymptotically equivalent in mean square
since
(7} Dt (Ziw — Z3)) = 024 — Z))
= §2% § 2 [F(min(x, y)) — F(x)F(y)]
X[Qu(x) — JECNI[Qu(y) — J(F(y))]dxdy — 0
by the proof of (8) of Theorem 1. But the Z,’s are i.i.d. with finite variance

0’(J, F), so the Central Limit Theorem tells us that n~* 3 2_, Z, is asymptotically
normal, so n¥(T, — ET,) is also, and the theorem follows. []

In proving the asymptotic normality of S,, it was not necessary to say anything
about the behavior of E(S,) for large n. However, since statistics of the form
S, are usually employed as estimates of their expectations, the following two
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results are of interest. Theorem 4, which gives conditions under which E(S,)
approaches its limit faster than n-%, is of greater statistical relevance than The-
orem 3, which only asserts convergence. However, the weaker conditions of
Theorem 3 help illustrate the trade-off between regularity conditions and the
conclusion which is available with the present method of proof, and its simple
proof helps to illustrate the idea behind the more complex argument needed for
Theorem 4.

THEOREM 3. Assume that E|X;| < oo, and that J(u) is bounded and continuous
a.e. with respect to Lebesgue measure. Then as n — oo, E(S,) — p(J, F), where

(11) p(J, F) = §& Sy Ju) dudx — §°, §§® J(u) du dx = §3 J(u)F~'(u) du .

Proor. Integration by parts leads directly to the expression

BS) = §5 [ 17 Bt () P > 2) | dx

n 41

= [ m mrad (- ) P = x) |as.

We claim that for each fixed x = 0 such that F(x) < 1,

(12) 5t (

) P > ) = S S0 du

To see this, define a random variable Y, taking values in [0, 1] by

i —1y—1 .
P(um i) = (= PP, >0, i= 1o,

This is a probability distribution since

2 P(X ) > x) = E(Xi, I[x(i,>z])
= E(2ia 1[X,;>:e])
=n(l — F(x)),

and the left-hand side of (12) is just (1 — F(x))EJ(Y,). But P(X,, > x) is a tail
probability of a binomial (r, F(x)) distribution, and the Chebychev inequality
implies that the distribution function of Y, converges weakly to that of a con-
tinuous uniform distribution on [F(x), 1]. This gives us (12) (see Billingsley
(1968), page 31), and applying the Dominated Convergence Theorem (since
1 — F(x) is integrable for x > 0) and using a similar argument for x < 0 proves
(11). Fubini’s theorem gives the final equality. []

THEOREM 4. Assume that § [F(x)(1 — F(x))]* dx < oo and that J(u) is bounded
and satisfies Holder condition with a > % (except possibly at a finite number of points
of F~* measure zero). Then n}(E(S,) — u(J, F)) — 0, where pu(J, F) is given by (11).

Proor. Without loss of generality assume zero is a median of F; we can do
this since n[n=t 337, J(i/(n + 1)) — §3J(u) du] — 0. Integration by parts leads
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directly to the expression

BS) = §¢ [ Dt d () Py > ) Jax

n+1

gl [n-l Z;g=11<__i_> P(X,, < x)} dx .

n+1
We shall prove that the first integral equals
§6 $iw J(@) dudx + o(n7t);
the second integral can be dealt with in a similar manner. Now let
et s

= §5 §3J() dH,(u; x) dx ,

> P(X > x) — \le(z) J(u) d”} dx

where
H,(u; x) = n¥(1 — u) — n7¥ 3,0 iy P(X) > X) u = F(x)
=174 N mine PXy > %) u < F(x),
=17 Vi P(Xy = %) + a,(u) u =z F(x)
=17t Picmann PXy > X) u< F(x),

witha,(u) = n~¥[(n + 1)u] — ntu (take a,(1) = 0). Define H,*(u; x) = H,(4; x) —
a,(W) ], py- Since for every x, n, {3 dH, *(u; x) = 0, we can write I, = I, + I,
where

Ly = §¢ §5 [J(u) — J(F(x))] dH,*(u; x) dx

Ly = §7 (S J(u) day(v) + J(F(x))a,(F(x))} dx .
We shall show that both 7, and I,, — 0.

First I,,. We show that for fixed x such that J(u) is continuous at F(x),
§a [J(u) — J(F(x))]dH,*(u; x) — 0, and that this integral is bounded a.e. by
K[F(x)(1 — F(x))]*. It will then follow from the Dominated Convergence The-
orem that 7, — 0.

Now for fixed x, H,* is monotone increasing for # < F(x) and decreasing for
u > F(x), with a supremum at u = F(x). Define 4, = {u: |u — F(x)| < n~* and
0 < u < 1}. Then as in the proof of Theorem 1, Chebychev’s Inequality and J
bounded imply that

I$ [J(u) — J(F(x))] dH,*(u; x)|
= {4, V@) — J(F(x))]dH,*(u; x)| + o(1)
< 25up,c,, () — J(F(x))| - sup, H,*(u; x) + o(1) .
Now sup, |J(#) — J(F(x))| — 0 if J is continuous at F(x), and it remains to show
sup H,*(u; x) = H,*(F(x), x) is bounded. We will use the fact that for any non-

negative random variable Y, E(Y) = §¢ P(Y > y)dy = i, P(Y 2 k). Let Y,
be the number of X;’s < x (so Y, has a binomial (n, F(x)) distribution). Then
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X, = xifand only if Y, = i, and
H*(F(x); x) = 17t 300 piayinsny P(Ya = 1)
— n~4E{max (nF(x) — [(n + 1)F(x)], nF(x) — Y,)}.

Now for F(x) = .5, max(nF(x) — [(n + 1)F(x)], nF(x) — Y,) < |nF(x) — Y,],
and so
H *(F(x), x) < n7¥E|nF(x) — Y|
< (F(x)(1 — F(x)))? (by Schwarz).

Thus |§ [J(u) — J(F(x))] dH,*(u; x)] — O for a.e. x. Since
I§ V() — J(F(x))] dH,*(u; x)| < 4M(F(x)(1 — F(x)))*

for all x, where sup|/(u)| = M, the Dominated Convergence Theorem applies
and I, — 0.

Finally, we show that I,, — 0. We shall give the proof for the case where J
satisfies the Holder condition at all points u; the more general case is easily
handled by looking at I,, as a sum of integrals over intervals where the condition

holds. Consider the function
9n(X) = S J(1) da,(u) + J(F(x))a,(F(x)) ,
for fixed n and x > 0. First suppose a,(F(x)) = 0. Let U be a random variable
with a uniform distribution on [F(x), 1]. Define V, in terms of U by V, =
ilm+1)ifi — 1 <nU<Ziand [(n+ 1)F(x)] <i<n, and let V, = F(x) for
nU < [(n + 1)F(x)]. Then |U — V,| < n~* always, and we have
|9.(x)| = |n¥(1 — F())(EJ(V,) — EJ(U))|

< ni(l — F()EY(V,) — J(U)|

s n(l — F(x)) - K- E|V, — UJ"

< K(1 — F(x))nt==.
The same idea will work for the case a,(F(x)) < 0, although the “distribution”
of ¥, will be a signed measure with a small negative mass at F(x), and some
care is required at this point. We omit the details. It is clear that K can be
taken independent of n and x. Thus |g,(x)| — 0 all x, and |g,(x)| < K(1 — F(x))
integrable, so ,, —» 0. []

The condition that § [F(x)(1 — F(x))]* dx < oo is almost the same as the ex-
istence of a finite second moment. In fact, if the distribution function F has
regularly varying tails (see Feller (1966) page 268) with a finite exponent, the
two conditions are equivalent.

Theorems 1 and 2 both require that the second moment of F be finite. It is
easy to see that the proofs will not work without this condition if J puts positive
weight on the extremes, as we are dealing with mean square equivalence. How-
ever, if J puts no weight on the extremes, i.e. “trims” them, this condition can
be relaxed considerably, as we shall now see.
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THEOREM 5. Assume that for some ¢ > 0, lim,_, x[1 — F(x) + F(—x)] = 0,
and that J(u) is bounded and continuous a.e. F~. If in addition, J(u) = 0 for 0 <
u<aandl —a<u<l, then ne*(S,) — o*(J, F) (given by (10)), and if o*(J, F) > 0,

g(fn_tﬁ(i»l)_»N(o, 1) as n— oo .
o(S,)

Furthermore, the assumptions that E|X,| < oo and that § [F(x)(1 — F(x))]t dx can
be dropped from Theorems 3 and 4 and the conclusions will still hold.

Proor. The proofs of Theorems 1, 2, 3, 4 apply with little change. Proposi-
tion 2 ensures the existence of the relevant moments of §,, at least for n suffi-
ciently large, and allows us to use Proposition 1. The only change in the proofs
comes where we invoke the Dominated Convergence Theorem. But in all cases,
the following procedure allows us to pass to the limit under the integral. First,
consider the integral for F~}(a) < x, y < F~)(1 — a). Here the Dominated Con-
vergence Theorem can be easily applied. The asymptotic negligibility of the
remainder follows from a suitable bound on a binomial tail probability. As the
procedure is essentially the same in all cases, we will only illustrate its use in
the proof of (8). First, for x < F~Ya), |Q,(x)] £ M. P(W = na), where W has
a binomial (n — 1, F(x)) distributionand M = sup |/(x)|. Now from Chebychev’s
Inequality for the kth factorial moment

P(W > na) < (na)"MEW™ = (na)~¥(n — 1)IF(x)k < CF(x)*

for n large enough, where C depends only on . But for k > 2/e, this bound is
uniformly integrable in n for x < F~*(a) by hypothesis, and so for » sufficiently
large |Q,(x)| is uniformly bounded by an integrable function, and the Dominated
Convergence Theorem applies for this part of the integral also. Proceed analo-
gously for x > F~(1 — a).

Clearly if only one tail of F is “heavy,” a similar result holds assuming only
that J trims the extremes in the “heavy” tail.

Remarks on the assumptions.

REMARK 1. The hypotheses of Theorems 1 through 5 are not the weakest pos-
sible for the given conclusions. However, some of them—in particular the
moment conditions and the continuity assumption on J—are necessary to the
present method of proof. That the continuity assumption is to some degree
necessary to the conclusions will be evident from example 5.6 of Section 5. The
moment conditions of Theorems 1, 2, 3, and 4 are the weakest yet obtained in
the literature. The assumption that J is bounded is another matter. Using a
different method of proof, Shorack (1972) has shown S, to be asymptotically
normal for some unbounded J, but at the expense of stronger conditions on the
tails of the distribution. From the point of view of applications the restriction
to bounded J is relatively innocuous since statistics S, with unbounded J will be
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extremely sensitive to outliers, defeating the very purpose of robust inference
which led to the consideration of these statistics.

REMARK 2. It could be argued that the restriction to statistics of the form S,
is rather severe; that we are often interested in statistics

1 .
(13) S, = —n‘ Z?=1 Ja <ﬁ> X(i) H

where J, — J in some sense. However, inspection of the above proofs reveals
that Theorems 1 through 5 apply equally well to S,’ as long as the J, are uni-
formly bounded, and for every continuity point p of J there is an open neigh-
borhood of p such that J,(«) — J(x) uniformly in this neighborhood.

REMARK 3. Finally, it can be easily shown that the statistic S, of Theorem 5
is still asymptotically normal (normalized by u(J, F) and ¢*(J, F)) without any
condition on the tails of F, provided J satisfies the conditions of Theorem 4
(the statistic S, is equivalent in probability to one derived from observations
truncated at F~'(a/2) and F~%(1 — «/2)). However, the tail condition x[1 —
F(x) 4 F(—x)] — 0 is necessary for any moment of S, to be finite for any n.

4. The independent case. With few exceptions (Weiss (1969), Shorack (1973)),
the published literature on linear functions of order statistics has been concerned
with the case where the unordered observations are not only independent, but
identically distributed. In this section we will see that all of the results for the
i.i.d. case given in Section 3 carry over in some form to the general independent
case, with little change in the proofs. In this section we shall return to the
notation of Section 2.

THEOREM 6. Suppose that for some distribution function G(y) of a random varia-

ble Y with EY? < oo it is true that whenever y < — M, F,,(y) < G(y), and whenever
y = M, F.(y) = G(y), where M is some finite constant. Assume also that both

(14) M, 17 i, Fia(x) = F(x)
and
(15) lim, ., n7* 335 [Fea(min(x, y)) — Fy (x)Fp(y)] = K(x, )

exist for a.e. x, y with respect to Lebesgue measure. Then if J(u) is bounded and
continuous a.e. F-', no¥(S,) — o*(J, F, K) (given below), and if ¢*(J, F, K) > 0,

then
Sy — E(S,) n— oo
g( 5 ) N, 1) as .

n

Here
o¥(J, F, K) = §2. §2 JE(x)(F(y)K(x, y) dx dy .

If in addition J satisfies the conditions of Theorem 4 and § [G(y)(1 — G(y))]t dy < oo,
then n}(E(S,) — u(J, F)) — 0, where p is given by (11).
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Proor. We shall follow the proofs of Theorems 1 and 2. First, from Proposi-
tion 3,
no(T,) = §2. §2. Ko(x, y) dx dy ,
where

Ku(x,y) = % Dt [Fra(min (x, ) — Fia()Fpn(1)]1Q"(¥) Q")) »

Q. (x) = ?:;J(n _:_ 1) P(x) -

Fix x, y so that (14) and (15) hold and J(x) is continuous at ¥ = F(x) and u =
F(y), with 0 < F(x), F(y) < 1. For each fixed k, 0,"(x) — J(F(x)) and Q,"(y) —
J(F(y)) by the weak law of large numbers, since the Pj,(x) are still binomial
probabilities, but with unequal probabilities. In fact, it follows easily from
Chebychev’s Inequality that the convergence is uniform in k, for fixed x and y.
But then (15) implies that K,(x, y) — K(x, y)J(F(x))J(F(y)). The hypotheses of
the theorem imply that

(16) Fy(min (%, y)) — Fi(x)F.(y) < C[G(min(x, y)) — G(x)G(y)]
for some constant C, all k, n; thus if
supJ| = M, |K,(x,p)l < M* - C - [G(min(x, y)) — G(x)G(y)]
and the Dominated Convergence Theorem gives ne¥(T,) — o*(J, F, K).
The proof that ne*(S,) — ¢*(/J, F, K) follows as in Theorem 1, except that now
nt 3 2 [Gii(x, y) — G(x)G;(»)]
= 171 T [Fin(min (%, y)) — Fin(X)Fea(y)] — K(x, 7) -

Then Chebychev’s Inequality for the generalized binomial distribution and (16)
give the desired conclusion as before.

The proof that T, is asymptotically normal is also straightforward. We now
have T, — ET, = n* Y32_, Z,,, with

Zin = §20 (Fun(y) — Iix,,50) Q" (7) dy,

0r() = T () PO -
Then since Q,"(y) — J(F(y)) a.e., it follows as above that T, is asymptotically
equivalent in mean square to n~' 37 Z,,,

Zn = §2 (Fun(¥) = lixy sV (F(2)) dy -

The asymptotic normality of n! 3 Z,, follows easily from the Lindeberg-Feller
Theorem (in particular, the hypotheses of our theorem imply the Z;,’s are uni-
formly square integrable.)

The final statement of Theorem 6 follows in an equally straightforward
manner. (]
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The following result follows easily along the lines of Theorem 5, using Propo-
sition 2.

THEOREM 7. If the moment condition on G of Theorem 6 is replaced by the con-
dition that for some ¢ > 0, lim,_,, x[1 — G(x) 4+ G(—x)] = 0, and it is also required
that Ju) =0 for 0 < u < a and 1 — a < u < 1, the conclusions of Theorem 6
continue to hold.

Clearly Theorem 3 can also be easily modified for the independent case, and
the remarks at the end of Section 3 remain true in the independent case. In
particular, if S, is given by (13), and for every continuity point p of J there is
an open neighborhood of p such that J,(#) — J(u) uniformly in this neighborhood,
and the J, are uniformly bounded, then Theorems 6 and 7 apply to S,’ also.

Finally, we remark that slightly modified versions of the asymptotic normality
parts of Theorems 6 and 7 continue to hold without hypotheses (14) and (15),
since the theorems can be seen to hold uniformly in {F,,}, satisfying the first
hypothesis. In particular, the assumption o*(J, F, K) > 0 is replaced by the
condition lim inf ns*(S,) > 0, and J is assumed bounded and continuous except
possibly at a set of points of measure zero under each Fj;, and such that the
{Fz} are equicontinuous at these points.

5. Applications and examples.

5.1. The sample mean. If we take J(u) = 1, we see that S, = n™' 333, X,,,
the sample mean. Then Theorem 2 for the i.i.d. case says that S, is asymptotically
normal as long as E(X?,) < oo, the usual form of the Central Limit Theorem.
Theorem 6 can be viewed as a special case of the Lindeberg-Feller theorem.

5.2. The trimmed mean. Let S,(a) denote the a-trimmed mean,
Su(@) = (n — 2[an])™ TizfEth X, -

Then in the i.i.d. case, Theorem 5 applies as long as x‘[1 — F(x) + F(—x)]— 0
for some ¢ > 0 as x — oo, and the ath and (1 — a)th percentiles of F are unique.
Here J(u) = (1 — 2a)™! for a < u < 1 — @, J(u) = 0 otherwise. In the more
general independent case, Theorem 7 applies if x[1 — G(x) 4+ G(—x)] — 0 for
some ¢ > 0 as x — oo, and the ath and (1 — a)th percentiles of F are unique.
As remarked at the end of Section 3, the tail condition on F (resp. G) is not
necessary for asymptotic normality, only for the existence of moments. See
Stigler (1973) for a necessary and sufficient condition that S, («) be asymptotically
normal.

5.3. Gini’s mean difference. Gini’s mean difference, given by
G'n = [n(n - 1)]—1 Z?,j=1 IXm - Xjnl ’

can be written as a multiple of a statistic S,:
G, =4(2+)s

n—1
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where J(u) = u — } (see David (1970), page 146). Theorem 2 applies in the
i.i.d. case if the second moment is finite, and Theorem 6 applies in the inde-
pendent case, giving a result which holds under a weaker moment condition
than that obtained by applying Theorem 8.1 of Hoeffding (1948).

5.4. Other robust statistics. Many robust statistics which have been considered
are already of the form of S, (see Chernoff, Gastwirth, and Johns (1967) and
Jaeckel (1971) for example). Some authors have also considered statistics of
the form n~* 3; J,(i/(n + 1))X,,,, where

(n + )73 + 1)) = §§05 00, J@) du + o(n77)

uniformly for i/(n 4 1) € (0, 1), (see Bickel (1967)). Since J, (1) — J(x) uniformly
in some neighborhood of each continuity point of J, our results apply to these
statistics too.

5.5. Nonidentically distributed observations. As an example of a situation in
which Theorem 6 could be applied, suppose that the F,, all belong to the same
scale-location family, F,,(x) = F((x — 6,)/a,), where the second moment of F
is finite, F is continuous, and all of the parameters are in some bounded set,
say |0, 4+ a, < C all k. Let

H,(6, a) = %(#(0,,, a)< (B, apk=1,--,n),

the “distribution function” of (6,, ay), ---, (0,,a,). Then if H, —, some H,
Theorem 6 applies to S,, with

Fe =55 F (

X = ”) dH(6, a) ,
a

K(x, y) = F(min (x, y)) — §§ F(" = 0>F<J’ = 0) dH(6, a) ,

as long as J is bounded and continuous a.e. F-1, A similar result holds if each
X,, has a binomial (n,, p,) distribution or a Poisson (4,) distribution, or if the

X, are based on grouped data.

5.6. Discontinuous weight function. The following example shows the necessity
of requiring that J be continuous a.e. F~*in the theorems of Section 3. Shorack
(1972) has given a similar example based on the Bernoulli distribution; this
present example demonstrates that the non-normal behavior of §, is in no way
connected with the “discreteness” of F, rather it has to do with the nonunique-
ness of a percentile of F. Let X, X, -+, X, be i.i.d. with distribution F(x)
having density

f(x)=.5 xe[0, 17U [2, 3]
=0 otherwise.



692 STEPHEN M. STIGLER

LetJ) = I,s . LetZ, = (4 X, < 1)and Y, = max(Z,, [n/2]). Then we have

nS, = Xitmmn Xu + PR RTD. (%
= [ 2V 2tmme (X + 1) + Z;;Y”-H Xl — (Yo — [n/2])
=V, — (Y, — [n]2)). say.

Now n~'V, has the same distribution as a statistic S, based on a sample from a
R[1, 3] distribution, since if 1 is added to each of the original X,’s which is <1
the “new” X;’s will have the same joint distribution as a random sample from
R[1, 3], so Theorem 2 says that n=¥(V,, — EV,) is asymptotically normal. Clearly
n~YZ, — [n/2]) is asymptotically normal. It can be further shown that they are
asymptotically jointly normal. But then §, is not asymptotically normal, since
n~}(Y, — [n/2]) is asymptotically “half-normal,” with an atom of probability 4
at zero. A more general and detailed proof is given in Stigler (1973).
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