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RANDOM MEANS!

By GALEN R. SHORACK
University of Washington

General theorems on asymptotic normality of randomly trimmed and
Winsorized means are obtained. A new small sample studentization is
proposed. Many examples are presented. The two sample problem is also
considered.

1. Introduction. Let X,, < ... < X, denote the order statistics of a random
sample from F, = F(. — 0) where F is an unknown df, Let g = F~* denote the
left continuous inverse of F. Let @ = a(F)and 8 = §(F) denote numbers (possibly
unknown values of F(.), possibly known fixed numbers, etc.) satisfying 0 < o <
B<1. Let A= A(F) = g(a)and B = B(F) = g(B). (The above notation means
that a, 8, 4 and B may depend on F.)

Let a, and 8, be integer valued random functions of X,,, - .-, X,, for which
0a,<B,En Let

(1) Tn = Zz:-l»l Xm/(ﬁn - an)
denote the general randomly trimmed mean. Let
(1*) Tn* = [a'anan+1 _l— Z£:+1 Xni + (n - ABn)Xnﬂn]/n

denote the general randomly Winsorized mean. We will call a,/n and (n — B,)/n
the random adjustment percentages.
We will concentrate initially on the case

(S) F is symmetric about 0, B=1—a and A= —B.

In this situation it seems natural that the adjustment percentages should be sym-
metric in some sense.

Method 1. T, and T, * will be called nearly symmetric random means or sym-
metric random means according as

(S1) A, — (1 — B,) = o,(n)
or
(S2) a,=n—4,.

Method 2. Let a, and n — B, denote the number of observations less than
0, — B and greater than §, + B respectively, where the preliminary estimate

A

0, = 6, of 6 and the positive rv B = B, satisfy
(2) b, — 0 = 0,(n)
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and
(3) B—B=0,n?).
The resulting estimates will be called metrically symmetrized random means.

Asymptotic normality of Methods 1 and 2 random means is established in Theo-
rems 1 and 2 respectively. Studentization of the more promising of these random
means is considered in Corollaries 1 and 2. In particular, it is conjectured that
the studentization of certain estimates r, provided by Corollary 2 should be
robust in small samples.

The two-sample problem is considered in Section 6.

We will require of the random adjustment percentages that for some (possibly
unknown) a and § either

(A1) a,/n = a 4+ o,(1) and  B,/n= B+ o,(1),
(A2) a,jn=a+o,nt) and B, fn=p + o, (nt),
(A3) a,/n=a + O,(n7?) and B./n = B + O,(n7}), or
(A4) a,/n = a + o,(n7?) and B./n = B + o,(n7}).

We will also require that F satisfy either

(F1) g is continuous at « and 8,

(F2) g has a derivative at a and 3,

(F3) g satisfies a Lipschitz condition in neighborhoods of « and 8, or

(F4) F has a strictly positive continuous derivative f in neighborhoods of 4
and B.

We remark that g is continuous at ¢ in (0, 1) if and only if there is at most one
x for which F(x) = t. Note that (F1)—(F3) do not imply that F is continuous
at 4 and B.

2. Representations of trimmed and Winsorized means. For purposes of our
proofs, we suppose that X, = g(§,;)forl <i<nwhere0<¢,, < -+ <§,,<1
are the special Uniform (0, 1) order statistics described in the appendix of Shorack
(1972). Let I, denote the empirical df of these &,,’s and let U, () = n¥[T,(¢) — ¢]
for 0 < ¢ < 1 denote their empirical process. These &,;’s are special because they
satisfy o(U,, U) = sUpyg,<, |U () — U(f)] > 0 as n — co for all points in the
probability space; here U is a special Brownian bridge on [0, 1] having continu-
ous sample paths. Also the quantile process V,(t) = n}[[,"(t) — t]for0 < ¢t < 1

satisfies p(V,,, V) — 0 for all points in the probability space; here V' = —U is also
a Brownian bridge. Note that
“4) Z(r) = —[U(n + U(1 — n]j2*

is Brownian motion for 0 < ¢ < 1.

This special construction will enable us to represent the limits in distribution
of T, and T,* as certain functionals of U that are being converged to in the
strong sense of — .
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LEMMA 1. (The trimmed mean). (a) (General F). If (A3) and (F1) hold or if
(A2) and either (F2) or (F3) hold, then

PA(T, — ) = (12 Udg + (4 — pynifa,jn — a]
— (B — wrlBun — B(B — @) + <.

where p = \& g(¢) dt/{(B — a) and where ¢, —,0 as n — oo.
(b) (Symmetric F). If (S), (S1), (F3) and (A1) hold, then

mY(T, — 0) = —§= Udg/(1 — 2a) + ¢,
where ¢, —,0 as n — co.
LEMMA 2. (The Winsorized mean). (a) (General F). If (F2) and (A2) hold, then
n(T* — p¥) = —[§4Udg + ag'(a)U(a) + (1 — B)g"(B)U(B)]
+ ag'(@)nfa,/n — a] + (1 — B)g'(B)r[Bufn — B] + e,
where p* = aA + (£ g(t)dt + (1 — B)B and where ¢, —,0 as n — co.
(b) (Symmetric F). If (S), (S1), (F2), (F3) and (Al) hold, then
n(T* — 0) = —{§i*Udg + ag'()[U(e) + U(l — a)]} + ¢,
where ¢, —,0 as n — oo.
Note from (4) that when (S) holds, —§% Udg = 2} {} Z dg provided g is con-

tinuous at 3.
These fundamental lemmas are proved in Section 7.

3. The main results for symmetric F. Throughout this section we suppose
that the symmetry condition (S) holds.

We define
) o* = o¥(a) = [{2; x*dF(x) + 2aB]/(1 — 2a)’
and "
(5%) 0, = 0, (a) = (25 x*dF(x) + 2a[B + ag'(a)] .

THEOREM 1. (Asymptotic normality of nearly symmetric random means).
(i) If (S), (S1), (F3) and (Al) hold, then
n¥T, — 0) —, N0, ¢*) .
(ii) If (S), (S1), (F2), (F3) and (A1) hold, then
BT, * — 0) =, N0, 0,7).

Proor. (i) It is immediate from Lemma 1(b) that n¥(T, — 0) —, M, where
©) M, = —§LUdg/(B — a).
This limiting rv is N(0, ¢°) by Lemma 3 below; let K(f) equal 4, g(), Baccording
as0<t<a,a<t=<p,p<t< 1. Jaeckel’s (1971) development of Example

6 below implies a proof of this result under the condition that F has a density
that is strictly positive and continuous on the interval of support.
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(ii) Likewise, from Lemma 2(b) we obtain n¥(T,* — ) —, M, * where
(6%) M* = —[ag'(@)U(a) + £ Udg + (1 — B)g'(B)U(B)] -
This limiting rv is seen to be N(0, ¢,’) by Lemma 3 and some tedious book-
keeping. ]

Let 6, denote any consistent estimate of §. Denote the Winsorized sample vari-
ance about 6, by

A[ay(Xuapsr — 00 + To21a (Kus — 00 + (1 — Bo)(Xp, — 0]
(ﬂn - an)(ﬂn - & — 1)
CoROLLARY 1. (Studentization of T,). If (S), (S1), (F3) and (A1) hold, then

n¥(T, — 0)|V, is approximately distributed as t, _, _; .

™ V,: =

Proor. Replace §, by 6 in (7) and call the result V,>. Now ¥, — o® by the
proof of Lemma 2(b) with g replaced by ¢* = (9, — 6)*; note that (F2) is not
needed if we only claim this much. Also ¥,? — ¥, —, 0 since §, —, 6. Thus
V, —, d, which combined with Theorem 1 gives n¥(T, — 0)/V, —, N(0, 1).

The use of #, _, _, instead of N(0, 1) was proposed by Tukey and McLaughlin
(1963); and illuminating comment is found in Huber (1970). [

ExaMpLE 1. (Ordinary trimmed and Winsorized means). Let 0 < a < } be
a fixed known number, and let a, = n — B, = [na] equal the greatest integer
in na. In this important special case we denote (1) and (1*) by T,(«) and T,*(a)
respectively. Note that (A3) is trivially true with orders of magnitude to spare.
Thus under (S) we have from Lemma 1(a) and Lemma 2(a) respectively, that
nY[T,(a) — 6] —, N(0, *) if (F1) holds and ni[T,*(a) — 6] —, N(0, 0,%) if (F2)
holds. (See also Bickel (1965) and Huber (1969). See Corollaries 3 and 4 below
for the case of asymmetric F that depend on n.) []

We now turn from Method 1 random means and consider Method 2 random
means. To phrase our theorem we will need the following example.

ExaMmpLE 2. (The truncated mean). Let Y, equal X; or 0 according as
|X; — 0| < Boras |X; — 6] > B. Let T, = Y Y,/n denote the truncated mean;
and note that it is unobservable. By setting §, = 6 and B = B in Theorem 2(i)
below we find that

(®) (T, — 0) >, M, =[—AU(a) — §i Udg + BUB)/(E — @)
provided (S) and (F4) hold. The limiting rv M, is N(0,d") where ¢ =
{2 x* dF(x)/(8 — a)*, as follows from Lemma 3 below. (Asymptotic normality
of T, also follows from the ordinary central limit theorem.) []

THEOREM 2. (Asymptotic normality of metrically symmetrized random means).
Suppose (S), (2), (3) and (F4) hold. (i) Then

(T, — 0) = M, + [2Bf(B)(1 — 2a)Jni(f, — 0) + <,
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where M, is defined in (8) and where ¢, —, 0 as n — co. (ii) Also
n(T,* — 0) = (1 — 2a)M, + 2an}(@, — 0) + ¢,
where M, is defined in (6) and where ¢, —, 0 as n — oo.

Proor. Apply Lemmas 1(a) and 2(a) to F, noting that p, = 0, dg, = dg,
Ay — pg=A= —B, B, — py = B, p,* =0, g/(«) = 9,/(B) = 9'(a) = 1/f(B).
It remains only to consider , and 3, in the formulas of the lemmas. Let & =
Fy0, + A) and § = F,(0, + B) where A = — B; then

ni(a,/n — @) = U,(@) + nb(@ — a) + o,(1)
= Uy(@) + (0 + 4) — (0 + AUE(0, + ) — Fy(0 + A)]
= [0+ A — (0 + D] + o,(1)

= U(a) + ni[(0 + A) — (0 + D1fo(0 + 4 + 0,(1),

while

ni(B,/n — B) = U(B) + n¥( — B)
= U(B) + ni[(0 + B) — (6 + B)1fo(0 + B) + o,(1) .
Note that f,(6 + A) = f,(¢ + B) leads to cancellation of the A and B terms.

This completes the proof.
Note that if assumption (S) is dropped we still have

©) M — p¥) = (B — M,y + (a + 1 — pni(d, — 0)
+ an(d — A) + (1 — Pi(B — B) + o0,(1)

where we now use M,, to denote the expression in (6). This expression will be
used in Section 6. []

ExAMPLE 3. (A special random mean, 7,). Suppose the random variables
@, = n — B, satisfy (A3); and let T, denote the trimmed mean of (1) based on
these choices &, and f,. Examine the n residuals |X,, — T,| and reject the 24,
observations whose residuals are largest; let a, (let n — §,) denote the number
of observations rejected whose residuals were negative (positive). Let z, denote
the Winsorized mean of (1*) based on these @, and §,; and let v, denote the
variance of (7) based on «,, 8, and 6, = r,. (Note that , is a metrically
Winsorized mean about the preliminary symmetrically trimmed random mean
T,; and v,? is the matching Winsorized sample variance about 7, divided by an
estimate of (8 — a)’.) [

COROLLARY 2. (Studentization of z,). If (S) holds, if &, = n — B, satisfy (A3)
for some 0 < a < %, and if F satisfies (F4), then
n¥(z, — 0)[v, is approximately distributed as t, _, _, .
Proor. (The following proof is valid with a, = n — g, replaced by (S1).)
From Theorem 2, and then Theorem 1, we obtain
n¥(z, — 0) = (1 — 2a)M, + 2an¥(T, — 0) + o0,(1)
= (1 — 2a)M, + 2aM, + o0,(1) = M, + o0,(1);
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so that n¥(r, — 6) —, N(0, ¢°). Also v, —, ¢ as in the proof of Corollary 1, since
a, and B, satisfy (A3). [J

REMARK. In Theorem 2 and in (9) we can replace (2) and (3) by the weaker
hypotheses §, — § = o,(n~%) and B — B = o,(n~), provided we require in addi-
tion to (F4) that

(FS)  [f(4+¢) —f(A)]le and [f(B + ¢) — f(B)]Je are bounded
for ¢ in some neighborhood of 0.

Thus (A2) may replace (A3) in Corollary 2 if (F5) is added.

4. Examples. Throughout this section we suppose (S) holds. We first give
some examples relating to Method 1.

ExampLE 4. Let §, denote some consistent preliminary estimate of location
6; and let d denote some estimate of scale or dispersion that satisfies d —,d as
n — oo, for some constant d. Let 2a, denote the number of observations X
satisfying |X — f,| = kd, where k is a fixed constant. Let T, denote the trimmed
mean of (1) with @, = n — §8,. If (F3) holds and if F is continuous at —kd,
then we conclude from Theorem 1(i) that n¥(T, — 6) —, M, with @ = F(—kd).

We have forced (S2) to hold in a somewhat unnatural fashion; but the
consequences of this are that the limiting distribution is independent of which
preliminary consistent estimate 6, is used, and the final estimate behaves asymp-
totically like a trimmed mean.

For this case of forced symmetry, it would seem that overtrimming is better
than undertrimming.

If we let §, denote the median and 4 denote the median of the values | X — by,
then the breakdown point (see Hampel (1971)) of this randomly trimmed mean
is 4.

The more natural asymmetric adjustment is considered in Examples 9 and 10
below. Note that it does not lead to the two properties cited in paragraph two
of this example.

Alternatively, we could replace the constant k above by ¢(K) where K is the
sample kurtosis and ¢ is a suitable smooth function whose range is (0, c0). In
this case @ = F(—¢(K)d) where K is the true kurtosis. See also Hogg (1967). []

ExampLE 5. Let H, = H,(X,,,- -, X,,) denote the ratio of the mean deviation
to the standard deviation. Let p, = ¢(H,) where ¢ maps [0, co) into [0, §). The
idea is that H, tells us how heavy the tails of F look; then ¢ calibrates this to a
percentage that we will trim. The actual numbers we will trim are a, = n —
B, = np,. If (F3) holds and if F has a finite variance and ¢ is suitably smooth,
then Theorem 1(i) gives n¥(T, — 0) —, M, with a = ¢(H); here H is the ratio
of the true mean deviation to the true standard deviation.

Clearly, a multitude of other examples along this same line is possible. ]

ExAMPLE 6. (Jaeckel). Let V,*(a) denote the Winsorized sample variance (see
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(7)) about the ordinary trimmed mean T, («) of Example 1. Let @ minimize V,*(«)
over a fixed range 0 < @, < a < a, < 4, let a, = n — B, denote the greatest
integer in n&, and denote the resulting trimmed mean by T,(&). If ¢*(a) has a
unique minimum in [a,, a,] at a,,, and if F has a strictly positive continuous
density on an open interval containing [g(«,), 9(1 — a,)], then Jaeckel (1971)
show that (Al) holds. Hence Theorem 1(i) also yields Jaeckel’s result that
n¥ (T, (&) — 0) >y M,_, .

Jaeckel established certain large sample minimax properties for this adaptive
estimate. However, its small sample performance in Andrews, et al. (1972) was
not too impressive. []

ExAmPLE 7. (Johns). Let0 < o, < -+ < @, < }..Let ¢, - .-, ¢, satisfy ¢, — ,
c,forl<i<rand ;06 =1. If (Fl) holds at ay, - -+, a,, then

(D5 & Ty(a) — 0) >4 e M,
Johns (1971) shows how the ¢,’s can be chosen so that the variance of 35 ¢, M,,

is uniformly close to the Cramér-Rao bound over a large class of rather smooth
F. [

We now turn to examples of Method 2. We will consider the T, and T,* of
Theorem 2 for various choices of §, and 8. We suppose throughout that (S) and
(F4) hold, and all our choices for §, and 8 will satisfy (2) and (3) respectively.

ExampLE 8. (Metrically symmetrizing about the trimmed mean with percent-
ages fixed). Let 0 < @ < } be fixed. Let §, denote the ordinary trimmed mean
with a, = n — 8, = [na]; thus ni(d, — 0) —, M,. Let T, (T,*) denote the met-
rically trimmed (Winsorized) mean about §, in which the 2a, observations whose
residuals about §, are largest are trimmed (Winsorized). Then

n(T, — 6) —, M, + [2Bf(B)/(1 — 2a)]M,
and
ni(Tn* - 0) 4 Ma .
(This T,* is really the simplest special case of the r, of Example 3.) []

ExAMPLE 9. (Metrically symmetrizing about the median). We now add the
assumption that F has a strictly positive continuous derivative f in a neighbor-
hood of 0. Letting , denote the median, it is then easy to show that n#(, — 6) —,
—U(3)/f(0). Suppose now that B satisfies (3), and let « = F(— B). Then

m(T, — 6) =, M, — 2B(B)/(1 — 2a)]U)/f(0)
PA(T,* — 0) =4 (1 — 20)M,, — 2aU(3)[f(0) -

By way of illustration, we could let B = kd for some constant k and some
estimate of dispersion d that satisfies d — d = O,(n~*) for some constant d. In
this case « = F(—kd). Compare this to Example 4.

Note that this approach is sufficient for treating the “one-step estimators”

~described on page 13 of Andrews, et al. (1972). ]

and
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ExampLE 10. (Metrically symmetrizing about trimmed and Winsorized means).
Let 0 < @, < % be a fixed initial adjustment percentage. We now add the as-
sumption that (F4) holds at B, = —g(a,). We suppose B satisfies (3) for some B.

If 4, denotes the a,-trimmed mean, then

n¥(T, — 0) = M + [2Bf(B)/(1 — 2a)]M,,
and
n¥(T,* — 0) —4 (1 — 2a)M, + 2aM,, .
(Compare the result for T,* to Example 7.)
If §, denotes the a,-Winsorized mean, then merely replace M, by M} in the

two formulas above.
It seems useful to record that

Cov [M,, M, ] = (1 — 2&)0%(&)/(1 — 2g)
+ 2B(@B — B + {5 x dF(x)/((1 — 2a)(1 — 2ar))

wherea = a A @, @=a V a,, B= B A B, B= BV Bjand o%(a) is defined in (5).
For B = kd and a = F(—kd) this can again be compared to Example 4. []

ExAMPLE 11. (A Huber type of metrically symmetrized means). Let H, (H,*)
denote the estimate with the property that if the 2[na] observations having the
largest residuals about H, (H,*) are trimmed (Winsorized), then the resulting
estimate is again H, (H,*). That H, (H,*) is well defined and satisfies (2) is
shown in Huber (1967) (in Huber (1964)).

Thus from Theorem 2(i) we obtain

m(H, —0) =D+ c[D+c[D+c[---]+e]+e]lte
=@ +e)d+etct 4 --0)
—3D/(1 — ¢)
= (1 — 2a)M,[[1 — 2a — 2Bf(B)]
where D = M, and ¢ = 2Bf(B)/(1 — 2a).
Likewise, from Theorem 2(ii) we obtain
ni(H* — 0) = D + 2a[D + 2a[D + 2a[-- -] + &,] + &u] + ¢4
= (D + ¢,)[1 + 2a + (2a)* + -]
—,DJ(1 — 2a) = M,
where D = (1 — 2a)M,.
These limiting distributions agree with those established by Huber. The
present approach seems interesting. []

5. Remarks.

1. T,(a) seems to be generally regarded as being preferable to T, *(a) because
of its greater efficiency for heavy-tailed F, because estimating its variance does
not require estimating the troublesome f(B), and because the simple estimate V,
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of ¢ is available. These reasons for prefering trimming to Winsorizing carry over
to the general situation of Method 1.

2. For Method 2 the situation is less clear; but seems to be reversed. In
Examples 8—11 the metrically Winsorized estimates have simpler asymptotic
forms than do the metrically trimmed estimates. With insight or luck in choos-
ing f,, we may obtain a particularly simple asymptotic form; this was the case
with the estimates r, of Examples 3 and 8.

3. The most promising estimates seem to be the Method 1 symmetrically
trimmed means T, and the special Method 2 metrically Winsorized means ,.
Note that both of these classes of estimates behave asymptotically like a trimmed
mean M, in which &« = a(F) may be determined by the data.

4. Which is best, T, or 7,?

4a. The one whose studentization (see Corollaries 1 and 2) is the more robust
in small samples. I do not know which is more robust; but on the basis of
“balance” or “matching” of the numerator and denominator, I would conjecture
7,. (The results of Levene (1960) and Efron (1969) do not apply directly here,
but they seem encouraging to z,.)

4b. The one which is more powerful in small samples. Recall that 7, is
formed by metrically Winsorizing about T,. For data sets that are rather sym-
metric, the estimates will be nearly the same; while for data sets that are heavily
skewed, 7, will lead to asymmetric adjustment percentages. For this reason, I
conjecture 7,. (See also page 253 of Andrews, et al. (1972).)

4c. The one which generalize most readily to more complicated problems.
Bickel (1971) has generalized T,(«) to the linear model; the procedure leads to
omitting observations with large residuals, and may thus destroy the balance or
equal spacing of a design. The r, procedure causes observations to be modified,
not omitted; this generalization is currently being worked on.

4d. T, is slightly easier to compute.

5. Some observations on Theorem 2.

5a. All estimators B of B satisfying (3) lead to equivalent asymptotic results.

5b. To obtain asymptotic distributions of T, and T,* we need to represent the
limiting form of n#(§, — 6) in terms of the U process. We did this for trimmed
means, Winsorized means and medians in the examples. Let me note that for
the Hodges-Lehmann estimate 6, = median {(X; + X;)/2: 1 < i, j < n}, the
limiting form of n#(f, — 0) is — § U(t) dt/§ F’ dF.

5c. T,* behaves asymptotically like a weighted average of the preliminary
estimate and an a-trimmed mean with « determined by the data. This makes
sense intuitively, provided the preliminary estimator is a good estimator for
heavy-tailed F.

Suppose we use §, as a preliminary estimator. If F has heavy tails, then pre-
sumably our choice of B is such that a« = F(— B) is “near 4.” Thus Theorem
2(ii) tells us that T, * is practically the same as ,; and that is bad if §, is geared
to light tails.
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6. If we are led to suspect “light-tailed” F we might well throw away the
middle order statistics and average the “trimmings”; see Hogg (1967). The
representation of the limiting rv is — (¢ [U(f) + U(1 — f)] dg/2a.

6. The two-sample problem for general F. Let X < ... < X, . and
Y,, < --- £Y,, denote the order statistics of independent samples from F and
F(+ — 0) respectively. Leta,, m — §8,and a,, n — B, denote the random adjust-
ments for the two samples. We will denote trimmed and Winsorized means from
the two samples by T, T,* and T,, T,*. Again, we consider two methods of

making random adjustments.

Method 3. Our estimates will be called equalized random means if
(10) (/) — (&afm) = 0,((mnf(m + m)~),
and if the f8’s satisfy the analogous condition.

Method 4. Leta, (a,)andm — B, (n — B,) denote the number of observations
less than é, + A (¢, + A) and greater than ¢, + B (&, + B) respectively, where
the preliminary estimates of location é, = ¢, and é, = &, , and the rv’s 4 =
Ay ymoand B=B, , satisfy

(11) éy —c=0,(nY), & —(c+0)=0,n?
for some constant ¢ and
(12) A—A=0,n1), B—B=0,n?

for some constants 4 and B. The resulting estimates will be called metrically
equalized random means.

ExampLE 12. (The special random means r,,, ,). Suppose &,, m — f, and
&,, n — B, satisfy (A3) and (10); and let T, and T, denote trimmed means based
on these adjustments. Winsorize the &,, + &, (m — f,, + n — f,) observations
whose residuals |X; — T,| and |Y; — T,| are smallest (largest). Leta,, m — 8,
a,, n — B, be the new adjustment percentages; and let z,, r, be the new
Winsorized means. We define

(13) oX(a, B) = [ad’ + §Ex*dF(x) + (1 — B)B’)/(B — a)’. 0

THEOREM 3. (Asymptotic normality of equalized trimmed means). If (10), (F1)
and (A3) hold in the location model, then

(mnf(m + n))XT, — T, — 0) —, N0, o*(a, B)) as mAn— oco.

Proor. Let Uy and U, denote independent Brownian bridges associated, as in
Section 2, with the two samples. Then U = (m/(m + n))tU, — (n/(m + n))tU,
is also a Brownian bridge. Using this and (10), the conclusion follows immedi-
ately from Lemma 1(a). []

THEOREM 4. (Asymptotic normality of special metrically equalized Winsorized
means). If &,, B, &,, B, satisfy (10) and (A3) and if F satisfies (F4), then

(mn/(m + n))¥(z, — ,, — 0) —, N(O, ¢*(a, B)) as mAn—oo.



RANDOM MEANS 671

Proor. We again use the U, U,, U, of the proof of Theorem 3. We use (9)
(which is Lemma 2(a) in disguise) and then Theorem 3 to find

(mn(m + n)X(z, — 7, — 0)
= (mf(m + n)[— i Uydg + (« + 1 — p)nX(T, — pr — 0)]
— (pf(m + n)[—§E Uxdg + (a + 1 — B)mi(T,, — p1)]
—eUdg — (41— B)§i Udg/(B — a)
= —§;Udg/(B — a).
This proves the present theorem; which is the analog of a special case of Theo-
rem 2.
The analog of Theorem 2 itself is
(14)  (mnf(m + m)XT,* — T,* — 0)
= —§i Udg + (a + 1 — p)(mn|(m + n))(éy — Ex — 0) + 0,(1);
where we are now considering the general case of Method 4, and not the special

case of Example 12.
Theorem 4 and (14) may be generalized as in the Remark at the end of Sec-

tion 3. [J

The natural analog of (7) to use in studentizing these estimates of § seems to be
(15) V:,=[m—1)V+ n— )V (m+n—2)

where V,? and V,? are obtained from (7). (Of course, we would introduce the
notation v, ,, V., ¥, when studentizing r, — z,.) The appropriate number of
degrees of freedom seems to be 8,, — a,, + 8, — a, — 2.

REMARK. Note that both Methods 3 and 4 use the combined sample to deter-
mine the adjustments in the individual samples. If this is not done, then the
random adjustment percentages typically contribute extra terms to the limiting
rv. In particular, this would destroy the simplicity of Theorems 3 and 4.

7. Proofs of lemmas.

Proor oF LEMMA 1. Now, a.s., none of the rv’s £, take values corresponding
to discontinuities of g; thus

Vtna, s1.tns ST 49 = B2 MGG ncrr) — 9(En0)]
where ¢(t) = {ids. When summed by parts this gives

S, =n"t Z£:+1 9(¢.:)
= P(@nM)9(Enayrr) + §efn, H(T,) dg — P(Ba/m)9(Ens,) -

Integration by parts gives

§5 9(r) dt = P(@)g(a) + §i ¢ dg — H(B)9(F) -

n*[S” - Sﬁ g(t) dt] = _an,e,,, Un dg + Tnl + Tnz ;

Sna,+1

Thus
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where
Tm = m[—§0 ' @ dg + P(@u[1)9(Ennyir) — P(@)9()]
= —nt Seam"“ g(r)dt + g(Enan+1)ni($ﬂan+l — a,/n)
= —g(ant(ay/n — a) + [9(aa,+1) — H(@)]NH(Era, i1 — Xuln)
— nt §rnttg(t) — g(a)]dt and
Tw = ni[—§L,, ¢dg — $(B.IM9(E.s,) + $(B)9(B)]
= —m 8, 0(0) — 0 ) (s, — Buln)
= g(B)n}(B./n — B) — [9(E.s,) — 9(B)InH(Enp, — Balm)
+ nt §5rea[9(1) — 9(B)]dt and
—§intn, U, dg = —§6 Udg + §¢ (U — U,)dg + §3on+ U, dg — i U, dg .

In case (a), when (A3) holds we have )
nE,s, — Bl S n,,, — Bafn| + n¥|B,/n — B
< (Vi 0) + nt|Bufn — B| = 0,(1)
so that from (F1) we have
(16) nt[S, — £ g()dt] = —§4 Udg — g(a)n¥(a,/n — @)
+ 9(B)n}(Bafn — B) + &
where ¢, —, 0. Note that (A2) and either (F2) or (F3) also imply (16).
In case (b), we use instead the middle expressions for 7,, and 7,, to get from
(S) and (S1) that
Tmr + Tne = nig(gnan+l)(€na,ﬂ+l — a,[n) — n*g(1 — Eap (1 — &45,) — an/n]
+ ot §i e g(r) dt + 0,(1)
= nh(a,/mg(1 — &,5,) — 9(Ena,s)] — 1§50 1dg(t) + 0,(1)
= —n} 50 [1 — a,[n]dg(t) 4 0,(1) ;
and thus by (Al), (F3) and (S1)

7w+ Tl < sUp |t — au/n|ntg(1 — &,p,) — 9(Ena, )]
= 0,(1)0,(1) = 0,(1) .
Thus (16) holds in case (b) also.
From (16) we get

(T, — ) = nil:‘Bn T (S = L)) + S o) di <ﬁn t 1 a)}
= (") (1S, — §2 0y dn) — und(Bofn — ) + pmi(atyfn — )]
Bn —
_ _\iUdg + (9(a) — pn¥(a,/n — a) — (9(B) — mn}(Ba/n — B)
B—a
+ e,

where ¢, —,0. [
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Proor or LEMMA 2. Now
ni[(an/n)g(ena"+l) - ag(a)]
= g(a)n¥(a,/n — @) + [9(§a,+1) — ()]} (ay/n — a)
+ ant[g(§pa, 1) — 9(@)]

nt[((n — B,)[m)9(En,) — (1 — B)9(B)]
= —9(B)n}(Bu/n — B) — [9(£4p,) — 9(B)INH(Bufn — B)
+ (1 — Bnt[9(as,) — 9(B)] -
In either case (a) or case (b) we can combine these with (16) to get
P — 1) = — 2 Udg + an{0(Ere,n — 9(a)]
+ (1= B)ntg(€ns,) — 9(B)] + 0,(1) 5

and

and finally, we note that
an*[g(snan+l) - g(a)] = a([g(énanﬂ) - g(a)]/[énan+l - a])
X [Val(@n + D)/n) + n¥((@, + 1)/n — a)]
= ag'(@)[— U(a) + n¥(a,/n — @)] + 0,(1)
and
(1 = B)nt[g(§sp,) — 9(B)] = (1 — B)[9(Ens,) — 9(B)/[€4s,, — B
X [Va(Baln) + n¥(Bu/n — B)]
= (1 = I (BL—UB) + n*(Bafn — B)] + 0,(1) . [
LeMMA 3. Let K denote a non-decreasing left continuous function on (0, 1). If
o* = {3 §o (s At — st) dK(s) dK(t) < oo, then
o = (I K*(t)dt — (V; K(1) dt)*.
Proor. Let 1, t,, - -- be an enumeration of the discontinuities of K, let p, =
K(t; + 0) — K(t,) for i = 1 and let

A=yt —t)pP=2,p §§ duav.

0<ust;<v<1
From (v) on page 419 of Hewitt and Stromberg (1965) we find
Ky 4 0) — K*(u) = §p,n [K(r + 0) + K(1)] dK(1)
= 2 §pu, K(1) dK(1) + §a,n [K(2 + 0) — K(1)] dK()
=25 KdK + Yyewn P + [KP(1 4 0) — K¥()] .
Using the idea on page 978 of Chernoff and Savage (1958), we write
=2 {§ s(1 —t)dK(s)dK(t) + A
0<s<t<1
=2 §§§§ dK(s)dK(t)dudv + A

=2 ; ; § y[K(t) — K(u)] dK(t) du dv + A

0<u<tsv<1
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- 0<§<§<1{[K2(v + 0) - Kz(u + O) - Ztiﬁ(u,v] Pf]
— 2K(u)[K(» + 0) — K(u + O)]} dudv + A

- o<§¢<su<1{[K(v) — KW — Zeerwnpltdudy + A

=1 1§L[K() — K@)Pdudy — A + A

= §AK*(v) dv — (§3 K(v) dv)*.

Use Fubini’s theorem to obtain the —A in the next to the last line. [

Suppose now that the true df F, is indexed by n. Let g, = F,_;; and let g,
and p,* be as in Lemmas 1 and 2, but with g replaced by g,. Note that g below
is not assumed to be symmetric. )

CoROLLARY 3. Let a, and 8, satisfy (A4). Then

n*(Tn - #n) 4 —Sﬁ Udg/(‘B - a)

provided the family of functions g, is uniformly equicontinuous in open neighborhoods
about each of a and B, and provided g, converges weakly to some function g on some
open interval in [0, 1] containing [a, B]. (If g, = g for all n, we require only (F1).)
The limiting tv has variance \§ K*(t) dt — (\; K(¢t) dt)* where K(t) equals A, g(t), B
foro<t<a,a<t<B <t L.

Proor. After applying Lemma 1(a), we need only replace {4 U dyg, by §4 U dg.
But this can be done by the weak convergence of g, to g and the continuity of
the sample paths of U. The variance expression comes from Lemma 3. []

CoROLLARY 4. Let a, and B, satisfy (A4). Then
n(T,* — pa*) =4 —[aU(@)g'(a) + §2 Udg + (1 — B)U(B)9'(8)]

provided the family of functions g,' is uniformly equicontinuous in open neighborhoods
about each of a and B, provided g, converges weakly to some function g on some
open interval in [0, 1] containing [, 8], and provided g,'(a) — ¢'(@) and g,'(8) —
g'(B) asn— oco. (If g, = g for all n, we require only (F2).) The limiting rv has
variance } K, X(f)dt — ({} K, (¢) dt)* where K. (t) equals A — ag'(a), 9(t), B+
I =B89P for0<t<a,a<t<B, <<t
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